TECHNICAL FIELD
[0001] The present invention relates to a mobile communication method, a mobile communication
system, a program and a mobile terminal and, more particularly, a mobile communication
method, a mobile communication system, a program and a mobile terminal using an HSDPA
(High Speed Downlink Packet Access) communication mode.
BACKGROUND ART
[0002] In an HSDPA communication mode whose standardization work is in progress based on
3GPP (3rd Generation Partnership Project), SHO (Soft Handover) is impossible,and when
a base station to which data is transmitted is changed due to shift of a terminal,
HSDPA communication with a base station from which shift is made should be cut off
to make another connection with a base station to which the shift is made.
[0003] Accordingly, communication interruption time occurs at the time of switching a base
station to hinder realization of real time service such as VoIP (Voice over IP) or
the like on HSDPA. Under these circumstances, on offer is HSDPA mobility enhancement
as a mode for improving handover operation of HSDPA. Among them, as one mode of switching
a communication destination base station, consideration is given to a mode of receiving
an HS-SCCH (High Speed Shared Control Channel) from both a base station from which
shift is made and a base station to which the shift is made for a fixed time period
and upon reception of HS-SCCH from the base station to which the shift is made, determining
that an HSDPA serving cell is switched to thereafter execute HSDPA communication with
the base station to which the shift is made.
[0004] One of such handover methods as related art of HSDPA is recited, for example, in
Literature 1. The handover method recited in Literature 1 includes an FCS requesting
step of, when a mobile station in communication with a base station by a first cell
detects a second cell of the same base station whose reception state is better than
that of the first cell, transmitting an FCS request including second cell information,
an FCS confirmation step of transmitting an FCS confirmation including FCS allowance
information by using FCS-SCCH by a base station which has received an FCS request,
a data transmission step of executing HARQ operation handover processing between the
first cell and the second cell to transmit data yet to be transmitted by the second
cell, and a data reception step of receiving data with a cell switched to the second
cell by the mobile station which has received an FCS confirmation.
[0005] With this arrangement, a control procedure of FCS operation related to HSDPA and
a signal transmission means are defined to realize improvement in efficiency and speed-up
of handover.
[0006] Literature 1: Japanese Patent Laying-Open No.
2004-72513.
[0007] Document "
Enhanced HSDPA Re-pointing Scheme", Qualcomm, 3GPP DRAFT, R2-051969, 24 August 2005, discloses a NodeB repointing scheme wherein the UE monitors the HS-SCCHs of 2 cells,
the source and the target NodeB. Once the RNC decides to re-point, the RNC notifies
the target NodeB to start scheduling the UE. The target NodeB needs to perform a first
transmission in order to trigger the UE to apply the pre-loaded target NodeB configuration
and start transmission with the target NodeB. This first transmission does not include
any user data and should be performed using a reserved code-point in the HS-SCCH signalling.
[0008] Document
EP 1 389 885 discloses a method for transmitting control information from a base station to a
mobile station in HSDPA, by means of unused bit combinations of the HS-SCCH channelization-code-set,
CCS, information field.
[0009] Among possible methods of avoiding a temporary cut-off of communication during handover
processing is a method of, at the time of handover of HSDPA communication, receiving
HS-SCCH from both a base station from which handover is made and a base station to
which the handover is made for a fixed time period and when the HS-SCCH from the base
station to which the handover is made includes self-directed data, determining that
a base station is switched to thereafter receive HS-SCCH only from the base station
to which the handover is made.
[0010] It is, however, necessary, at the time of confirming inclusion of self-directed data
in HS-SCCH from the base station to which the handover is made as a base station switching
determination criteria, to make determination based only on part 1 information of
the HS-SCCH because HS-PDSCH (High Speed Physical Downlink Shared Channel) is transmitted
before part 2 information of the HS-SCCH is all transmitted. The part 1 information,
however, has no CRC (Cyclic Redundancy Check Code) added, so that error detection
can not be checked to have a possibility of erroneous execution of base station switching.
[0011] In view of the above-described conditions, an object of the present invention is
to provide a mobile communication method enabling a possibility of erroneous base
station switching due to erroneous detection of a signal to be reduced to improve
reliability of a mobile communication system. Another object of the present invention
is to provide a mobile communication system enabling a possibility of erroneous base
station switching due to erroneous detection of a signal to be reduced to improve
reliability of the mobile communication system, and a mobile terminal thereof.
SUMMARY
[0012] The present invention relates to a mobile communication method, a system, a mobile
terminal and a program as set forth in claims 1, 3, 5 and 7. Further embodiments are
set forth in the dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013]
Fig. 1 is a block diagram showing a schematic structure of a mobile communication
system according to an exemplary embodiment of the present invention;
Fig. 2 is a diagram showing one example of a structure of an HS-SCCH coding processing
unit at a base station according to the exemplary embodiment of the present invention;
Fig. 3 is a functional block diagram showing a main part of a structure of a mobile
terminal according to the exemplary embodiment of the present invention;
Fig. 4 is a flow chart showing one example of operation of the mobile communication
system according to the exemplary embodiment of the present invention; and
Fig. 5 is a diagram for use in explaining reception of HS-SCCH at the time of base
station switching on the mobile terminal shown in Fig. 3.
EXEMPLARY EMBODIMENT
[0014] In the following, an exemplary embodiment of the present invention will be described
with reference to the drawings. In all the drawings,the same components are indicated
by the same reference numerals to appropriately omit description thereof.
[0015] Fig. 1 is a block diagram showing a schematic structure of a mobile communication
system according to the exemplary embodiment of the present invention. The mobile
communication system according to the present exemplary embodiment comprises a plurality
of base stations, a first base station 20 and a second base station 30 here, a control
device 40 for controlling the plurality of base stations, and a mobile terminal 10
which moves within areas of the plurality of base stations to communicate with the
base stations (in the figure, it is indicated as a mobile terminal 10a, a mobile terminal
10b and a mobile terminal 10c. Hereinafter, it is simply referred to as the mobile
terminal 10 unless discrimination is required).
[0016] Shown in Fig. 1 is a state where the mobile terminal 10 existing in a first base
station area 22 of the first base station 20 moves into a second base station area
32 of the second base station 30. Also shown is a state where an HS-SCCH (High Speed
Shared Control Channel) 15 is transmitted to the mobile terminal 10 from each base
station. In Fig. 1, discrimination is made among a mobile terminal in the first base
station area 22 which is indicated as the mobile terminal 10a, a mobile station existing
in an area between the first base station area 22 and the second base station 30 which
is indicated as the mobile terminal 10b and a mobile terminal in the second base station
area 32 which is indicated as the mobile terminal 10c.
[0017] The control device 40 instructs each base station to execute handover processing
when the mobile terminal 10 moves from the first base station area 22 to the second
base station area 32. More specifically, the control device 40 executes control to
switch a connection between the mobile terminal 10 and the first base station 20 to
a connection with the second base station 30.
[0018] In the mobile communication method according to the exemplary embodiment of the present
invention, which is a mobile communication method of executing communication based
on the HSDPA communication mode between a mobile station (the mobile terminal 10)
and base stations (the first base station 20 and the second base station 30), when
the mobile station (the mobile terminal 10) moves from one base station (the first
base station 20) into an area of another base station (the second base station 30),
the base station as a moving destination (the second base station 30) transmits a
dummy signal to the mobile station (the mobile terminal 10) for notifying base station
switching prior to transmission of actual information, and the mobile station (the
mobile terminal 10) decodes an HS-SCCH signal up to part 2 information in response
to the reception of the dummy signal to examine CRC included in the part 2 information,
whereby the base station is switched when the CRC is normal.
[0019] Fig. 2 is a diagram showing one example of a structure of an HS-SCCH coding processing
unit at the base station according to the exemplary embodiment of the present invention.
Each base station comprises an HS-SCCH coding processing unit (not shown) to generate
an HS-SCCH to be transmitted to the mobile terminal 10. In the present exemplary embodiment,
an HS-SCCH is coded with a dummy signal included in part 1 information and transmitted
to the mobile terminal 10. In Fig. 2, no description is made of structures of parts
not related to the gist of the present invention. In addition, the respective components
of the coding processing unit are realized by a CPU and a memory of an arbitrary computer,
a program for realizing the components shown in the figure which is loaded into the
memory, a storage unit such as a hard disk for storing the program, and an arbitrary
combination of hardware and software centered around a network connection interface.
Then, it is apparent to those skilled in the art that a realization method and a device
therefor have various modifications. Each figure to be described in the following
shows not a structure of a hardware unit but a block of a function unit.
[0020] The coding processing unit includes a multiplexer (mux) 200, a channel coding unit
202, a rate matching unit 204, a mask unit 206, a physical channel mapping unit 208,
a multiplexer (mux) 210, a CRC calculation adding unit 212, a channel coding unit
214 and a rate matching unit 216.
[0021] The multiplexer 200 receives input of X
ccs and X
ms to generate an 8-bit bit string. Here, X
ccs denotes a bit string indicative of a channelisation code set (CCS) for use in a corresponding
HS-PDSCH, which is derived from the following expressions (1) and (2).

[0022] In the above-described expressions (1) and (2), P represents the number of codes
of an HS-PDSCH and O represents the number of a first channelisation code among codes
for use.
[0023] For a bit string indicative of a CCS which is derived from the above-described expressions
(1) and (2), none of the eight bit strings, 1110000, 1110001, 1110010, 1110011, 1110100,
1110101, 1110110, and 1110111 is used. In the present invention, any of the above-described
eight bit strings which are not used as a CCS is used as a bit string for indicating
HSDPA serving cell switching.
[0024] More specifically, for including a dummy signal indicative of HSDPA serving cell
switching in the part 1 information, X
ccs is input to the multiplexer 200 as a bit string of any of the above-described eight
bit strings. As a result, a dummy signal is included in the part 1 information of
the HS-SCCH.
[0025] X
ms is a bit indicative of an HS-PDSCH modulation scheme, which represents modulation
by QPSK when indicating 0 and modulation by 16 QAM when indicating 1.
[0026] The channel coding unit 202 is a block for channel coding in which convolutional
coding with a coding efficiency of 1/2 is executed to generate a 48-bit bit string.
[0027] The rate matching unit 204 is a block for rate matching which thins out 48 bits generated
by channel coding into 40 bits.
[0028] The mask unit 206 is a block which receives input of X
ue (UE ID: User Equipment Identifier) to execute masking with UE ID (UE specific masking).
The mask unit 206 calculates the exclusive OR of a 40-bit bit string generated from
a 16-bit bit string (UE ID) inherent to a terminal which is notified from the terminal
before reception of HSDPA and 40 bits generated by rate matching.
[0029] The physical channel mapping unit 208 is a block for executing mapping to a physical
channel (physical channel mapping), which maps a generated 40-bit bit string to a
first slot of a sub-frame of an HS-SCCH.
[0030] With this arrangement, the part 1 information of the HS-SCCH is generated.
[0031] Furthermore, the multiplexer 210 receives input of X
tbs, X
hap, X
rv and X
nd to generate a 13-bit bit string. X
tbs is a bit representing a transport block size. X
hap is a bit string indicative of the process number of hybrid ARQ. X
rv is a bit indicative of Redundancy Version and Constellation. X
nd is a new data indicator which indicates whether the data is new data or re-transmitted
data by a change of a bit from that as of last time.
[0032] The CRC calculation adding unit 212 is a block for executing CRC calculation of transmission
data and addition of the same. The CRC calculation adding unit 212 calculates a 16-bit
CRC from a total of 21 bits including an 8-bit bit string formed of X
ccs and X
ms which are input from the multiplexer 200 and a 13-bit bit string formed of X
tbs, X
hap, X
rv and X
nd which is input from the multiplexer 210.
[0033] The calculated CRC is masked by a 16-bit UEID (X
ue). The CRC calculation adding unit 212 adds the masked 16-bit CRC to information bits
of the 13-bit bit string formed of X
tbs, X
hap, X
rv and X
an which are input from the multiplexer 210 to output a 29-bit bit string.
[0034] The channel coding unit 214 is a block for channel coding which executes 1/3 convolutional
coding with respect to a total of 29 bits including 13 bits of the information bits
and 16 bits of CRC to generate a 111-bit bit string.
[0035] The rate matching unit 216 is a block for rate matching which thins out the 111 bits
generated by the channel coding unit 214 into 80 bits.
[0036] This arrangement generates the part 2 information of the HS-SCCH.
[0037] Fig. 3 is a functional block diagram showing a structure of a main part of the mobile
terminal 10 according to the present exemplary embodiment. The mobile terminal 10
of the exemplary embodiment of the present invention, a mobile terminal which executes
communication based on HSDPA communication mode with a plurality of base stations
(the first base station 20 and the second base station 30), which comprises a reception
unit (antenna 102) for receiving an HS-SCCH signal, when moving from one base station
(the first base station 20) to an area of another base station (the second base station
30), from the moving destination base station (the second base station 30), a determination
unit (an own station directed data detection circuit 122 and a dummy bit determination
circuit 124) for determining whether a dummy signal is included in an HS-SCCH signal
received by the reception unit, a decoding unit (the dummy bit determination circuit
124) for executing decoding up to the part 2 information of an HS-SCCH signal when
determination is made that the dummy signal is included, an examination unit (the
dummy bit determination circuit 124) for examining a CRC included in the part 2 information,
and a switching processing unit (an HS-PDSCH control circuit 126) for switching a
base station when a CRC is normal. In Fig. 3, no description is made of structures
of parts not related to the gist of the present invention.
[0038] In addition, the respective components of the mobile terminal 10 are realized by
a CPU and a memory of an arbitrary computer, a program for realizing the components
shown in the figure which is loaded into the memory, a storage unit such as a hard
disk for storing the program, and an arbitrary combination of hardware and software
centered around a network connection interface. It is then apparent to those skilled
in the art that a realization method and a device therefor have various modifications.
Each figure to be described in the following shows not a structure of a hardware unit
but a block of a function unit.
[0039] More specifically, the mobile terminal 10 comprises the antenna 102, a plurality
of multipliers connected to the antenna 102, a multiplier 104, a multiplier 105, a
multiplier 106 and a multiplier 107, and a plurality of inverse diffusers connected
to the plurality of multipliers, respectively, a first HS-SCCH inverse diffuser 114,
a second HS-SCCH inverse diffuser 115, a third HS-SCCH inverse diffuser 116 and a
fourth HS-SCCH inverse diffuser 117. The mobile terminal 10 further comprises an HS-SCCH
decoding circuit 120, the own station directed data detection circuit 122, the dummy
bit determination circuit 124, the HS-PDSCH control circuit 126, a multiplier 128,
an HS-PDSCH inverse diffuser 130 and an HS-PDSCH decoder 132.
[0040] In Fig. 3, the multiplier 104 and the multiplier 105 receive input of a scrambling
code for the first base station 20 and multiply a signal received at the antenna 102
by the code to output a result to the first HS-SCCH inverse diffuser 114 and the second
HS-SCCH inverse diffuser 115, respectively. The multiplier 106 and the multiplier
107 receive input of a scrambling code for the second base station 30 and multiply
a signal received at the antenna 102 by the code to output a result to the third HS-SCCH
inverse diffuser 116 and the fourth HS-SCCH inverse diffuser 117, respectively. Shown
in Fig. 3 is a state where the mobile terminal 10 exists in an area bridging over
both the first base station area 22 and the second base station area 32 illustrated
in Fig. 1, that is, a state of the mobile terminal 10b.
[0041] In a case, for example, of the state of the mobile terminal 10a shown in Fig. 1,
that is, a case where the mobile terminal 10 exists in the first base station area
22, the scrambling code for the first base station 20 is input to the four multipliers.
On the other hand, in a case of the state of the mobile terminal 10c, that is, a case
where the mobile terminal 10 exists in the second base station area 32, the scrambling
code for the second base station 30 is input to the four multipliers. Switching of
a scrambling code to be input to each multiplier is controlled by a control unit (not
shown).
[0042] The first HS-SCCH inverse diffuser 114, the second HS-SCCH inverse diffuser 115,
the third HS-SCCH inverse diffuser 116 and the fourth HS-SCCH inverse diffuser 117
multiply signals input from the multiplier 104, the multiplier 105, the multiplier
106 and the multiplier 107 by a channelisation code of an HS-SCCH to take out an HS-SCCH
signal.
[0043] The HS-SCCH decoding circuit 120 decodes HS-SCCH signals input from the first HS-SCCH
inverse diffuser 114, the second HS-SCCH inverse diffuser 115, the third HS-SCCH inverse
diffuser 116 and the fourth HS-SCCH inverse diffuser 117 to take out information.
[0044] The own station directed data detection circuit 122 determines whether a relevant
HS-SCCH is directed to its own terminal or not based on the part 1 information received
from the HS-SCCH decoding circuit 120. The part 1 information includes UE ID inherent
to the terminal. The own station directed data detection circuit 122 is allowed to
take out UE ID from the part 1 information and determine whether the signal is directed
to its own terminal or not based on the UE ID. As to an HS-SCCH signal, detailed description
will be made in description of an HS-SCCH coding processing unit at a base station
which will be made later.
[0045] The dummy bit determination circuit 124 determines whether a 7-bit bit string of
a CCS corresponds to a dummy bit or not based on the part 1 information received from
the HS-SCCH decoding circuit 120. In the present exemplary embodiment, the eight bit
strings, 1110000, 1110001, 1110010, 1110011, 1110100, 1110101, 1110110 and 1110111
are used as a bit string indicative of HSDPA serving cell switching, that is, as a
dummy bit. In other words, a dummy signal indicative of HSDPA serving cell switching
includes any of the eight bit strings, 1110000, 1110001, 1110010, 11110011, 1110100,
1110101, 1110110 and 1110111 in the part 1 information of the HS-SCCH. When determining
that a dummy signal is received, the dummy bit determination circuit 124 reads the
HS-SCCH signal up to the part 2 information to check the CRC.
[0046] With which of the above-described eight bit strings is to be used as a dummy signal
defined in advance between the base station and the mobile station, it is also possible
to detect inclusion of a predetermined bit string in the part 1 information. Alternatively,
determination whether a bit string corresponds to a dummy bit or not can be made by
sensing inclusion of a bit string whose more significant three bits are all "1" in
the part 1 information among the above-described 7-bit bit strings.
[0047] When the dummy bit determination circuit 124 receives a dummy signal directed to
its own terminal and the CRC check finds normality, the HS-PDSCH control circuit 126
determines a scrambling code and a channelisation code of an HS-PDSCH to be inversely
diffused and inverse diffusion timing based on information of the HS-SCCH signal handed
over from the dummy bit determination circuit 124.
[0048] The multiplier 128 multiplies a signal received at the antenna 102 by a scrambling
code of an HS-PDSCH obtained at the HS-PDSCH control circuit 126 and outputs a result
to the HS-PDSCH inverse diffuser 130.
[0049] The HS-PDSCH inverse diffuser 130 executes inverse diffusion of an HS-PDSCH input
from the multiplier 128 by using a channelisation code and timing designated by the
HS-PDSCH control circuit 126.
[0050] The HS-PDSCH decoder 132 decodes a signal inversely diffused by the HS-PDSCH inverse
diffuser 130 to take out data.
[0051] Operation of a thus structured mobile communication system according to the present
exemplary embodiment will be described in the following. Fig. 4 is a flow chart showing
one example of operation of the mobile communication system according to the exemplary
embodiment of the present invention. In the following, description will be made with
reference to Fig. 1 through Fig. 4.
[0052] First, when the mobile terminal 10 is located at the position of the mobile terminal
10a, that is, it exists in the first base station area 22 as shown in Fig. 1, the
terminal receives an HS-SCCH signal from the first base station 20. At this time,
the HS-PDSCH decoder 132 of the mobile terminal 10 is set to decode only an HS-PDSCH
from the first base station 20 (Step S101 and Step S201).
[0053] Then, when the mobile terminal 10 moves to locate at the position of the mobile terminal
10b DCH enters an SHO state by signaling from the control device 40 to add another
base station (the second base station 30). Then, the second base station 30 starts
transmission of DCH (Step S301).
[0054] Then, at the mobile terminal 10, an SHO detection unit (not shown) detects the DCH
attaining SHO (Step S203) and a control unit (not shown) receives an HS-SCCH also
from the added second base station 30 in addition to the HS-SCCH from the first base
station 20 from which an HS-SCCH is originally received. Then, the first HS-SCCH inverse
diffuser 114, the second HS-SCCH inverse diffuser 115, the third HS-SCCH inverse diffuser
116 and the fourth HS-SCCH inverse diffuser 117 receive HS-SCCH from both the first
base station 20 and the second base station 30 through the antenna 102 (Step S103,
Step S303 and Step S205).
[0055] At this time, the control unit limits the number of HS-SCCH received from each base
station such that the total number of HS-SCCH received is within the maximum number
of HS-SCCH which can be received by the mobile terminal 10, that is, the maximum number
of four here. Also at this time, the control unit switches a scrambling code input
to the multiplier 104, the multiplier 105, the multiplier 106 and the multiplier 107
to one for the corresponding base station and multiplies the signal received at the
antenna 102 by the code to apply the result to each of the HS-SCCH inverse diffusers.
[0056] While receiving HS-SCCH from the plurality of base stations, a signal intensity measuring
unit (not shown) at the mobile terminal 10 measures a signal intensity of each base
station Then, periodically or only when a base station whose signal intensity is the
highest changes, a notification unit (not shown) notifies the control device 40 of
a base station ID of the base station whose reception signal intensity is the highest
through each base station by transmission of DCH including the base station ID (Step
S207, Step S105 and Step S305).
[0057] The control device 40 determines from which base station HS-PDSCH is to be transmitted
based on information of a base station ID transmitted from the mobile terminal 10
and when a base station is to be changed, determines base station switching (not shown).
When switching is determined, the control device 40 instructs a switching destination
base station, the second base station 30 here, on switching. In response to the switching
instruction, the second base station 30 transmits a dummy HS-SCCH signal indicative
of base station switching (Step S307).
[0058] Here, the dummy HS-SCCH signal includes any of eight bit strings, 1110000, 1110001,
1110010, 1110011, 1110100, 1110101, 1110110 and 1110111 in a bit string indicative
of CCS of the part 1 information.
[0059] At the mobile terminal 10, when determining that HS-SCCH including any of the above-described
bit strings in the part 1 information is received from a base station (the second
base station 30) different from the base station (the first base station 20) from
which the HS-PDSCH has been received so far (YES at Step S209), the own station directed
data detection circuit 122 and the dummy bit determination circuit 124 cancel an ordinary
HS-PDSCH reception procedure.
[0060] Then, read HS-SCCH up to the part 2 information and decode the signal to check CRC
(Step S210). When CRC goes OK (YES at Step S211), the HS-PDSCH control circuit 126
determines that a base station to which HS-PDSCH is to be transmitted is changed to
set the decoder of the HS-PDSCH for the base station (the second base station 30)
that has transmitted the HS-SCCH (Step 5213). Hereafter, HS-SCCH will be transmitted
from the second base station 30 (Step S309) and the mobile terminal 10 executes ordinary
reception operation.
[0061] Thereafter, when SHO of DCH ends (YES at Step S215) due to signaling (not shown)
from the control device 40, HS-SCCH reception from the base station to be deleted
(the first base station 20) is cut off (StepS217). Then the limited number of HS-SCCH
receptions is assigned to the remaining base station (the second base station 30)
to increase the number of HS-SCCH receptions. The first base station 20 stops transmission
of HS-SCCH to the mobile terminal 10 (Step S107). Then, Step S201 is returned to.
[0062] It is also possible to omit check of DCH at Step S215, and when OK of CRC is confirmed
at Step S211, upon start of decoding of HS-PDSCH at Step S213, reception of HS-SCCH
from the first base station 20 is cut off.
[0063] Fig. 5 is a diagram for use in explaining reception of HS-SCCH at the above-described
base station switching at the mobile terminal 10. In the figure, a code indicated
by an arrow represents correspondence to the step number in the flow chart of Fig.
4.
[0064] In a period between an arrow S201 and an arrow S203, at the mobile terminal 10, the
control unit executes control to receive four HS-SCCH from the first base station
20, which are input to the first HS-SCCH inverse diffuser 114, the second HS-SCCH
inverse diffuser 115, the third HS-SCCH inverse diffuser 116 and the fourth HS-SCCH
inverse diffuser 117.
[0065] Then, at the point indicated by the arrow S203, when DCH attains SHO with the second
base station 30 due to signaling from the control device 40, the control unit controls
the number of HS-SCCH received from the first base station 20 to be two, so that the
signals are input only to the first HS-SCCH inverse diffuser 114 and the second HS-SCCH
inverse diffuser 115.
[0066] Then, at the point indicated by an arrow S205, the control unit executes control
to start receiving two HS-SCCH from the second base station 30, so that the signals
are input to the third HS-SCCH inverse diffuser 116 and the fourth HS-SCCH inverse
diffuser 117. At this time, the control unit switches a scrambling code to be input
to the multiplier 106 and the multiplier 107 to a code for the second base station
30.
[0067] Then, at the point indicated by an arrow S307, a dummy HS-SCCH is transmitted from
the second base station 30 and received at the mobile terminal 10 to check CRC at
the point indicated by an arrow 211. The CRC is determined to be normal to set a decoder
of the HS-PDSCH for the second base station 30. Then, at the point indicated by an
arrow S217, when SHO of DCH ends due to signaling from the control device 40, the
control unit cuts off the HS-SCCH from the base station (the first base station 20)
to be deleted.
[0068] Then, again at the point indicated by the arrow S201, the control unit controls the
number of HS-SCCH to be received from the second base station 30 to be four, so that
the signals are input to the first HS-SCCH inverse diffuser 114, the second HS-SCCH
inverse diffuser 115, the third HS-SCCH inverse diffuser 116 and the fourth HS-SCCH
inverse diffuser 117. At this time, the control unit switches a scrambling code to
be input to the multiplier 104 and the multiplier 105 to a code for the second base
station 30.
[0069] As described in the foregoing, since the mobile communication system according to
the exemplary embodiment of the present invention enables base station switching after
the part 1 information of an HS-SCCH including a dummy bit indicative of base station
switching is transmitted from a base station (the first base station 20) as a handover
destination prior to actual data transmission and the mobile terminal 10 side makes
confirmation by CRC check in response to dummy bit detection, a probability of erroneous
HSDPA serving cell switching due to erroneous detection of a signal can be reduced.
This improves reliability of the system.
[0070] In addition, since detection of dummy signal reception, that is, trigger detection
for base station switching, is enabled only by reception and decoding of the part
1 information, base station switching monitoring processing can be simplified to reduce
a processing time. Furthermore, since no decoding up to the part 2 information of
the HS-SCCH signal is executed before reception of a dummy signal directed to its
own station, time-consuming unnecessary processing can be saved to improve processing
efficiency, thereby enabling high-speed processing. In addition, since a bit string
of the part 1 information yet to be used is used as a dummy signal, no addition of
a new signal is required to avoid complication of the structure.
[0071] Although the exemplary embodiment of the present invention has been described in
the foregoing with reference to the drawings, the same is by way of illustration and
example, only, and other various forms than those described above can be adopted.
[0072] Although the above exemplary embodiment has been described with respect to an example
of a mobile communication system applied to handover processing at the time of switching
among a plurality of base stations, it is not limited to the same. The system is applicable,
for example, to handover processing at the time of switching among a plurality of
cells in the same base station. While in the handover processing among the plurality
of base stations, communication timing among the respective base stations differs,
it will be the same among the cells, which simplifies operation control.
[0073] According to the exemplary embodiments of the present invention, when a mobile station
moves from one base station to another base station, in response to reception of a
dummy signal indicative of switching which is transmitted from a base station, CRC
is checked based on part-2 information of an HS-SCCH signal before switching, and
after confirmation of normality, the base station switching is executed, so that a
possibility of erroneous base station switching due to erroneous detection of a signal
can be reduced.
[0074] In the above-described communication method, the dummy signal may be included in
part 1 information of the HS-SCCH signal. According to this arrangement, only with
reception and decoding of the part 1 information, detection of dummy signal reception,
that is, trigger detection at the time of base station switching, is enabled to simplify
base station switching monitoring processing and reduce a processing time period.
[0075] In the above-described communication method, the mobile station is allowed to refrain
from decoding up to the part 2 information of the HS-SCCH signal until receiving the
dummy signal. According to this arrangement, since no decoding up to the part 2 information
of the HS-SCCH signal is executed before reception of an own station directed dummy
signal, time-consuming unnecessary processing can be saved to improve processing efficiency
and enable high-speed processing.
[0076] In the above-described communication method, the dummy signal is allowed to function
as a signal which instructs on switching by the inclusion of any of eight 7-bit strings
indicative of a channelisation code set, 1110000, 1110001, 1110010, 1110011, 1110100,
1110101, 1110110 and 1110111 in the part 1 information of the HS-SCCH signal. According
to this arrangement, since a bit string yet to be used of the part 1 information is
used as a dummy signal, no addition of a new signal is required to avoid complication
of a structure.
[0077] An arbitrary combination of the foregoing components and conversion of the expressions
of the present invention into a method, a device, a system, a recording medium and
a computer program are also effective as a mode of the present invention.
[0078] The exemplary embodiments provides a mobile communication method which enables a
possibility of erroneous base station switching due to erroneous detection of a signal
to be reduced and reliability of a mobile communication system to be improved.
[0079] While the invention has been particularly shown and described with reference to exemplary
embodiments thereof, the invention is not limited to these embodiments. It will be
understood by those of ordinary skill in the art that various changes in form and
details may be made therein without departing from the scope of the present invention
as defined by the claims.
1. A mobile communication method of allowing a mobile station (10) and a plurality of
base stations (20, 30) to communicate based on an HSDPA communication mode, comprising:
when said mobile station (10) moves from one base station into an area of another
base station, transmitting an HS-SCCH signal with a dummy signal for notifying base
station switching included in part 1 information of said HS-SCCH signal from said
other base station as a moving destination to said mobile station prior to transmission
of actual information;
characterized by further comprising:
determining whether said dummy signal is included in said received HS-SCCH signal
by said mobile station;
in response to reception of said dummy signal, decoding an HS-SCCH signal up to part
2 information by said mobile station;
examining CRC included in said part 2 information; and
when said CRC is normal, executing base station switching,
wherein a bit string of the part 1 information yet to be used is used as said dummy
signal,
wherein
said mobile station (10) refrains from decoding up to said part 2 information of said
HS-SCCH signal until reception of said dummy signal.
2. The mobile communication method according to claim 1, wherein
said dummy signal functions as a signal for instructing on switching by the inclusion,
in said part 1 information of said HS-SCCH signal, any of eight bit strings which
are 7-bit bit strings indicative of a channelisation code set, [1110000], [1110001],
[1110010], [1110011], [1110100], [1110101], [1110110] and [1110111].
3. A mobile communication system including a control device (40) for controlling a plurality
of base stations (20, 30) in which a mobile station (10) communicates with the plurality
of base stations based on an HSDPA communication mode, wherein
said control device (40) includes a switching instruction unit adapted to monitor
need/no-need of change of a base station connected to said mobile station while said
mobile station moves from one base station into an area of another base station, and
when said change is necessary, to instruct said other base station on switching,
said other base station (20, 30) includes
a generation unit adapted to generate a dummy signal according to said switching instruction,
and
a transmission unit adapted to transmit an HS-SCCH signal with said dummy signal included
in part 1 information of said HS-SCCH signal to said mobile station,
and
said mobile station (10) includes
a reception unit (102) adapted to receive said HS-SCCH signal,
characterized in that said mobile station further comprises:
a determination unit (124) adapted to determine whether said dummy signal is included
in said received HS-SCCH signal,
a decoding unit (132) adapted to decode said HS-SCCH signal up to part 2 information
when said determination unit determines that said dummy signal is included,
an examination unit (124) adapted to examine CRC included in said part 2 information,
and
a switching processing unit (126) adapted to execute said base station switching when
said CRC is normal,
wherein a bit string of the part 1 information yet to be used is used as said dummy
signal,
wherein
said mobile station (10) refrains from decoding up to said part 2 information of said
HS-SCCH signal until reception of said dummy signal.
4. The mobile communication system according to claim 3, wherein
said dummy signal functions as a signal for instructing on switching by the inclusion,
in said part 1 information of said HS-SCCH signal, any of eight bit strings which
are 7-bit bit strings indicative of a channelisation code set, [1110000], [1110001],
[1110010], [1110011], [1110100], [1110101], [1110110] and [1110111].
5. A mobile terminal (10) for executing communication with a plurality of base stations
(20, 30) based on an HSDPA communication mode, comprising:
a reception unit (102) adapted to, when moving from one base station into an area
of another base station, receive an HS-SCCH signal with a dummy signal included in
part 1 information of said HS-SCCH signal from said other base station as a moving
destination;
characterized in that the mobile terminal further comprises:
a determination unit (124) adapted to determine whether said dummy signal is included
in said HS-SCCH signal received by said reception unit;
a decoding unit (132) adapted to decode said HS-SCCH signal up to part 2 information
when said determination unit determines that said dummy signal is included;
an examination unit (124) adapted to examine CRC included in said part 2 information;
and
a switching processing unit (126) adapted to execute said base station switching when
said CRC is normal,
wherein a bit string of the part 1 information yet to be used is used as said dummy
signal,
wherein said decoding unit (132) refrains from decoding up to said part 2 information
of said HS-SCCH signal until reception of said dummy signal.
6. The mobile terminal according to claim 5, wherein
said determination unit determines that a dummy signal is included when said part
1 information of said HS-SCCH signal includes any of eight bit strings which are 7-bit
bit strings indicative of a channelisation code set, [1110000], [1110001], [1110010],
[1110011], [1110100], [1110101], [1110110] and [1110111].
7. A communication program on a mobile terminal (10) for executing communication with
a plurality of base stations (20, 30) based on an HSDPA communication mode, which
causes a computer realizing said mobile terminal to execute:
processing of receiving an HS-SCCH signal with a dummy signal included in part 1 information
of said HS-SCCH signal, when moving from one base station into an area of another
base station, from said other base station as a moving destination;
processing of determining whether said dummy signal is included in said received HS-SCCH
signal;
processing of decoding said HS-SCCH signal up to part 2 information when determining
that said dummy signal is included;
processing of examining CRC included in said part 2 information; and
processing of executing base station switching when said CRC is normal,
wherein a bit string of the part 1 information yet to be used is used as said dummy
signal,
wherein in said decoding processing, refrains from decoding up to said part 2 information
of said HS-SCCH signal until reception of said dummy signal.
1. Mobilkommunikationsverfahren, das ermöglicht, dass eine Mobilstation (10) und eine
Mehrzahl Basisstationen (20, 30) basierend auf einem HSDPA-Kommunikationsmodus kommunizieren,
umfassend:
wenn sich die Mobilstation (10) von einer Basisstation in einen Bereich einer anderen
Basisstation bewegt, Übertragen eines HS-SCCH-Signals mit einem Füllsignal, um ein
Basisstationsschalten mitzuteilen, das in Teil-1-Informationen des HS-SCCH-Signals
von der anderen Basisstation als sich bewegendes Ziel enthalten ist, an die Mobilstation
vor dem Übertragen von tatsächlichen Informationen;
dadurch gekennzeichnet, dass es weiterhin umfasst:
Bestimmen, ob das Füllsignal in dem von der Mobilstation empfangenen HS-SCCH-Signal
enthalten ist;
Dekodieren eines HS-SCCH-Signals bis zu Teil-2-Informationen durch die Mobilstation
als Reaktion auf den Empfang des Füllsignals;
Prüfen von in den Teil-2-Informationen enthaltener CRC; und
wenn die CRC normal ist, Durchführen von Basisstationsschalten,
wobei eine Bitfolge der noch zu benutzenden Teil-1-Informationen als das Füllsignal
verwendet wird,
wobei die Mobilstation (10) die Teil-2-Informationen des HS-SCCH-Signals bis zum Empfang
des Füllsignals nicht dekodiert.
2. Mobilkommunikationsverfahren nach Anspruch 1, wobei
das Füllsignal durch Einschluss jeglicher Acht-Bit-Folgen, die 7-Bit-Folgen sind,
die einen Kanalisationskodesatz, [1110000], [1110001], [1110010], [1110011], [1110100],
[1110101], [1110110] und [1110111], angeben, in die Teil-1-Informationen des HS-SCCH-Signals
als Signal zum Anweisen des Einschaltens dient.
3. Mobilkommunikationssystem umfassend eine Steuereinrichtung (40) zum Steuern einer
Mehrzahl Basisstationen (20, 30), in denen eine Mobilstation (10) basierend auf einem
HSDPA-Kommunikationsmodus mit der Mehrzahl Basisstationen kommuniziert, wobei die
Steuereinrichtung (40) eine Schaltanweisungseinheit umfasst, die eingerichtet ist,
um Erfordernis/Nichterfordernis des Wechsels einer Basisstation, die mit der Mobilstation
verbunden ist, zu überwachen, während sich die Mobilstation von einer Basisstation
in einen Bereich einer anderen Basisstation bewegt, und, wenn der Wechsel erforderlich
ist,
das Einschalten der anderen Basisstation anzuweisen,
die andere Basisstation (20, 30) Folgendes umfasst:
eine Erzeugungseinheit, die eingerichtet ist, um entsprechend der Schaltanweisung
ein Füllsignal zu erzeugen, und
eine Übeiiragungseinheit, die eingerichtet ist, um ein HS-SCCH-Signal mit dem Füllsignal,
das in Teil-1-Informationen des HS-SCCH-Signals enthalten ist, an die Mobilstation
zu übertragen, und
die Mobilstation (10) Folgendes umfasst: eine Empfangseinheit (102), die eingerichtet
ist, um das HS-SCCH-Signal zu empfangen, dadurch gekennzeichnet, dass die Mobilstation weiterhin umfasst:
eine Bestimmungseinheit (124), die eingerichtet ist, um zu bestimmen, ob das Füllsignal
in dem empfangenen HS-SCCH-Signal enthalten ist,
eine Dekodiereinheit (132), die eingerichtet ist, um das HS-SCCH-Signal bis zu Teil-2-Informationen
zu dekodieren, wenn die Bestimmungseinheit bestimmt, dass das Füllsignal enthalten
ist,
eine Prüfeinheit (124), die eingerichtet ist, um in den Teil-2-Informationen enthaltene
CRC zu prüfen, und
eine Schaltungsverarbeitungseinheit (126), die eingerichtet ist, um das Basisstationsschalten
auszuführen, wenn die CRC normal ist,
wobei eine Bitfolge der noch zu benutzenden Teil-1-Informationen als das Füllsignal
verwendet wird,
wobei die Mobilstation (10) die Teil-2-Informationen des HS-SCCH-Signals bis zum Empfang
des Füllsignals nicht dekodiert.
4. Mobilkommunikationssystem nach Anspruch 3, wobei
das Füllsignal durch Einschluss jeglicher Acht-Bit-Folgen, die 7-Bit-Folgen sind,
die einen Kanalisationskodesatz, [1110000], [1110001], [1110010], [1110011], [1110100],
[1110101], [1110110] und [1110111], angeben, in die Teil-1-Informationen des HS-SCCH-Signals
als Signal zum Anweisen des Einschaltens dient.
5. Mobilendgerät (10) zum Durchführen von Kommunikation mit einer Mehrzahl Basisstation
(20, 30) basierend auf einem HSDPA-Kommunikationsmodus, umfassend:
eine Empfangseinheit (102), die eingerichtet ist, um, wenn sie sich von einer Basisstation
in einen Bereich einer anderen Basisstation bewegt, ein HS-SCCH-Signal mit einem Füllsignal,
das in Teil-1-Informationen des HS-SCCH-Signals von der anderen Basisstation als sich
bewegendes Ziel enthalten ist, zu empfangen;
dadurch gekennzeichnet, dass das Mobilendgerät weiterhin Folgendes umfasst:
eine Bestimmungseinheit (124), die eingerichtet ist, um zu bestimmen, ob das Füllsignal
in dem von der Empfangseinheit empfangenen HS-SCCH-Signal enthalten ist,
eine Dekodiereinheit (132), die eingerichtet ist, um das HS-SCCH-Signal bis zu Teil-2-Informationen
zu dekodieren, wenn die Bestimmungseinheit bestimmt, dass das Füllsignal enthalten
ist,
eine Prüfeinheit (124), die eingerichtet ist, um in den Teil-2-Informationen enthaltene
CRC zu prüfen, und
eine Schaltungsverarbeitungseinheit (126), die eingerichtet ist, um das Basisstationsschalten
auszuführen, wenn die CRC normal ist,
wobei eine Bitfolge der noch zu benutzenden Teil-1-Informationen als das Füllsignal
verwendet wird,
wobei die Dekodiereinheit (132) die Teil-2-Informationen des HS-SCCH-Signals bis zum
Empfang des Füllsignals nicht dekodiert.
6. Mobilendgerät nach Anspruch 5, wobei
die Bestimmungseinheit bestimmt, dass ein Füllsignal enthalten ist, wenn die Teil-1-Informationen
des HS-SCCH-Signals jegliche Acht-Bit-Folgen enthalten, die 7-Bit-Folgen sind, die
einen Kanalisationskodesatz, [1110000], [1110001], [1110010], [1110011], [1110100],
[1110101], [1110110] und [1110111], angeben.
7. Kommunikationsprogramm auf einem mobilen Endgerät (10) zum Durchführen einer Kommunikation
mit einer Mehrzahl Basisstationen (20, 30) basierend auf einem HSDPA-Kommunikationsmodus,
das bewirkt, dass ein Computer, der das mobile Endgerät erkennt, Folgendes durchführt:
Ausführen des Empfangens eines HS-SCCH-Signals mit einem Füllsignal, das in Teil-1-Informationen
des HS-SCCH-Signals enthalten ist, von der anderen Basisstation als ein sich bewegendes
Ziel, wenn es sich von einer Basisstation in einen Bereich einer anderen Basisstation
bewegt;
Ausführen des Bestimmens, ob das Füllsignal in dem empfangenen HS-SCCH-Signal enthalten
ist;
Ausführen des Dekodierens eines HS-SCCH-Signals bis zu Teil-2-Informationen, wenn
bestimmt wird, dass das Füllsignal enthalten ist;
Ausführen des Prüfens von in den Teil-2-Informationen enthaltener CRC; und
Ausführen des Durchführens von Basisstationsschalten, wenn die CRC normal ist,
wobei eine Bitfolge der noch zu benutzenden Teil-1-Informationen als das Füllsignal
verwendet wird,
wobei beim Ausführen des Dekodierens die Teil-2-Informationen des HS-SCCH-Signals
bis zum Empfang des Füllsignals nicht dekodiert werden.
1. Procédé de communication mobile visant à permettre à une station mobile (10) et à
une pluralité de stations de base (20, 30) de communiquer sur la base d'un mode de
communication HSDPA, comprenant :
lorsque ladite station mobile (10) se déplace depuis une station de base dans une
zone d'une autre station de base, la transmission d'un signal HS-SCCH avec un signal
fictif pour notifier une commutation de station de base incluse dans des informations
partie 1 dudit signal HS-SCCH en provenance de ladite autre station de base comme
une destination de déplacement à ladite station mobile avant la transmission d'informations
réelles ;
caractérisé en ce qu'il comprend en outre :
déterminer si ledit signal fictif est inclus dans ledit signal HS-SCCH reçu par ladite
station mobile ;
en réponse à la réception dudit signal fictif, décoder un signal HS-SCCH jusqu'à des
informations partie 2 par ladite station mobile ;
examiner un CRC inclus dans lesdites informations partie 2 ; et
lorsque ledit CRC est normal, exécuter une commutation de station de base,
dans lequel une chaîne de bits des informations partie 1 devant encore être utilisée
est utilisée comme ledit signal fictif,
dans lequel
ladite station mobile (10) s'abstient de décoder jusqu'auxdites informations partie
2 dudit signal HS-SCCH jusqu'à la réception dudit signal fictif.
2. Procédé de communication mobile selon la revendication 1, dans lequel
ledit signal fictif fonctionne comme un signal pour instruire sur la commutation par
l'inclusion, dans lesdites informations partie 1 dudit signal HS-SCCH, de l'une quelconque
de huit chaînes de bits qui sont des chaînes de bits à 7 bits indicatives d'un ensemble
de codes de découpage en canaux, [1110000], [1110001], [1110010], [1110011], [1110100],
[1110101], [1110110] et [1110111].
3. Système de communication mobile comprenant un dispositif de commande (40) pour commander
une pluralité de stations de base (20, 30) dans lequel une station mobile (10) communique
avec la pluralité de stations de base sur la base d'un mode de communication HSDPA,
dans lequel
ledit dispositif de commande (40) comprend une unité d'instruction de commutation
adaptée pour surveiller la nécessité/non-nécessité de changement d'une station de
base connectée à ladite station mobile pendant que ladite station mobile se déplace
depuis une station de base dans une zone d'une autre station de base, et lorsque ledit
changement est nécessaire, pour instruire ladite autre station de base sur la commutation,
ladite autre station de base (20, 30) comprend une unité de génération adaptée pour
générer un signal fictif en fonction de ladite instruction de commutation, et
une unité de transmission adaptée pour transmettre un signal HS-SCCH avec ledit signal
fictif inclus dans des informations partie 1 dudit signal HS-SCCH à ladite station
mobile, et
ladite station mobile (10) comprend
une unité de réception (102) adaptée pour recevoir ledit signal HS-SCCH,
caractérisé en ce que ladite station mobile comprend en outre :
une unité de détermination (124) adaptée pour déterminer si ledit signal fictif est
inclus dans ledit signal HS-SCCH reçu,
une unité de décodage (132) adaptée pour décoder ledit signal HS-SCCH jusqu'à des
informations partie 2 lorsque ladite unité de détermination détermine que ledit signal
fictif est inclus,
une unité d'examen (124) adaptée pour examiner un CRC inclus dans lesdites informations
partie 2, et
une unité de traitement de commutation (126) adaptée pour exécuter ladite commutation
de station de base lorsque ledit CRC est normal,
dans lequel une chaîne de bits des informations partie 1 devant encore être utilisée
est utilisée comme ledit signal fictif,
dans lequel
ladite station mobile (10) s'abstient de décoder jusqu'auxdites informations partie
2 dudit signal HS-SCCH jusqu'à la réception dudit signal fictif.
4. Système de communication mobile selon la revendication 3, dans lequel
ledit signal fictif fonctionne comme un signal pour instruire sur la commutation par
l'inclusion, dans lesdites informations partie 1 dudit signal HS-SCCH, de l'une quelconque
de huit chaînes de bits qui sont des chaînes de bits à 7 bits indicatives d'un ensemble
de codes de découpage en canaux, [1110000], [1110001], [1110010], [1110011], [1110100],
[1110101], [1110110] et [1110111].
5. Terminal mobile (10) pour exécuter une communication avec une pluralité de stations
de base (20, 30) sur la base d'un mode de communication HSDPA, comprenant :
une unité de réception (102) adaptée pour, lors du déplacement depuis une station
de base dans une zone d'une autre station de base, recevoir un signal HS-SCCH avec
un signal fictif inclus dans des informations partie 1 dudit signal HS-SCCH en provenance
de ladite autre station de base comme une destination de déplacement ;
caractérisé en ce que le terminal mobile comprend en outre :
une unité de détermination (124) adaptée pour déterminer si ledit signal fictif est
inclus dans ledit signal HS-SCCH reçu par ladite unité de réception ;
une unité de décodage (132) adaptée pour décoder ledit signal HS-SCCH jusqu'à des
informations partie 2 lorsque ladite unité de détermination détermine que ledit signal
fictif est inclus ;
une unité d'examen (124) adaptée pour examiner un CRC inclus dans lesdites informations
partie 2 ; et
une unité de traitement de commutation (126) adaptée pour exécuter ladite commutation
de station de base lorsque ledit CRC est normal,
dans lequel une chaîne de bits des informations partie 1 devant encore être utilisée
est utilisée comme ledit signal fictif,
dans lequel ladite unité de décodage (132) s'abstient de décoder jusqu'auxdites informations
partie 2 dudit signal HS-SCCH jusqu'à la réception dudit signal fictif.
6. Terminal mobile selon la revendication 5, dans lequel
ladite unité de détermination détermine qu'un signal fictif est inclus lorsque lesdites
informations partie 1 dudit signal HS-SCCH incluent l'une quelconque de huit chaînes
de bits qui sont des chaînes de bits à 7 bits indicatives d'un ensemble de codes de
découpage en canaux, [1110000], [1110001], [1110010], [1110011], [1110100], [1110101],
[1110110] et [1110111].
7. Programme de communication sur un terminal mobile (10) pour exécuter une communication
avec une pluralité de stations de base (20, 30) sur la base d'un mode de communication
HSDPA, qui amène un ordinateur réalisant ledit terminal mobile à exécuter :
un traitement de réception d'un signal HS-SCCH avec un signal fictif inclus dans des
informations partie 1 dudit signal HS-SCCH, lors du déplacement depuis une station
de base dans une zone d'une autre station de base, en provenance de ladite autre station
de base comme une destination de déplacement ;
un traitement de détermination de si ledit signal fictif est inclus dans ledit signal
HS-SCCH reçu ;
un traitement de décodage dudit signal HS-SCCH jusqu'à des informations partie 2 lors
de la détermination selon laquelle ledit signal fictif est inclus ;
un traitement d'examen d'un CRC inclus dans lesdites informations partie 2 ; et
un traitement d'exécution d'une commutation de station de base lorsque ledit CRC est
normal,
dans lequel une chaîne de bits des informations partie 1 devant encore être utilisée
est utilisée comme ledit signal fictif,
dans lequel dans ledit traitement de décodage, s'abstient de décoder jusqu'auxdites
informations partie 2 dudit signal HS-SCCH jusqu'à la réception dudit signal fictif.