(11) **EP 1 974 822 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

01.10.2008 Patentblatt 2008/40

(51) Int Cl.:

B03C 3/49 (2006.01)

B03C 3/41 (2006.01)

(21) Anmeldenummer: 08005469.5

(22) Anmeldetag: 25.03.2008

(84) Benannte Vertragsstaaten:

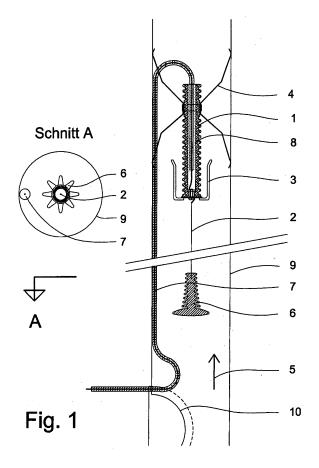
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA MK RS

(30) Priorität: 27.03.2007 CH 4882007

(71) Anmelder: Bolliger, Rudolf 3063 Ittigen (CH)


(72) Erfinder: Bolliger, Rudolf 3063 Ittigen (CH)

(74) Vertreter: Secklehner, Günter
Dr. Lindmayr, Dr. Bauer, Dr. Secklehner
Rechtsanwalts-OEG
Rosenauerweg 16
4580 Windischgarsten (AT)

(54) Elektrostatischer Feinstaubfilter

(57)Elektrostatischer Feinstaubfilter nach dem Prinzip der elektrostatischen Partikelabscheidung, gebaut für den einfachen Einbau in neue oder bestehende Kamine von Holzfeuerungsanlagen wie Cheminee, Chemineeofen, Kaminofen, Kachelofen oder Pelletofen, sowie in andere mit Feinstaub belastete Abluftkamine, bestehend aus einem Isolator (1) mit angebauten Abschirmbügeln (3), einem Ionisationsdraht (2) mit Streckgewicht.(6), und Federbeinen (4) für die automatische Fixierung und Zentrierung im Kaminrohr (9). Ein Hochspannungskabel (7) verbindet die Hochspannungseinheit mit dem Ionisationsdraht (2). Der elektrostatische Feinstaubfilter ist von oben am Kaminende, oder von unten durch die Kaminreinigungs-Öffnung (10) in das Kaminrohr (9) einschiebhar

Mit diesem elektrostatischen Feinstaubfilter wird der Rauch von Holzfeuerungsanlagen, sowie von anderen mit Feinstaub belasteten Betriebseinrichtungen, in grossem Masse vom Feinstaub und den Russpartikeln entlastet und damit der Ausstoss von Schadstoffen in die Umwelt massiv reduziert.

10

20

Beschreibung

[0001] Die vorliegende Erfindung bezieht sich auf einen Feinstaubfilter nach dem Prinzip der elektrostatischen Partikelabscheidung, für den Einbau in neue oder bestehende Kamine von Feuerungsanlagen oder Abluftkamine von Feinstaub erzeugenden Betriebseinrichtungen, enthaltend einen von einem Isolator getragenen Ionisationskörper, der über ein Hochspannungskabel mit einer Hochspannungsquelle zu verbinden ist.

[0002] Kleine Holzfeuerungsanlagen wie Cheminées, Cheminéeöfen, Kaminöfen, Kachelöfen, Pelletöfen etc. werden bis heute meistens ohne Rauchfilter betrieben. Wie Studien ergeben haben, ist die Feinstaubemission solcher Anlagen in die Umwelt in Anbetracht der Vielzahl der existierenden Anlagen erheblich. Aber auch andere Betriebe oder Kleinbetriebe wie beispielsweise Schreinereien, Schleifereien, Spritzereien erzeugen Feinstäube, welche die Umwelt belasten.

[0003] Heute sind für Grossanlagen wie Kehrichtverbrennungsanlagen, Kohlenkraftwerke, Giessereien etc. mehrstufige Rauchfilter bekannt. Für kleine Holzfeuerungsanlagen sind Feinstaubfilter auf der Basis von elektrostatischer Partikelabscheidung bekannt, welche aber spezielle Einbaumassnahmen in den Kamin erfordern, wie z.B. von der Firma Cheminée Rüegg AG, oder der Elektrofilter gemäss Patent DE 10 2004 039 124 A1. Eine Filterelektrode ist mit einer Halterung versehen und zum radialen Einbau in ein Abgasrohr durch eine Montageöffnung vorgesehen. Die Halterung ist von einem Isolator umgeben, an dem ein Teller angeordnet ist. Durch eine Spülluftöffnung ist Spülluft in Richtung des Tellers führbar. Weiter ist ein Kaminfilter bekannt, welcher aus einem Zyklonfilter und einem nachgeschalteten Russpartikel Katalysator besteht.

[0004] Die vorliegende Erfindung stellt sich damit die Aufgabe, einen elektrostatischen Feinstaubfilter zu bauen, der die Feinstaubpartikel aus dem Kaminrauch entfernt und somit in der Fachsprache als sogenannter PM10 Filter wirkt, wobei PM10 für Feinstaubpartikel kleiner als 10 Mikrometer steht, und damit bei Holzfeuerungsanlagen und anderen Feinstaub erzeugenden Einrichtungen den Ausstoss von Feinstaub in die Umwelt massiv reduziert.

[0005] Im Unterschied zu den bekannten Elektrostatischen Partikel Filtern (ESP) soll dieser elektrostatische Feinstaubfilter auf sehr einfache Weise in alle üblichen Kamine eingebaut werden können, ohne dass dazu ein Ventilator oder ein Gebläse mit Reinluft notwendig ist und ohne dass am Kamin eine zusätzliche Einbauöffnung angebracht werden muss. Der elektrostatische Feinstaubfilter soll von oben am Kaminende, oder von unten durch die Kaminreinigungsöffnung in den Kamin eingeführt werden können. Damit können zukünftig auch kleine Holzfeuerungsanlagen, oder andere kleine Feinstaub erzeugende Einrichtungen umweltverträglich betrieben werden.

[0006] Erfindungsgemäss wird diese Aufgabe gelöst

durch die kennzeichnenden Merkmale des Anspruchs 1. **[0007]** Besondere Ausftihrungsarten der Erfindung sind in den abhängigen Ansprüchen umschrieben.

[0008] Anhand der beiliegenden schematischen Zeichnung wird die Erfindung an Hand eines Ausführungsbeispiels erläutert.

[0009] Es zeigt:

Fig. 1 eine Darstellung des elektrostatischen Feinstaubfilters, eingebaut in ein Kaminrohr (9).

Fig. 2 bis 3 verschiedene Anordnungen des Ionisationskörpers (2).

Fig. 3 Streckgewicht (6) in Gefässform

Fig. 4 Weitere Befestigungsart der Haltevorrichtung (4) und Form des Isolators (1)

[0010] Der elektrostatische Feinstaubfilter ist eine kompakte Einheit, bestehend aus einem Isolator 1 dessen unterer Teil mit einer Abschirmeinheit 3 elektrostatisch von Staub- und Russablagerungen geschützt ist, einem Ionisationskörper 2 mit einem Streckgewicht 6 und einer reibschlüssigen Halterung 4. Der elektrostatische Feinstaubfilter ist über ein temperaturbeständiges Hochspannungskabel 7 an eine nicht dargestellte Hochspannungseinheit angeschlossen. Der elektrostatische Feinstaubfilter ist aus temperatur- und chemikalienbeständigem Material hergestellt. Die tragenden Metallteile sind beispielsweise aus Chromstahl oder Federstahl.

[0011] Die Hochspannungseinheit kann einen positiven oder negativen Ladungsausgang haben. Mit der Höhe der Ausgangsspannung und mit der Form und Grösse des Ionisationskörpers, wird auch die Menge des produzierten Ozongases eingestellt. Mit dem Ozon wird das CO in CO2 umgewandelt. Idealerweise wird soviel Ozon produziert, wie für die CO-Reduktion benötigt wird. Mit dem Ozon können auch andere im Rauchgas vorhandene Schadstoffe neutralisiert werden.

[0012] Für die Partikelabscheidung von Abgasen von niedriger Temperatur können die isolierenden Teile des elektrostatischen Feinstaubfilters, wie Isolator, Streckgewicht und Hochspannungskabel auch aus nicht hitzebeständigem Material wie beispielsweise Kunststoff bestehen

[0013] Hauptmerkmal dieses Filters ist die Abschirmeinheit 3, welche beispielsweise als zentrisch um den Isolator 1 angeordnete Metallbügel, oder als korbartiges Metallgeflecht, oder Metallrohr ausgefertigt ist. Die Abschirmeinheit kann beispielsweise auch aus zentrisch um den Isolator angeordnete Metallringe oder Metallspiralen bestehen. Die Abschirmeinheit 3 ist elektrisch leitend mit dem Ionisationskörper 2 verbunden. Die Abschirmeinheit 3 bildet also ein elektrostatisches Feld von gleicher Polarität wie der Ionisationskörper 2, welches den Isolator umhüllt, wodurch die elektrisch geladenen

25

40

Staubpartikel gegen die Kaminwand 9 abgelenkt werden und sich nicht auf dem Isolator 1 absetzen. Damit wird erreicht, dass vom Anschlusspunkt des Ionisationskörpers 2 keine elektrisch leitende Brücke aus Staub- oder Russpartikeln auf der Isolatoroberfläche entstehen kann und keine Kurzschlüsse, Überschläge, oder Kriechströme stattfinden.

[0014] Der Ionisationskörper 2 wird vorteilhaft als sehr dünner Draht aus geeignetem Metall ausgebildet. Die umgebende Luft, bzw. das Rauchgas, wird ionisiert und die Staub- und Russpartikel elektrisch aufgeladen. Die aufgeladenen Staub- und Russpartikel werden vom elektrostatischen Feld zum Gegenpol, der Kaminrohr Wand 9, abgedrängt und bleiben dort als Staubkuchen haften. Zur Erhöhung der Feldstärke, und damit zur Erhöhung der elektrostatischen Kräfte auf die aufgeladenen Partikel, kann der Ionisationskörper aus mehreren feinen Drähten bestehen (Fig. 2-3). Damit wird die Ablagerung der Partikel an der Kaminwand beschleunigt. Es ist auch eine Kombination von einem und mehreren Ionisationsdrähten möglich, wobei der einzelne, untere Ionisationsdraht mehrheitlich für die Partikelaufladung wirksam ist und die oberen Ionisationsdrähte hauptsächlich für die beschleunigte Ablagerung sorgen (Fig. 3). Die Ionisationsdrähte können sehr lang sein (>1m). Der Ionisationsdraht 2 wird mit dem Streckgewicht 6 aus nicht leitendem Material, beispielsweise Glas, Porzellan oder Glaskeramik, gestreckt und in senkrechter Position gehalten. Damit wird verhindert, dass ein Kurzschluss entsteht, wenn das Streckgewicht 6 durch Schwingen die Kaminwand 9 berühren würde. Das Streckgewicht 6 kann eine Kugelform oder langgestreckte Form haben, wobei die äussere Struktur rippenförmig sein kann um den Kriechweg zu vergrössern. Die Rippen können auch sternförmig angeordnet sein, um das Streckgewicht beim Schwingen auf Distanz zur Kaminwand zu halten. Das Streckgewicht 6 kann auch hohlförmig, labyrinthförmig oder gefässförmig ausgebildet sein, um den Kriechweg zu verlängern (Fig. 3). Das gefassformige Streckgewicht kann auch um 180 Grad gedreht angeordnet sein, sodass die offene Seite des gefässförmigen Körpers unten ist. Der Ionisationsdraht 2 endet vorteilhaft im Innern des Streckgewichtes 6. Das Streckgewicht kann auch ein Metallkörper sein, welcher mit einem isolierenden Material umgeben ist. Das isolierende Material kann beispielsweise in einem Tauch-, Spritz-, Elektrochemischen- oder anderem Verfahren auf den Metallkörper aufgebracht werden.

[0015] Das Streckgewicht 6 hängt am Ionisationskörper 2. Infolge der meistens turbulenten Gasströmung kommt das Streckgewicht ins Pendeln. Durch das Pendeln und Anschlagen des Streckgewichtes an der Kaminwand erfolgt jeweils ein Schlag auf den Ionisationsdraht 2, wodurch der Ionisationsdraht von Staubablagerungen gereinigt wird. Der Schwerpunkt des Streckgewichtes 6 ist so gewählt, dass beim Schlag eine möglichst grosse Rüttelwirkurig am fonisationsdraht 2 entsteht. Das Streckgewicht 6 kann auch asymmetrisch ausgeführt sein, oder mit Flügeln ausgestattet sein um die Penders das Streckgewicht ein der Schwerpunkt des Streckgewicht ein ausgestattet sein um die Penders das Streckgewicht ein der Schwerpunkt des Streckgewicht ein der Schwerpunkt des Streckgewicht ein der Schwerpunkt des Streckgewicht eines der Schwerpunkt des Streckgewichtes ein um die Penders der Schwerpunkt des Streckgewichtes ein der Schwerpunkt des

delbewegung zu verstärken.

[0016] Der Ionisationsdraht 2 ist, vom Isolator 1 aus gesehen, auf der der Gasströmung entgegengesetzten Richtung angeordnet. Ferner ist der Ionisationsdraht 2 so langgestreckt, dass ein Grossteil der Partikelabscheidung an der Kaminwand 9 schon unterhalb des Isolators 1 erfolgt. Damit wird der Isolator 1 zusätzlich vor Partikelablagerungen geschützt.

[0017] An Stelle eines Ionisationsdrahtes 2 kann auch ein biegesteifer, länglicher Metallkörper als Ionisationskörper vorgesehen sein, beispielsweise ein Profilstab. Dieser weist vorzugsweise an seiner Oberfläche Ionisationsspitzen auf, die in einem Winkel zur Längsachse des Ionisationskörpers gerichtet sind. Die Ionisationsspitzen können dabei auch von in der Mantelfläche des Ionisationskörpers vertieften Bereichen ausgehen.

[0018] Das Kaminrohr 9 bildet den Gegenpol zum lonisationsdraht 2 und ist über den äusseren Kabelmantel 11 des Hochspannungskabels 7 oder eine zusätzliche Erdverbindung geerdet. Das Kaminrohr 9 muss deshalb aus Metall bestehen oder eine Metallschicht aufweisen. Bei einem gemauerten oder nicht metallischen Kamin kann ein geerdetes Metallrohr zu diesem Zweck in den Kamin eingebaut werden, oder die Kamininnenseite mit einer leitenden, oder halbleitenden Schicht ausgekleidet sein.

[0019] Das temperaturbeständige Hochspannungskabel 7 führt von oben in den Isolator 1. Der Hochspannung führende Innenleiter ist am unteren Ende des Isolators 1 mit der Halterung der Abschirmbügel 3 und dem Ionisationsdraht 2 leitend verbunden. Der äussere Kabelmantel 11 des Hochspannungskabels 7, welcher auf Erdpotential liegt, kann mit der reibschlüssigen Halterung 4 elektrisch verbunden sein. Der Kabelmantel 11 kann ein Metallgeflecht, ein Metallschlauch, ein Metallrohr, oder ein Metall-Wellrohr sein. Das Hochspannungskabel 7 kann mit hitzebeständigem Isoliermaterial 13 umgeben oder umwickelt sein. Das Isoliermaterial 13 kann aus Glasfasern oder Keramikfasern oder einem anderem hitzeisolierendem Material sein. Das Hochspannungskabel 7 kann mit einem Kabelendverschluss ausgeführt sein, welcher in den Isolator 1 ragt.

[0020] Das Hochspannungskabel 7 ist mit einer Hochspannungseinheit verbunden, welche die notwendige Gleichspannung für die Ionisation des Rauchgases und die Aufladung der Staubpartikel liefert.

[0021] Die reibschlüssige Halterung 4 kann aus mehreren radial oder speichenförmig angeordneten und am Isolator 1 befestigten Federelementen oder Federbeinen 4 bestehen. Diese bezwecken einerseits die Zentrierung des Isolators 1 im Kaminrohr 9 und dessen senkrechte Ausrichtung und anderseits die feste Haltung des elektrostatischen Feinstaubfilters im Kaminrohr 9. Die Halterung 4 kann auch direkt auf dem Endstück 12 befestigt sein. Das Endstück 12 ist fest mit dem Kabelmantel 11 verbunden und trägt auch den Isolator 1 (Fig. 4). Die Federbeine 4 klemmen den elektrostatischen Feinstaubfilter im Kamin reibschlüssig fest. Die Federbeine 4 sind

durch die reibschlüssige Verbindung mit der Kaminwand auf Erdpotential gelegt. Die Federbeine 4 bestehen beispielsweise aus Metallbügeln aus Aluminium, Stahl oder Federstahl.

[0022] Der Isolator 1 besteht aus hitzebeständigem Material, beispielsweise Glas oder Porzellan oder Glaskeramik und hat vorzugsweise eine rippenartige Oberfläche, um den Kriechweg zu verlängern. Der Isolator 1 kann innen mit einem hitzebeständigen Isoliermaterial 8 vergossen oder gefüllt sein. Der Isolator 1 kann auch gefässförmig sein (Fig. 4), oder labyrinthförmig, um damit den Kriechweg zu verlängern.

[0023] Ein wesentlicher Vorteil dieses elektrostatischen Feinstaubfilters ist dessen einfache Montage. In einer ersten Variante erfolgt die Montage von unten durch die Kaminreinigungs-Öffnung 10. Der elektrostatische Feinstaubfilter wird durch die Kaminreinigungs-Öffnung 10 in den Kamin eingeführt und dann mit einem Haken in den Kamin hinauf geschoben. Die Federbeine 4 klemmen den elektrostatischen Feinstaubfilter im Kamin fest und halten den Isolator 1 in der richtigen Position. Das Hochspannungskabel 7 wird mit einem Duichftihrungs-Flansch in einem Schlitz an der Kaminreinigungs-Öffnung 10 fixiert. Zur Kaminreinigung kann der elektrostatische Feinstaubfilter mit dem Haken wieder aus dem Kamin gezogen werden. In einer zweiten Variante erfolgt die Montage vom Kaminende auf dem Dach aus. Nach entfernen des Kaminhutes wird der elektrostatische Feinstaubfilter mit einem Haken in den Kamin hinunter gestossen. Die Federbeine 4 klemmen den elektrostatischen Feinstaubfilter im Kamin fest und halten den Isolator 1 in der richtigen Position. Das Hochspannungskabel 7 wird oben aus dem Kamin geführt und über die Hochspannungseinheit an das Stromnetz angeschlossen. Zur Kaminreinigung kann der elektrostatische Feinstaubfilter mit dem Haken wieder aus dem Kamin gezoaen werden.

[0024] Die Hochspannungseinheit wird kurz vor oder während der Anfeuerung eingeschaltet und somit der elektrostatische Feinstaubfilter aktiviert. Einige Zeit nach Beendigung der Feuerung kann die Hochspannungseinheit und damit der elektrostatische Feinstaubfilter wieder ausgeschaltet werden. Die Ein- und Ausschaltung des elektrostatischen Feinstaubfilters kann auch automatisch erfolgen, beispielsweise von einem im Kamin eingebauten Thermostat (in der Zeichnung nicht dargestellt). Ferner kann der Feinstaubfilter auch über eine drahtlose oder drahtgebundene Fernsteuerung ein- und ausgeschaltet werden (hier nicht weiter dargestellt). Der Feinstaubfilter kann auch netzunabhängig, beispielsweise mit einem Akku, betrieben werden, welcher von einer Solarzelle oder von Wärmeelementen (Pellier-Element) geladen wird (hier nicht weiter dargestellt).

[0025] Vor oder während der Feuerung wird die Hochspannungseinheit eingeschaltet. Im Kaminrohr 9 entsteht im Bereich des Ionisationsdrahtes 2 ein elektrisches Feld mit hoher Feldstärke um den Draht. Der Ionisationsdraht 2 des elektrostatischen Feinstaubfilters

ionisiert die umgebende Luft und lädt alle Feinstaub- und Russpartikel elektrisch auf. Die elektrisch geladenen Partikel werden von der Gegenelektrode, der geerdeten Kaminrohr-Wand, angezogen und setzen sich dort als Staubkuchen ab. Da die Partikelabscheidung schon weit unterhalb des Isolators 1 erfolgt, bleibt dieser sauber. Zusätzlich wird der Isolator 1 durch die Abschirmbügel 3 im Bereich des Anschlusses des Ionisationsdrahtes mit einem elektrischen Feld geschützt. Damit wird eine Feinstaubablagerung auf dem Isolator 1 verhindert und Kriechströme und Kurzschlüsse vermieden.

[0026] Dieser elektrostatische Feinstaubfilter bringt eine wesentliche Verbesserung in der Feinstaub- und Russpartikelbelastung des Kaminrauches bei Holzfeuerungsanlagen, als auch bei anderen, mit Feinstaub belasteten Abluftkaminen.

Bezugszeichenaufstellung

²⁰ [0027]

- 1 Isolator
- 2 Ionisationskörper
- 3 Abschirmeinheit
- 25 4 Haltevorrichtung
 - 5 Gasströmungsrichtung
 - 6 Streckgewicht
 - 7 Hochspannungskabel
- 30 8 Isoliermaterial
 - 9 Kaminrohrwand
 - 10 Kaminreinigungs-Öffnung
 - 11 Kabelmantel
- 35 12 Endstück

40

45

50

13 Isoliermantel

Patentansprüche

Elektrostatischer Feinstaubfilter nach dem Prinzip der elektrostatischen Partikelabscheidung, für den Einbau in neue oder bestehende Kamine von Feuerungsanlagen sowie andere mit Feinstaub belastete Abluftkamine, enthaltend einen von einem Isolator (1) getragenen Ionisationskörper (2), der über ein Hochspannungskabel (7) mit einer Hochspannungsquelle zu verbinden ist, dadurch gekennzeichnet, dass der Isolator (1) mit einer elektrisch leitenden Abschirmeinheit (3) umgeben ist, welche mit dem lonisationskörper (2) leitend verbunden ist, dass der Isolator (1) mit einer Haltevorrichtung (4) zur reibschlüssigen Halterung an der Innenwand (9) eines Kaminrohrs verbunden ist und dass der Ionisationskörper (2) von einem Anschlusspunkt am Isolator (1) in Richtung des Kaminrohrs entgegengesetzt zur Gasströmungsrichtung (5) angeordnet ist.

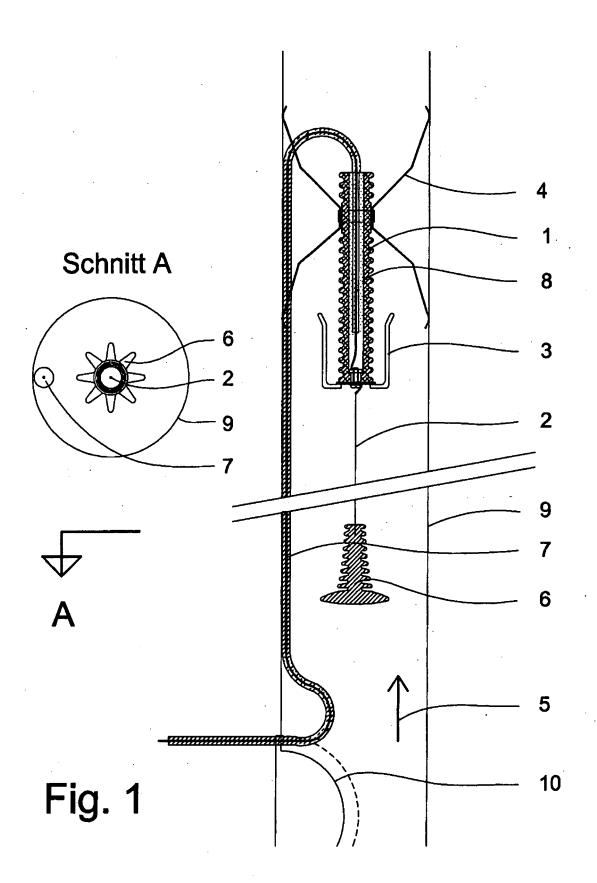
5

10

20

35

40


45

- Elektrostatischer Feinstaubfilter nach Anspruch 1, dadurch gekennzeichnet, dass die Abschirmeinheit (3) aus mehreren Metallbügeln besteht, welche den Isolator (1) korbförmig mit einem elektrostatischen Feld umhüllen.
- Elektrostatischer Feinstaubfilter nach Anspruch 1, dadurch gekennzeichnet, dass die Abschirmeinheit (3) aus einem Metallgeflecht besteht, welches den Isolator (1) korbförmig mit einem elektrostatischen Feld umhüllt.
- 4. Elektrostatischer Feinstaubfilter nach Anspruch 1, dadurch gekennzeichnet, dass die Abschirmeinheit (3) aus einer oder mehreren Metallspiralen besteht, welche den Isolator (1) korbförmig mit einem elektrostatischen Feld umhüllen.
- Elektrostatischer Feinstaubfilter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Haltevorrichtung aus radial vorgespannten Federelementen (4) besteht.
- 6. Elektrostatischer Feinstaubfilter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Hochspannungskabel (7) einen leitenden Kabelmantel (11) aufweist, der am Isolator (1) endet und im Endbereich von einem Endstück (12) umgeben ist, welches den Isolator (1) am Kabelmantel (11) fixiert. (Fig. 4)
- 7. Elektrostatischer Feinstaubfilter nach Anspruch 6, dadurch gekennzeichnet, dass das Endstück (12) die Haltevorrichtung (4) trägt. (Fig. 4)
- 8. Elektrostatischer Feinstaubfilter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Ionisationskörper mindestens ein Metalldraht (2) ist, welcher an seinem freien Ende ein Streckgewicht (6) trägt, welches aus einem Isoliermaterial besteht oder mindestens teilweise von einem Isoliermaterial umgeben ist.
- Elektrostatischer Feinstaubfilter nach Anspruch 8, dadurch gekennzeichnet, dass der mindestens eine Metalldraht (2) an der Abschirmeinheit (3) befestigt ist. (Fig. 2 und 3)
- 10. Elektrostatischer Feinstaubfilter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Ionisationskörper (2) ein langgezogener Metallkörper ist, der vorzugsweise in einem Winkel zu seiner Längsachse orientierte scharfkantige Ionisationsspitzen aufweist.
- 11. Elektrostatischer Feinstaubfilter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Isolator (1) hohl und innen mit einem

hitzebeständigen Isoliermaterial (8) ausgefüllt ist.

- **12.** Elektrostatischer Feinstaubfilter nach einem der Ansprüche 1 bis 10, **dadurch gekennzeichnet, dass** der Isolator (1) gefässförmig ist. (Fig. 4)
- 13. Elektrostatischer Feinstaubfilter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Hochspannungskabel (7) mit einem hitzebeständigen Isoliermantel (13) umgeben ist und dieses einen äusseren, geerdeten Kabelmantel (11) hat, welcher mit der Haltevorrichtung (4) leitend verbunden ist.
- 14. Elektrostatischer Feinstaubfilter nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass das Streckgewicht (6) gefässförmig ist. (Fig. 3)

55

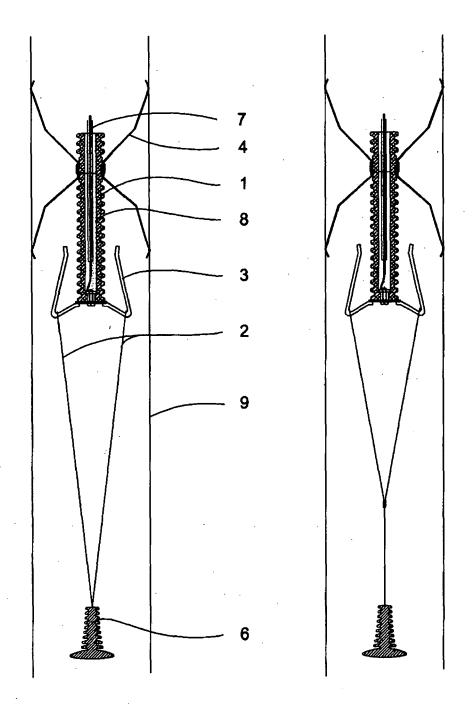


Fig. 2

Fig. 3

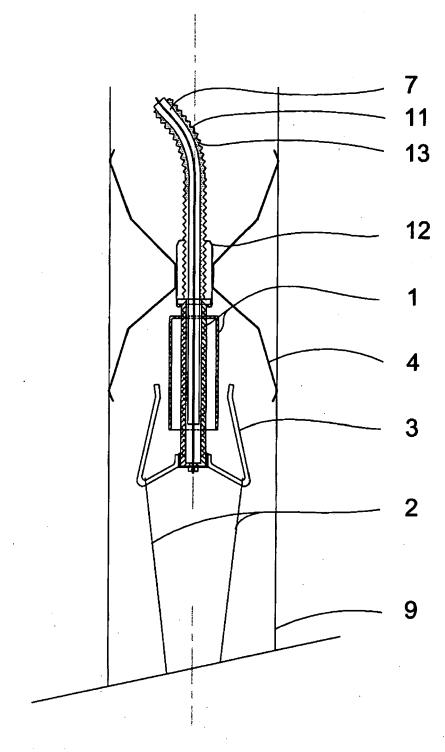


Fig. 4

EP 1 974 822 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 102004039124 A1 [0003]