

(19)

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 1 980 856 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

15.10.2008 Bulletin 2008/42

(51) Int Cl.:

G01N 33/574 (2006.01)

(21) Application number: **08251398.7**

(22) Date of filing: **11.04.2008**

(84) Designated Contracting States:

**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT
RO SE SI SK TR**

Designated Extension States:

AL BA MK RS

• **Baden, Jonathan**

Bridgewater, NJ, 08807 (US)

• **Vener, Tatiana**

Sterling, NJ 07908 (US)

• **Chowdary, Dondapati**

Princeton Junction, NJ 08876 (US)

• **Mazumder, Abhijit**

Basking Ridge, NJ 07970 (US)

(30) Priority: **12.04.2007 US 734763**

(71) Applicant: **Veridex, LLC**

Warren, NJ 07059 (US)

(74) Representative: **Goodfellow, Hugh Robin et al**

Carpmaels & Ransford,

43-45 Bloomsbury Square

London WC1A 2RA (GB)

(72) Inventors:

• **Wang, Haiying**

Bridgwater, NJ 08807 (US)

(54) Detecting prostate cancer

(57) Methods and kits for detecting prostate cancer in urine samples include detecting the methylation status of various genes.

Description**BACKGROUND OF THE INVENTION**

5 [0001] This invention relates to the interrogation of methylated genes in concert with other diagnostic methods and kits for use with these methods.

[0002] In higher order eukaryotes DNA is methylated only at cytosines located 5' to guanosine in the CpG dinucleotide. This modification has important regulatory effects on gene expression, especially when it involves CpG rich areas (CpG islands) located in gene promoter regions. Aberrant methylation of normally unmethylated CpG islands is a frequent 10 event in immortalized and transformed cells and has been associated with transcriptional inactivation of certain tumor suppressor genes or genes otherwise associated with the amelioration of certain human cancers.

15 [0003] A number of potential methylation markers have recently been disclosed. Glutathione S-transferases (GSTs) are exemplary proteins in which the methylation status of the genes that express them can have important prognostic and diagnostic value for prostate cancer. The proteins catalyze intracellular detoxification reactions, including the inactivation of electrophilic carcinogens, by conjugating chemically-reactive electrophiles to glutathione (C. B. Pickett, et al., Annu. Rev. Blobern., 58:743, 1989; B. Coles, et al., CRC Crit. Rev. Biochem. Mol. Biol., 25:47, 1990; T. H. Rushmore, et al., J. Biol. Chem. 268:11475, 1993). Human GSTs, encoded by several different genes at different loci, have been classified into four families referred to as alpha, mu, pi, and theta (B. Mannervik, et al., Biochem. J., 282:305, 1992). Decreased GSTP1 expression resulting from epigenetic changes is often related to prostate and hepatic cancers.

20 [0004] The S100 proteins are calcium-binding proteins that are implicated in, among other things, tumorigenesis. The family includes S100A2, S100A4, S100A5, S100A6, S100A8, S100A9, and S100A11, which have all been shown to bear some relationship to tumor development though precisely what that role is has not been clear. S 100A6 (calcylin) expression appears to fall off in prostate cancer development. S100A2 has been shown to exhibit lessened expression in breast, lung, and prostate cancer as well. This is believed to be due to hypermethylation of the gene promoter but 25 the picture is not clear since hypermethylation is also seen in non-malignant prostate epithelium and BPH.

[0005] Sampling and sample preparation are important factors in epigenetic testing. Every sample source has its issues. Even biopsy samples taken directly from the affected tissue are known to present the possibility of false negative results due to uneven distribution of affected cells. Urine is a desirable sample because it can be obtained less invasively than many other potential samples. The number and concentration of prostate cancer cells shed into urine can be 30 extremely variable depending on a host of factors such as when the urine is collected, whether it is collected pursuant to prostate massage, and the presence and effect of nucleases and reagents and methods for minimizing their effect.

35 [0006] While some have proposed prostate cancer testing on urine samples, actually producing such a test has proven difficult. First, it is presumed that the basis for such a test is the shedding of cancer cells from the tumor or lesion into the urinary system. Little is actually known about this process. It also seems likely that analyte concentrations could vary much more dramatically than in other samples such as tissue biopsy and even serum samples depending on a wide range of physiological and environmental factors such as the degree to which the patient is hydrated. The stability of the analyte in the matrix is also not well understood in light of the presence of nucleases and a wide variety of other substances that can affect nucleic acids. Sample preparation for a number of other urine assays use spun down samples referred to as sediments. Whether this makes sense for methylation markers cannot be supposed a priori.

40 [0007] Preparation of the patient and pretreatment options are also not well understood. Digital rectal examinations (DRE) are standard diagnostic procedures for determining prostate health in which the physician notes anatomical abnormalities. In the past the outcome of the DRE would be used to determine whether a biopsy or other diagnostic or therapeutic procedure would be necessary. Whether and to what extent procedures such as the DRE or related prostate massage causes cells to slough so that they would then be detected in the subsequent diagnostic procedure was unclear.

45 Procedurally, DRE and digital rectal massage and the time in which they are performed can differ greatly further adding to the list of unknowns in this area.

SUMMARY OF THE INVENTION

50 [0008] In one aspect of the invention, a method for characterizing prostate cancer in a patient comprises assaying GSTP1 methylation and one or more control genes in urine within three days of its collection. The assay is considered positive for prostate cancer if the degree of methylation of the GSTP1 exceeds a pre-determined value and is considered negative for prostate cancer if the pre-determined value is not exceeded.

[0009] In another aspect of the invention, a method for characterizing prostate cancer in a patient comprises assaying 55 GSTP1 methylation, one or more control genes, and the S100 gene in urine within three days of its collection. A normalized value of GSTP1 is determined by comparison of the GSTP1 methylation assay value to that of the S100 methylation assay value. The assay is considered positive for prostate cancer if the normalized methylation assay value exceeds a pre-determined value and is considered negative for prostate cancer if the pre-determined value is not exceeded.

[0010] In yet another aspect of the invention, a method for characterizing prostate cancer in a patient comprises assaying GSTP1 methylation and one or more control genes conducted as a nested PCR reaction. The assay is considered positive for prostate cancer if the degree of methylation of the GSTP1 exceeds a pre-determined value and is considered negative for prostate cancer if the pre-determined value is not exceeded.

5 [0011] In yet another aspect of the invention, methylation of the following panels of genes is detected:

- 10 a. GSTP1, APC.
- b. GSTP1, APC, S100A2.
- c. GSTP1, RAR β 2.
- d. GSTP1, RAR β 2, S100A2.

[0012] The panels may also include control genes.

[0013] In yet another aspect of the invention, methylation status is determined via quantitative real time PCR.

[0014] In yet another aspect, the invention is a kit useful for the detection of a methylated nucleic acid. The kit includes one or more containers; a first container containing a reagent that modifies unmethylated cytosine and a second container containing a reagent that primes amplification of CpG-containing nucleic acid, wherein the reagent distinguishes between modified methylated and nonmethylated nucleic acid. The kit contains instructions to conduct the assay on patients suspected of having prostate cancer.

[0015] In yet another aspect of the invention, the kit includes a reaction vessel having separate components into which primers are initially stored and wherein during use of the kit, the primers are exuded into a reaction chamber according to a set sequence such that methylation status can be properly assessed. The primers can be for conducting nested amplification reactions.

DETAILED DESCRIPTION OF THE INVENTION

[0016] The urine-based assay of this invention is preferably conducted on patients who have had a PSA assay with ambiguous or difficult to determine results (most preferably 2.5-4.0 ng/ml). A negative result using the assay of this invention (in the absence of other clinical indicia) can spare the patient of more invasive testing such as with a biopsy procedure. Thus, viewed most inclusively, one method according to the invention involves first conducting a PSA test in a patient and then conducting the assay described more fully below on those patients having a PSA level assayed at 2.5-4.0 ng/ml.

[0017] The assays of the invention detect hypermethylation of nucleic acids that correspond to particular genes whose methylation status correlates with prostate cancer. A nucleic acid corresponds to a gene whose methylation status correlates with prostate cancer when methylation status of such a gene provides information about prostate cancer and the sequence is a coding portion of the gene or its complement, a representative portion of the gene or its complement, a promoter or regulatory sequence for the gene or its complement, a sequence that indicates the presence of the gene or its complement, or the full length sequence of the gene or its complement. Such nucleic acids are referred to as Markers in this specification. Markers correspond to the following genes only: GSTP1 (Seq. ID. No. 17), APC (Promoter= Seq. ID. No. 18, Gene= Seq. ID. No. 19), RAR β 2 (Seq. ID No. 20), S100A2 (Seq. ID. No. 21). Other sequences of interest include constitutive genes useful as assay controls such as beta-Actin (Seq. ID. No. 22 and 23) and PTGS2 (Promoter= Seq. ID. No. 24, Gene= Seq. ID. No. 25).

[0018] Assays for detecting hypermethylation include such techniques as MSP and restriction endonuclease analysis. The promoter region is a particularly noteworthy target for detecting such hypermethylation analysis. Sequence analysis of the promoter region of GSTP1 shows that nearly 72% of the nucleotides are CG and about 10% are CpG dinucleotides.

[0019] The invention includes determining the methylation status of certain regions of the Markers in urine or urethral washes and in which the DNA associated with prostate cancer is amplified and detected. Since a decreased level of the protein encoded by the Marker (i.e., less transcription) is often the result of hypermethylation of a particular region such as the promoter, it is desirable to determine whether such regions are hypermethylated. This is seen most demonstrably in the case of the GSTP1 gene and in the panels indicated in the Summary of the Invention. A nucleic acid probe or reporter specific for certain Marker regions is used to detect the presence of methylated regions of the Marker gene. Hypermethylated regions are those that are methylated to a statistically significant greater degree in samples from diseased tissue as compared to normal tissue.

[0020] As noted above, urine is the matrix in which the assays of this invention are conducted. Most preferably, it is collected after prostate massage and stored at 4C until it can be sedimented. It is most preferably spun down within 4 hours.

[0021] Prostatic massage, when conducted in conjunction with the methylation analyses of the invention, is best conducted as follows: the gland is pressed firmly enough to depress the surface from the base to the apex and from the lateral to the median line for each lobe to ensure the release of sufficient number of prostate cells. It is most preferred that this massage procedure is conducted for 20 seconds or less.

[0022] Some of the primers/probes or reporter reagents of the invention are used to detect methylation of expression control sequences of the Marker genes. These are nucleic acid sequences that regulate the transcription and, in some cases, translation of the nucleic acid sequence. Thus, expression control sequences can include sequences involved with promoters, enhancers, transcription terminators, start codons (i.e., ATG), splicing signals for introns, maintenance of the correct reading frame of that gene to permit proper translation of the mRNA, and stop codons.

[0023] The GSTP1 promoter is the most preferred Marker. It is a polynucleotide sequence that can direct transcription of the gene to produce a glutathione-s-transferase protein. The promoter region is located upstream, or 5' to the structural gene. It may include elements which are sufficient to render promoter-dependent gene expression controllable for cell-type specific, tissue-specific, or inducible by external signals or agents; such elements may be located in the 5' or 3' regions of the polynucleotide sequence.

[0024] One method of the invention includes contacting a target cell containing a Marker with a reagent that binds to the nucleic acid. The target cell component is a nucleic acid such as DNA extracted from urine by cell lysis and purification (column or solution based) yielding pure DNA that is devoid of proteins. The reagents include components that prime and probe PCR or MSP reactions and detect the target sequence. These reagents can include priming sequences combined with or bonded to their own reporter segments such as those referred to as Scorpion reagents or Scorpion reporters and described in US Patents 6,326,145 and 6,270,967 to Whitcombe et. al. (incorporated herein by reference in their entirety). Though they are not the same, the terms "primers" and "priming sequences" may be used in this specification to refer to molecules or portions of molecules that prime the amplification of nucleic acid sequences.

[0025] One sensitive method of detecting methylation patterns involves combining the use of methylation-sensitive enzymes and the polymerase chain reaction (PCR). After digestion of DNA with the enzyme, PCR will amplify from primers flanking the restriction site only if DNA cleavage was prevented by methylation. The PCR primers of the invention are designed to target the promoter and transcription region that lies approximately between -71 and +59 bp according to genomic positioning number of M24485 (Genbank) from the transcription start site of GSTP1.

[0026] The method of the invention can also include contacting a nucleic acid-containing specimen with an agent that modifies unmethylated cytosine; amplifying the CpG-containing nucleic acid in the specimen by means of CpG-specific oligonucleotide primers; and detecting the methylated nucleic acid. The preferred modification is the conversion of unmethylated cytosines to another nucleotide that will distinguish the unmethylated from the methylated cytosine. Preferably, the agent modifies unmethylated cytosine to uracil and is sodium bisulfite, however, other agents that modify unmethylated cytosine, but not methylated cytosine can also be used. Sodium bisulfite (NaHSO_3) modification is most preferred and reacts readily with the 5,6-double bond of cytosine, but poorly with methylated cytosine. Cytosine reacts with the bisulfite ion to form a sulfonated cytosine reaction intermediate susceptible to deamination, giving rise to a sulfonated uracil. The sulfonate group can be removed under alkaline conditions, resulting in the formation of uracil. Uracil is recognized as a thymine by Taq polymerase and therefore upon PCR, the resultant product contains cytosine only at the position where 5-methylcytosine occurs in the starting template. Scorpion reporters and reagents and other detection systems similarly distinguish modified from unmodified species treated in this manner.

[0027] The primers used in the invention for amplification of a CpG-containing nucleic acid in the specimen, after modification (e.g., with bisulfite), specifically distinguish between untreated DNA, methylated, and non-methylated DNA. In methylation specific PCR (MSPCR), primers or priming sequences for the non-methylated DNA preferably have a T in the 3' CG pair to distinguish it from the C retained in methylated DNA, and the complement is designed for the antisense primer. MSP primers or priming sequences for non-methylated DNA usually contain relatively few Cs or Gs in the sequence since the Cs will be absent in the sense primer and the Gs absent in the antisense primer (C becomes modified to U (uracil) which is amplified as T (thymidine) in the amplification product).

[0028] The primers of the invention are oligonucleotides of sufficient length and appropriate sequence so as to provide specific initiation of polymerization on a significant number of nucleic acids in the polymorphic locus. When exposed to appropriate probes or reporters, the sequences that are amplified reveal methylation status and thus diagnostic information.

[0029] Preferred primers are most preferably eight or more deoxyribonucleotides or ribonucleotides capable of initiating synthesis of a primer extension product, which is substantially complementary to a polymorphic locus strand. Environmental conditions conducive to synthesis include the presence of nucleoside triphosphates and an agent for polymerization, such as DNA polymerase, and a suitable temperature and pH. The priming segment of the primer or priming sequence is preferably single stranded for maximum efficiency in amplification, but may be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the inducing agent for polymerization. The exact length of primer will depend on factors such as temperature, buffer, cations, and nucleotide composition. The oligonucleotide primers most preferably contain about 12-20 nucleotides although they may contain more or fewer nucleotides, preferably according to well known design guidelines or rules.

[0030] Primers are designed to be substantially complementary to each strand of the genomic locus to be amplified and include the appropriate G or C nucleotides as discussed above.

[0031] This means that the primers must be sufficiently complementary to hybridize with their respective strands under conditions that allow the agent for polymerization to perform. In other words, the primers should have sufficient complementarity with the 5' and 3' flanking sequence(s) to hybridize and permit amplification of the genomic locus.

[0032] The primers are employed in the amplification process. That is, reactions (preferably, an enzymatic chain reaction) that produce greater quantities of target locus relative to the number of reaction steps involved. In a most preferred embodiment, the reaction produces exponentially greater quantities of the target locus. Reactions such as these include the PCR reaction. Typically, one primer is complementary to the negative (-) strand of the locus and the other is complementary to the positive (+) strand. Annealing the primers to denatured nucleic acid followed by extension with an enzyme, such as the large fragment of DNA Polymerase I (Klenow) and nucleotides, results in newly synthesized + and - strands containing the target locus sequence. The product of the chain reaction is a discrete nucleic acid duplex with termini corresponding to the ends of the specific primers employed.

[0033] The primers may be prepared using any suitable method, such as conventional phosphotriester and phosphodiester methods including automated methods. In one such automated embodiment, diethylphosphoramidites are used as starting materials and may be synthesized as described by Beaucage, et al. (Tetrahedron Letters, 22:1859-1862, 1981). A method for synthesizing oligonucleotides on a modified solid support is described in U.S. Pat. No. 4,458,066. Any nucleic acid specimen taken from urine or urethral wash, in purified or non-purified form, can be utilized as the starting nucleic acid or acids, provided it contains, or is suspected of containing, the specific nucleic acid sequence containing the target locus (e.g., CpG). Thus, the process may employ, for example, DNA or RNA, including messenger RNA. The DNA or RNA may be single stranded or double stranded. In the event that RNA is to be used as a template, enzymes, and/or conditions optimal for reverse transcribing the template to DNA would be utilized. In addition, a DNA-RNA hybrid containing one strand of each may be utilized. A mixture of nucleic acids may also be employed, or the nucleic acids produced in a previous amplification reaction herein, using the same or different primers may be so utilized. The specific nucleic acid sequence to be amplified, i.e., the target locus, may be a fraction of a larger molecule or can be present initially as a discrete molecule so that the specific sequence constitutes the entire nucleic acid.

[0034] If the extracted sample is impure, it may be treated before amplification with an amount of a reagent effective to open the cells, fluids, tissues, or animal cell membranes of the sample, and to expose and/or separate the strand(s) of the nucleic acid(s). This lysing and nucleic acid denaturing step to expose and separate the strands will allow amplification to occur much more readily.

[0035] Where the target nucleic acid sequence of the sample contains two strands, it is necessary to separate the strands of the nucleic acid before it can be used as the template. Strand separation can be effected either as a separate step or simultaneously with the synthesis of the primer extension products. This strand separation can be accomplished using various suitable denaturing conditions, including physical, chemical or enzymatic means. One physical method of separating nucleic acid strands involves heating the nucleic acid until it is denatured. Typical heat denaturation may involve temperatures ranging from about 80 to 105°C for up to 10 minutes. Strand separation may also be induced by an enzyme from the class of enzymes known as helicases or by the enzyme RecA, which has helicase activity, and in the presence of riboATP, is known to denature DNA. Reaction conditions that are suitable for strand separation of nucleic acids using helicases are described by Kuhn Hoffmann-Berling (CSH-Quantitative Biology, 43:63, 1978). Techniques for using RecA are reviewed in C. Radding (Ann. Rev. Genetics, 16:405-437, 1982). Refinements of these techniques are now also well known.

[0036] When complementary strands of nucleic acid or acids are separated, regardless of whether the nucleic acid was originally double or single stranded, the separated strands are ready to be used as a template for the synthesis of additional nucleic acid strands. This synthesis is performed under conditions allowing hybridization of primers to templates to occur. Generally synthesis occurs in a buffered aqueous solution, preferably at a pH of 7-9, most preferably about 8. A molar excess (for genomic nucleic acid, usually about 10⁸:1, primer:template) of the two oligonucleotide primers is preferably added to the buffer containing the separated template strands. The amount of complementary strand may not be known if the process of the invention is used for diagnostic applications, so the amount of primer relative to the amount of complementary strand cannot always be determined with certainty. As a practical matter, however, the amount of primer added will generally be in molar excess over the amount of complementary strand (template) when the sequence to be amplified is contained in a mixture of complicated long-chain nucleic acid strands. A large molar excess is preferred to improve the efficiency of the process.

[0037] The deoxyribonucleoside triphosphates dATP, dCTP, dGTP, and dTTP are added to the synthesis mixture, either separately or together with the primers, in adequate amounts and the resulting solution is heated to about 90-100°C for up to 10 minutes, preferably from 1 to 4 minutes. After this heating period, the solution is allowed to cool to room temperature, which is preferable for the primer hybridization. To the cooled mixture is added an appropriate agent for effecting the primer extension reaction (the "agent for polymerization"), and the reaction is allowed to occur under conditions known in the art. The agent for polymerization may also be added together with the other reagents if it is heat stable. This synthesis (or amplification) reaction may occur at room temperature up to a temperature at which the agent for polymerization no longer functions.

[0038] The agent for polymerization may be any compound or system that will function to accomplish the synthesis of primer extension products, preferably enzymes. Suitable enzymes for this purpose include, for example, E. coli DNA polymerase 1, Klenow fragment of E. coli DNA polymerase I, T4 DNA polymerase, other available DNA polymerases, polymerase mutants, reverse transcriptase, and other enzymes, including heat-stable enzymes (e.g., those enzymes which perform primer extension after being subjected to temperatures sufficiently elevated to cause denaturing). A preferred agent is Taq polymerase. Suitable enzymes will facilitate combination of the nucleotides in the proper manner to form the primer extension products complementary to each locus nucleic acid strand. Generally, the synthesis will be initiated at the 3' end of each primer and proceed in the 5' direction along the template strand, until synthesis terminates, producing molecules of different lengths. There may be agents for polymerization, however, which initiate synthesis at the 5' end and proceed in the other direction, using the same process as described above.

[0039] Most preferably, the method of amplifying is by PCR. Alternative methods of amplification can also be employed as long as the methylated and non-methylated loci amplified by PCR using the primers of the invention is similarly amplified by the alternative means. In one such most preferred embodiment, the assay is conducted as a nested PCR. In nested PCR methods, two or more staged polymerase chain reactions are undertaken. In a first-stage polymerase chain reaction, a pair of outer oligonucleotide primers, consisting of an upper and a lower primer that flank a particular first target nucleotide sequence in the 5' and 3' position, respectively, are used to amplify that first sequence. In subsequent stages, a second set of inner or nested oligonucleotide primers, also consisting of an upper and a lower primer, are used to amplify a smaller second target nucleotide sequence that is contained within the first target nucleotide sequence. The upper and lower inner primers flank the second target nucleotide sequence in the 5' and 3' positions, respectively. Flanking primers are complementary to segments on the 3'-end portions of the double-stranded target nucleotide sequence that is amplified during the PCR process.

[0040] The first nucleotide sequence within the region of the gene targeted for amplification in the first-stage polymerase chain reaction is flanked by an upper primer in the 5' upstream position and a lower primer in the 3' downstream position. The first targeted nucleotide sequence, and hence the amplification product of the first-stage polymerase chain reaction, has a predicted base-pair length, which is determined by the base-pair distance between the 5' upstream and 3' downstream hybridization positions of the upper and lower primers, respectively, of the outer primer pair.

[0041] At the end of the first-stage polymerase chain reaction, an aliquot of the resulting mixture is carried over into a second-stage polymerase chain reaction. This is preferably conducted within a sealed or closed vessel automatically such as with the "SMART CAP" device from Cepheid. In this second-stage reaction, the products of the first-stage reaction are combined with specific inner or nested primers. These inner primers are derived from nucleotide sequences within the first targeted nucleotide sequence and flank a second, smaller targeted nucleotide sequence contained within the first targeted nucleotide sequence. This mixture is subjected to initial denaturation, annealing, and extension steps, followed by thermocycling as before to allow for repeated denaturation, annealing, and extension or replication of the second targeted nucleotide sequence. This second targeted nucleotide sequence is flanked by an upper primer in the 5' upstream position and a lower primer in the 3' downstream position. The second targeted nucleotide sequence, and hence the amplification product of the second-stage PCR, also has a predicted base-pair length, which is determined by the base-pair distance between the 5' upstream and 3' downstream hybridization positions of the upper and lower primers, respectively, of the inner primer pair.

[0042] The amplified products are preferably identified as methylated or non-methylated with a probe or reporter specific to the product as described in US Patent 4,683,195 to Mullis et. al., incorporated herein by reference in its entirety. Advances in the field of probes and reporters for detecting polynucleotides are well known to those skilled in the art. Optionally, the methylation pattern of the nucleic acid can be confirmed by other techniques such as restriction enzyme digestion and Southern blot analysis. Examples of methylation sensitive restriction endonucleases which can be used to detect 5'CpG methylation include SmaI, SacI, EagI, Mspl, HpaII, BstUI and BssHII.

[0043] In another aspect of the invention a methylation ratio is used. This can be done by establishing a ratio between the amount of amplified methylated species of Marker attained and the amount of amplified reference Marker or non-methylated Marker region amplified. This is best done using quantitative real-time PCR. Ratios above an established or predetermined cutoff or threshold are considered hypermethylated and indicative of having a proliferative disorder such as cancer (prostate cancer in the case of GSTP1). Cutoffs are established according to known methods in which such methods are used for at least two sets of samples: those with known diseased conditions and those with known normal conditions. The reference Markers of the invention can also be used as internal controls. The reference Marker is preferably a gene that is constitutively expressed in the cells of the samples such as Beta Actin.

[0044] Established or predetermined values (cutoff or threshold values) are also established and used in methods according to the invention in which a ratio is not used. In this case, the cutoff value is established with respect to the amount or degree of methylation relative to some baseline value such as the amount or degree of methylation in normal samples or in samples in which the cancer is clinically insignificant (is known not to progress to clinically relevant states or is not aggressive). These cutoffs are established according to well-known methods as in the case of their use in methods based on a methylation ratio.

[0045] In the most preferred embodiment of the invention, GSTP1 methylation values obtained by MSP or other suitable methods are normalized with S100A2 methylation values determined using the same method. The normalized value is obtained by subtracting the S100A2 assay value from that of the GSTP1 value as shown in Example 7. Other normalization methods can also be used such as generation of a methylation ratio (obtained by converting the Ct value to a copy number for the gene of interest and dividing that copy number by the copy number for beta-actin, obtained in the same manner). When using a normalized value, the cutoff value is determined by first generating a training set in which the cutoff generates optimal sensitivity and specificity and then validating the cutoff in an independent validation set.

[0046] The inventive methods and kits can include steps and reagents for multiplexing. That is, more than one Marker can be assayed at a time. But only the following Markers are assayed as part of this invention GSTP1, RAR- β 2, APC, and S100A2 along with internal controls such as β -Actin.

[0047] Since a decreased level of transcription of the gene associated with the Marker is often the result of hypermethylation of the polynucleotide sequence and/or particular elements of the expression control sequences (e.g., the promoter sequence), primers prepared to match those sequences were prepared. Accordingly, the invention provides methods of detecting or diagnosing a cell proliferative disorder by detecting methylation of particular areas, preferably, within the expression control or promoter region of the Markers. Probes useful for detecting methylation of these areas are useful in such diagnostic or prognostic methods.

[0048] The kits of the invention can be configured with a variety of components provided that they all contain at least one primer or probe or a detection molecule (e.g., Scorpion reporter). In one embodiment, the kit includes reagents for amplifying and detecting hypermethylated Marker segments. Optionally, the kit includes sample preparation reagents and /or articles (e.g., tubes) to extract nucleic acids from samples.

[0049] In a preferred kit, reagents necessary for one-tube MSP are included such as, a corresponding PCR primer set, a thermostable DNA polymerase, such as Taq polymerase, and a suitable detection reagent(s) such as hydrolysis probe or molecular beacon. In optionally preferred kits, detection reagents are Scorpion reporters or reagents. A single dye primer or a fluorescent dye specific to double-stranded DNA such as ethidium bromide can also be used. The primers are preferably in quantities that yield high concentrations. Additional materials in the kit may include: suitable reaction tubes or vials, a barrier composition, typically a wax bead, optionally including magnesium; necessary buffers and reagents such as dNTPs; control nucleic acid (s) and/or any additional buffers, compounds, co-factors, ionic constituents, proteins and enzymes, polymers, and the like that may be used in MSP reactions. Optionally, the kits include nucleic acid extraction reagents and materials.

EXAMPLES

Example 1: Sample Preparation and MSPCR

[0050] Prostate samples were obtained from patients with known clinical outcomes.

[0051] The methylation assays were conducted as follows. Genomic DNA was modified using a commercially available sodium bisulfite conversion reagent kit (Zymo Research, Orange, CA, USA). This treatment converted all Cytosines in unmethylated DNA into Uracil, whereas in methylated DNA only cytosines not preceding guanine were converted into Uracil. All cytosines preceding guanine (in a CpG dinucleotide) remained as cytosine. The assays are described more fully below.

a. Sedimentation: Sedimented urine samples were obtained as follows.

[0052] 50-ml Falcon tubes containing the urine were centrifuged at 3000g on VRX Sorvall centrifuge for 10 minutes at +4 degrees C. Supernatant was removed leaving ~5ml on top of the pellet. The tubes were then spun down again (3000g for 5 minutes) in order to discard the remaining supernatant (using 1 ml tips). Urine sediment was then rinsed with 20 mL cold (4C) PBS, spun down again (3000g for 5 minutes), and the residual supernatant was aspirated. Samples were then stored at -20C.

b. Cell Lysis and DNA extraction:

[0053] The cells in the sediment were then lysed as follows. 700 μ l Cell Lysis Solution was added to each sample containing a urine cell pellet. The lysate was then transferred in a 2.0 ml microfuge tube and 3 μ l Proteinase K Solution (20 mg/ml) was added to the lysate, mixed by inverting 25 times, and incubated for one hour to overnight at 55°C.

[0054] Samples were cooled to room temperature by placing at 20°C (heat block) for 10 minutes. 300 μ l Protein Precipitation Solution was then added to the lysate which was then vortexed vigorously at high speed for 20 seconds. The samples were placed into an ice bath for 5 minutes and centrifuged at (16000 RPM) for 5 minutes. The precipitated proteins formed a tight pellet. The supernatant was then transferred to a new 2.0 ml tube with the precipitation steps

repeated.

[0055] The supernatant containing the DNA was then transferred into a clean 2.0 ml microfuge tube and centrifugation was repeated (16000 RPM for 3 minutes) with the supernatant again transferred into a clean 2.0 ml microfuge tube containing 900 μ l 100% isopropanol and 2 μ l Glycogen 20 mg/ml. The sample was mixed by inverting gently 50 times and kept at room temperature for at least 10-15 minutes on the rocker and then cooled to - 20C. The sample was then centrifuge at 16000 RPM for 5 minutes. The DNA was then visible as a small white pellet. Supernatant was removed with the 1ml-pipet and the sample was ccentrifuge at (16000 RPM) for 60 seconds. Remaining supernatant was removed with a 100 μ l-pipet. 900 μ l 70% ethanol was added and the tube was inverted 10 times to wash the DNA pellet followed by another centrifugation at 16000 RPM for 1 minute. Ethanol was discarded with the 1ml-pipet followed by another centrifugation at (16000 RPM) for 60 seconds.The remaining supernatant was discarded with the 100 μ l-pipet and the sample was allowed to air dry 10-15 minutes.

[0056] 45 μ l LoTE buffer was added to the dried samples and the DNA was rehydrated by incubating at 65°C for 1 hour shaking at 1100 rpm and overnight at 20°C shaking at 1100 rpm. The DNA was stored in a clearly labelled tube at -80°C.

c. Bisulfite modification:

[0057] DNA Samples were then modified using EZ-DNA methylation kit from ZymoResearch (Cat. No D5001) as follows.

[0058] 24 ml absolute Ethanol was added to the M-Wash buffer Concentrate to make the final M-Wash buffer. 5 μ l of M-Dilution Buffer directly to 45 μ l of the DNA sample. This mixture was mixed by pipetting up and down and then spun briefly followed by incubation at 37°C for 15 minutes in a heat block with shaking at 1100 rpm. During the incubation, CT Conversion Reagent was prepared by adding 750 μ l Baker Water and 210 μ l of M-Dilution Buffer. It was then mixed by vortexing for 1 minute every 2 minutes for a total of 10 minutes. After the above incubation, 100 μ l of the prepared CT Conversion Reagent (after briefly spinning) was added to each sample which was then vortexed lightly and spun briefly. The sample was then incubated at 70°C for 3 hour with the heating block (shaking at 1100 rpm) covered with aluminum foil.

[0059] The sample was then spun down briefly and set on ice for 10 minutes. 400 μ l of M-Binding buffer was added to the sample which was mixed by pipetting up and down. All the supernatant was loaded into a Zymo-Spin Column which was placed into a 2 ml collection tube. The tube was centrifuged at maximum speed for 15 - 30 seconds the flow-through discarded. 200 μ l of M-Wash Buffer was added to the column which was centrifuge at maximum speed for 15 - 30 seconds again with the flow-through again discarded.

[0060] 200 μ l of M-Desulphonation Buffer was added to the column and let to stand at room temperature for 15 minutes followed by centrifugation at maximum speed for 15 -30 seconds with the flow-through discarded. This procedure was followed three times with the last centrifugation step lasting 30 seconds. The column was then placed onto a clean 1.5 ml tube to which 50 μ l of M-elution buffer was added. The columns were then let to stand for 1 min at RT followed by centrifugation at maximum speed for 1 minute to elute the DNA. The eluted DNA was labeled and stored as 'BT modified' at -80°C.

[0061] MSPCR assays were then set up with the following primers and probes:

Outer PCR primers

GSTP1_332_U18	Seq ID No. 1	TCGGGGATTTAGGGCGT
GSTP1_513_L21	Seq ID No. 2	ACGAAAACCTACGACGACGAAA
Actin_309_U24	Seq ID No. 5	GATATAAGGTTAGGGATAGGATAG
Actin_501_L22	Seq ID No. 6	AACCAATAAAACCTACTCCTCC
APC_Outer_692_U19	Seq ID No. 9	CCCTATACCCCCTACGAA
APC_Outer_830_L25	Seq ID No. 10	GGCAGGGTTGTATTAATATAGTTATA
RARB2_Outer_16_U25	Seq ID No. 13	GGAAGTGAGTTAGAGGTAGGA
RARB2_Outer_239_L25	Seq ID No. 14	TCCAAACTTACTCGACCAATCCAAC

Inner PCR Scorpion probe/primer sets

Description	Sequence	Seq ID No
GSTP1 Scorpion	FAM-CGCACGGCGAACTCCCGCCGACGTGCG BHQ-HEG-TGTAGCGGTCGTCGGGGTTG	3
GSTPi Reverse Primer	5' GCCCAATACTAAATCACGACG 3'	4
Actin Scorpion	Q670-CCGCGCATCACCAACCCCACACGCGCGG- BHQ2-HEG-GGAGTATATAGTTGGGAAGTTG	7
Actin Reverse Primer	5' AACACACAATAACAAACACAAATTAC 3'	8
APC Scorpion	Texas Red - GCCGGCGGGTTTCGACGGGCCGGC- BHQ2-HEG-CGAACCAAAACGCTCCCCA	11
APC Lower Primer	GTCGGTTACGTGCGTTATATTAG	12
RARB2 Scorpion	Q570 - CGCGCCCCGACGATACCCAAAGCGCCG- BHQ2-HEG- AACGCGAGCGATTGAGTAG	15
RARB2 Lower Primer	CTTACAAAAAAACCTTCCGAATACG	16

BHQ= Black Hole Quencher reporter molecule. HEG= hexaethylene glycol

[0062] Nested PCR reactions were conducted using "SMARTCAP" tubes (Cepheid) and the "SMARTCYCLER" (Cepheid) PCR analyzer as follows.

[0063] Thawed reagents were each vortexed briefly to mix. Adequate Cepheid SmartCap PCR reaction tubes were labeled and placed in the rack. Using a fresh pipette tip for each tube, 5 μ l of the first round PCR master mix were added into each tube. Again with a fresh pipette tip for each specimen, 5 μ L of specimen were added to the respective tubes which were then closed without snapping SmartCaps in place. The tubes were centrifuged for 30 seconds in the "SMARTCYCLER" centrifuge and placed in sequence in the

[0064] "SMARTCYCLER" instrument with the lid on the "SMARTCYCLER" closed instrument and the run initiated run. The cycling conditions on the Cepheid platform are indicated below (1st round PCR).

[0065] Following completion of the run, the tubes were removed and a second round of PCR was set up as follows. The tube lid was opened followed by the addition of 15 μ l of the second round PCR master mix into the "SMARTCAP" reservoir to the final volume of 25 μ l. The spike was inserted and the lid was snapped into place. The tubes were then centrifuged for 30 seconds in the microcentrifuge with a suitable rotor. The inner PCR reaction was then run for 40 cycles under cycling conditions on the Cepheid platform as indicated below (2nd round PCR). Following completion of the run, the Cepheid tubes were removed and discarded.

[0066] The following cycling parameters were used.

First Round PCR		
Temperature	Time	Cycles
94C	2min	1
92C	20sec	
55C	30sec	18
70C	30sec	
70C	5min	1
Second Round PCR		
Temperature	Time	Cycles
95C	1min	1

(continued)

Second Round PCR		
Temperature	Time	Cycles
95C	20sec	40
59C	30sec	collection

[0067] The reaction mix for a single quadruplex in the SMARTCAP tubes was prepared using the following individual components.

• First round PCR (R1)

[0068]

Master Mix (MM1)	
Reagents	ul
DNA template (ul)	5.00
10x Magic Buffer	1
Taq (Ab) Polymerase	0.5
10x outer Primer Mix	1
2.5 mM dNTPs (100nM)	0.4
Water	2.10
Total	10.0
Outer primer PM-1 final Conc: All /Actin markers-0.05uM -0.04uM	

• Second Round PCR (R2)

[0069]

Master Mix (MM2)	Pre-mix (ul w/o sample)
Reagents	ul
DNA template (ul)	0.0
10x Magic Buffer	1.5
Taq (Ab) Polymerase	1.5
25x inner primer Mix -4p	1
25 mM dNTPs (1mM)	1
Water	10.0
Total	15.0
Inner primer final Conc: GSTP1/RARB/APC- 0.4uM/Actin-0.24uM	

[0070] The PCR Master Mixes were prepared as follows (outer primer and inner Scorpion probe/primer mixes)

5 **10X outer primer Mix-4p -GSTP1-0.5/RARB-0.5/APC-0.5uM/Actin-0.4uM**

10 Outer primer final Concentrations: GSTP1-0.05/RARB-0.05/APC-0.05uM/Actin-0.04uM

15 Calculations are shown for a single reaction and a batch of 200.

Primer concentration	ul per 1 rxn	200
100 uM GSTP1_332_U18	0.005	1
100 uM GSTP1_513_L21	0.005	1
100 uM APC_Outer_692_U19	0.005	1
100 uM APC_Outer_830_L25	0.005	1
100 uM RARB2_Outer_16_U25	0.005	1

100 uM RARB2_Outer_239_L25	0.005	1
100 uM Actin_309_U24	0.004	0.8
100 uM Actin_501_L22	0.004	0.8
Water	0.962	192
Total	1	200

25X inner primer/probe Mix -4p (10uM each/6uM actin)

30 Inner primer final Concentrations: GSTP1/RARB/APC- 0.4uM/Actin-0.24uM. Calculations are shown for a single reaction and a batch of 200.

Primer concentration	ul per 1 rxn	200
100 uM GSTP1_Fam_Sc_1112_L15	0.1	20
100 uM GSTPi_1151_L22	0.1	20
100 uM RARB2_M_136_AS15_Q570	0.1	20
100 uM RARB2_165_L24	0.1	20
100 uM APC_M_781_AS15_TR	0.1	20
100 uM APC_804_L25	0.1	20
100 uM Actin_Q670_Sc_382_L15 (Cy5)	0.06	12
100 uM Actin_425_L27	0.06	12
Water	0.28	56
Total	1	200

[0071] The final 25 μ l reaction contents were as follows:

Component	Final Conc in Rxn
$(\text{NH}_4)_2 \text{SO}_4$	16.6mM
Tris pH 8.8	67mM

(continued)

Component	Final Conc in Rxn
MgCl ₂	6.7mM
B-ME	10mM
Each dNTP	1.25mM
Each Primer	400nM
Each Scorpion	400nM
Tris-HCl, pH 8.3	4mM
KCl	20mM
EDTA	0.02mM
DTT	0.2mM
Nonidet P40	0.02% (v/v)
Tween 20	0.02% (v/v)
Glycerol	2% (v/v)
TP6-25 antibody	0.65 ug
Taq Polymerase	5U
Tris-HCl, pH 7.6	1.8mM
Glycerol	0.70%
ProClin 300	0.02%

5

10

15

20

25

30

[0072] Data output from the "SMARTCYCLER" analyzer.

[0073] Data were analyzed through the implementation of predetermined thresholds and criteria are shown in Table 1.

Table 1

Ch #	Threshold	Valid Min Cycle	Valid Max Cycle	Bkgd Min Cycle	Bkgd Max Cycle	Box Car Avg.
FAM	30	13	40	5	45	0
Cy3	20	13	40	5	45	0
TxR	20	13	40	5	45	0
Cy5	20	13	40	5	45	0

35

40

[0074] Results were generated and are presented as the following assay performance characteristics: % Sensitivity, Specificity and 95%confidence intervals, calculated for the combination of markers at defined Ct cutoffs for 2 in 1 PCR format. Area under the curve values were calculated based on ROC curve analysis performed with two statistical software packages. For a single marker analysis, AUC values were generated using MedCalc software and for different combinations of multiple markers, logistic regression model in S-Plus statistical software was applied.

[0075] A cut-off value was set based on the relative distribution of Ct values between the cancer and non-cancer patients. If either one of Ct values from the set of methylation markers was below the defined cutoff, the sample was considered methylated, even if Actin indicated the "no test" case. The figures show the data compared across a variety of parameters to illustrate the various embodiments of the invention.

Example 2: Effect of Sample Storage and Panel Identification

55

[0076] The procedure described in example 1 was repeated with combinations assays comprising a combination of Markers from the GSTP1, RAR β 2, and APC genes. Assays were conducted within 3 days of sample collection, 5 days of sample collection, and 16 days of sample collection as indicated. Results are shown in Table 2.

Table 2.

GSTP	RAR β 2	APC	Days Stored	Sensitivity (%)	Specificity (%)
X			16	31	96
		X	16	31	93
	X		16	36	86
X		X	16	44	91
X	X		16	39	85
X	X	X	16	49	82
X			5	35	96
		X	5	35	91
	X		5	40	85
X		X	5	50	90
X	X		5	44	84
X	X	X	5	54	81
X			3	36	91
		X	3	32	88
	X		3	29	93
X		X	3	54	88
X	X		3	39	84
X	X	X	3	54	81

[0077] The sample set for this example were whole (neat) urine samples and consisted of 148 samples (68 known cancers) for the 16 day set, 121 samples (52 known cancers) for the 5 day set, and 73 samples (30 known cancers) for the three day set. Surprisingly, the combination of GSTP and RAR β 2 outperformed the combination of GSTP, RAR β 2, and APC despite APC being a known prostate cancer marker. This two-gene combination vastly outperformed any other when samples were stored for three days or less. When all tests were considered, the positive predictive value for samples stored for 3 days was 65.9% compared to 51.35 % for samples held for 5 days, and 47.22% for samples stored for 16 days. ROC curves analyses were then conducted for new data sets (N=73, known cancers=30, known non-cancers = 43) using whole urine samples and using sediments prepared as described above and stored for 3 days. The area under the curve was determined for individual Markers. Results are summarized in Table 3

Table 3

Marker	Sample	Approximate Sens/Spec (%)	AUC
GSTP	WU	38/93	.66
RAR β	WU	31/93	.58
APC	WU	35/98	.64
GSTP	Sediment	43/90	.64
RAR β	Sediment	56/77	.64
APC	Sediment	52/87	.62

[0078] GSTP by itself gave the best results by ROC analysis when samples were whole urine (neat). Spinning the sample down to sediments improved the performance of the RAR β Marker tremendously as shown by this same analysis.

Example 3: Prostate Massage

[0079] Two additional sample sets were tested and analyzed to determine the effect of prostatic massage on the performance of the urine based assay. In the first sample set, 36 samples (20 known cancers) were obtained from patients having prostatic massage limited to less than 20 seconds. In the other sample set, 77 samples (30 known cancers) were obtained from patients having prostatic massage for more than 20 seconds. In each case, samples were stored for five days or less. The results of the MSPCR conducted on these samples are summarized in Table 4.

Table 4

GSTP	RAR β 2	APC	Massage (seconds)	Sensitivity (%)	Specificity (%)
X			<20	39	100
		X	<20	33	93
		X	<20	39	80
		X	<20	50	87
X		X	<20	56	93
X	X		<20	56	87
X	X	X	<20	61	87
X	X	X	<20	61	93
X			>20	33	93
		X	>20	37	91
		X	>20	41	76
		X	>20	37	84 .
X		X	>20	48	89
X	X		>20	41	82
X	X	X	>20	48	82
X	X	X	>20	52	82

[0080] The best results were obtained from the panel that included GSTP, RAR β , and APC when the prostate massage was less than 20 seconds in duration. This is surprising as one would have expected lengthier massage to release more cells and increase, at the least, the specificity.

Example 4. Digital Rectal Examination

[0081] Four additional sample sets were tested and analyzed to determine the effect of selection on the basis of an abnormal versus a normal digital rectal examination (DRE) on the performance of the urine based assay. In the first sample set, 64 whole urine samples (23 known cancers) were obtained from patients having a normal DRE. In the second sample set 33 whole urine samples (19 known cancers) were obtained from patients having an abnormal DRE. The third sample set contained 48 sedimented samples (21 known cancers) who presented with a normal DRE and the fourth sample set contained 22 sedimented samples (8 known cancers) of from patients with abnormal DREs. In each case, samples were stored for five days or less. The results of the MSPCR conducted on these samples are summarized in Table 5.

Table 5

GSTP	RAR β 2	APC	Sample	DRE	Sens(%)	Spec(%)
X			Whole	Negative	20	95
		X	Whole	Negative	30	87
	X		Whole	Negative	25	79

(continued)

	GSTP	RARβ2	APC	Sample	DRE	Sens(%)	Spec(%)
5	X		X	Whole	Negative	35	85
	X	X		Whole	Negative	25	82
	X	X	X	Whole	Negative	40	72
10	X	X	X	Whole	Negative	40	74
				Whole	Abnormal	60	92
			X	Whole	Abnormal	60	92
		X		Whole	Abnormal	53	85
15	X		X	Whole	Abnormal	80	92
	X	X		Whole	Abnormal	67	85
	X			Sediment	Negative	19	88
20		X		Sediment	Negative	10	88
		X		Sediment	Negative	48	80
			X	Sediment	Negative	33	76
25	X	X		Sediment	Negative	52	76
	X		X	Sediment	Negative	38	72
	X			Sediment	Abnormal	71	85
30	X			Sediment	Abnormal	86	77
		X		Sediment	Abnormal	57	62
		X		Sediment	Abnormal	57	85
35			X	Sediment	Abnormal	86	92
	X	X		Sediment	Abnormal	71	77
	X		X	Sediment	Abnormal	86	75

[0082] Markers used with samples selected from patients with an abnormal DRE performed substantially better than the cases in which patients had negative DREs. Whole urine samples from patients with abnormal DREs were assayed with nearly the same degree of sensitivity and specificity as the best sedimented samples when the Marker panel was made up of GSTP and APC. A single Marker (APC) assay performed the best in sedimented samples with an abnormal DRE but the GSTP/APC panel was not far behind.

Example 5: PSA Level

[0083] Two additional samples sets were tested and analyzed to determine the effect of sample selection based on PSA level. In the first sample set, -52 whole urine samples (25 known cancers) were obtained from patients having a PSA value of 2.5-4 ng/ml. In the other sample set, 169 samples (80 known cancers) were obtained from patients having a PSA level of 4-10 ng/ml. In each case, samples were stored within five days at 4° C between urine collection and sedimentation procedures. The results of the MSPCR conducted on these samples is summarized in Table 6 below.

[0084] For 52 subjects with PSA levels between 2.5 and 4 ng/mL (including 25 cancer and 27 non-cancer cases), sensitivity of 58% and specificity of 88% was demonstrated when using logistic regression model, or 58% and 81%, respectively, when using 3 markers with the following Ct cutoffs: GSTP=26, RAR=28, APC=25 and no test rate at 3.8%. For patient co-hort with PSA 4-10, sensitivity/specificity characteristics were 59/65% using the same markers and Ct cutoffs. Two-sample T-test confirmed that there was no statistically significant difference in assay performance between two co-horts with PSA ranges 2.5-4 and 4-10 ng/mL (P=0.000). Results are shown in Table 6.

Table 6

Marker	GST D2	RAR	APC	Sens, %	Spec, %	AUC	No test rate, %	
PSA 2.5-4, n=52, C=25, NC=27	28			38	85	0.619	3.8	
	26			26	96			
		28		54	85	0.712		
			26	25	81	0.574		
	26		28	54	73	0.622		
	Logistic regression model			38	85			
	26	28		54	81	0.697		
	Logistic regression model			58	85			
	26	27	25	50	81			
	26	27	25	58	81	0.688		
	Logistic regression model			58	88			
PSA 4-10, n=169, C=80, NC=89	28			49	90	0.652	5.9	
	26/30			34/44	95/84			
		28/26		48/40	70/84	0.602		
			26	40	83	0.616		
	26		28	62	70	0.634		
	28		27	59	74			
	Logistic regression model			45	85			
	26	28		53	70	0.644		
	Logistic regression model			45	85			
	26	28	25	59	65			
	26	27	25	56	73	0.651		
	Logistic regression model			45	87			

Example 6: More Extensive Multiplexing

[0085] More extensive multiplexing was conducted using additional markers known to be useful in prostate cancer analysis. Maximum assay specificity was sought given that the objective of the assay was to resolve ambiguous PSA results (2.5-4 ng/ml in clinical use). The assays were performed on sediment samples stored for 3 days. One round of PCR was conducted on each of 60 samples (30 from cancer cases, 30 from non-cancer samples). Data with urine sediments generated for 6 markers (GST+RAR+APC+RASS+CDH1+PDLIM4) using 3 quadruplex reactions demonstrate that CDH1, RASS and PDLIM4 do not add value to maintain specificity at 80%. Inclusion of all 6 markers impairs assay specificity (sens=44%, spec =63%). Moreover, use of 6 markers does not suit the singletube assay format. Results are shown in Table 7.

Table 7.

GSTP1	RAR	APC	RASSF1A	CDH1D2	PDLIM4D2	Sens	Spec
X	X		X		X	41 %	80%
X	X			X	X	44%	70%
X	X		X		X	37%	83%
X	X				X	41 %	73%
X	X	X	X	X	X	44%	63%

(continued)

GSTP1	RAR	APC	RASSF1A	CDH1D2	PDLM4D2	Sens	Spec
X	X	X				38%	80%

5

Example 7: Normalization of Results using S100A210 [0086] Urine samples were tested using four markers (GSTP1, RAR β 2, APC, and S100A2) in MPCR reactions as described above.

Table 7.

Pru-Mu					
			GSTP1	RAR	APC
Sensitivity			20.00%	5.00%	5.00%
Specificity			90.00%	100.00%	90.00%
GSTP1/APC//RAR β 2					
Sensitivity				20.00%	
Specificity				80.00%	

15

25 [0087] The data above show performance of three markers individually and as a combination on a representative set of 20 Cancers and 10 Non-cancers. The sensitivity is lower than typically observed due to the less than optimal storage time of the urine samples prior to sedimentation.

30 [0088] The same samples were then analyzed with S100 and the delta Ct between S100 and the gene of interest was used to generate a cutoff. The data show improved performance for RAR β 2 and APC but not GSTP1. This differential effect was observed because the borderline cases for RAR β 2 and APC could now be unambiguously assigned as Cancer, improving the sensitivity. There were no borderline cases for GSTP1 in this data set, however, which is why the sensitivity remained unchanged.

Table 8

Pru-Mu - Norm S100			
	GSTP1	RAR	APC
Sensitivity	20.00%	15.00%	20.00%
Specificity	90.00%	100.00%	90.00%
GSTP1/APC//RAR β 2			
Sensitivity		40.00%	
Specificity		80.00%	

45

50

55

SEQUENCE LISTING

SEQUENCE LISTING

5 <110> VERIDEX LLC

10 <120> Detecting Prostate Cancer

15 <130> P050151EP

20 <150> US11/734763

25 <151> 2007-04-12

30 <160> 25

35 <170> SeqWin99, version 1.02

40 <210> 1

45 <211> 18

50 <212> DNA

55 <213> Artificial Sequence

60 <220> PCR primer

65 <400> 1

70 tcggggattt tagggcgt 18

75 <210> 2

80 <211> 21

85 <212> DNA

90 <213> Artificial Sequence

95 <220> PCR primer

100 <400> 2

105 acgaaaaacta cgacgcacgaa a 21

110 <210> 3

115 <211> 47

120 <212> DNA

125 <213> Artificial Sequence

130 <220>

135 <223> Probe

140 <220>

145 <221> modified_base

150 <222> 1

155 <223> fam-

160 <220>

165 <221> modified_base

170 <222> 32

175 <223> BHQ-HEG-

180 <400> 3

185 cgcacggcga actcccgccg acgtgcgtgt agcggtcgtc ggggttg 47

190 <210> 4

195 <211> 22

200 <212> DNA

205 <213> Artificial Sequence

210 <220>

215 <223> Probe

220 <400> 4

225 qccccaaatac taaatcacga ca 22

5	<210> 5 <211> 24 <212> DNA <213> Artificial Sequence	
10	<220> <223> PCR primer <400> 5 gatataagg tagggatagg atag	24
15	<210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PCR primer	
20	<400> 6 aaccaataaaa acctactcct cc	22
25	<210> 7 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Probe	
30	<220> <221> modified_base <222> 1 <223> q670- <220> <221> modified_base <222> 28 <223> -BHQ2-HEG-	
35	<400> 7 ccgcgcatca ccacccaca cgcgcgggaa gtatataagg ttggggaaagg tt	52
40	<210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PCR primer	
45	<400> 8 aacacacaat aacaaacaca aattcac	27
50	<210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PCR primer	
55	<400> 9 ccctatacc cactacgaa <210> 10 <211> 25 <212> DNA <213> Artificial Sequence	19

<220>		
<223>	PCR primer	
5	<400> 10	
	ggcgggttgt attaatatag ttata	25
<210> 11		
<211> 44		
<212> DNA		
10	<213> Artificial sequence	
<220>		
<223>	Probe	
15	<220>	
<221> modified_base		
<222> 1		
<223> texas red -		
20	<220>	
<221> modified_base		
<222> 25		
<223> -BHQ2-HEG-		
<400> 11		
25	gccggcggtt tttcgacggg ccggccgaac caaaacgctc ccca	44
<210> 12		
<211> 25		
<212> DNA		
30	<213> Artificial Sequence	
<220>		
<223>	PCR primer	
35	<400> 12	
	gtcgggttacg tgcgttata tttag	25
<210> 13		
<211> 25		
<212> DNA		
40	<213> Artificial Sequence	
<220>		
<223>	PCR primer	
45	<400> 13	
	ggaagtgagt tgtttagagg tagga	25
<210> 14		
<211> 25		
<212> DNA		
50	<213> Artificial Sequence	
<220>		
<223>	PCR primer	
55	<400> 14	
	tccaaactta ctcgaccaat ccaac	25
<210> 15		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>	Probe	

5	<220>						
	<221>	modified_base					
	<222>	1					
	<223>	q570					
10	<220>						
	<221>	modified_base					
	<222>	27					
	<223>	-BHQ2-HEG-					
15	<400>	15					
	cggcggccgaa	cgatacccaa	agcgccgaac	gcgagcgatt	cgagtag	47	
20	<210>	16					
	<211>	24					
	<212>	DNA					
	<213>	Artificial Sequence					
25	<220>						
	<223>	PCR primer					
30	<400>	16					
	cttacaaaaaa	accttccgaa	tacg			24	
35	<210>	17					
	<211>	4260					
	<212>	DNA					
	<213>	Homo sapiens					
40	<400>	17					
	aacaagagat	caatatctag	aataaatgga	gatctgcaaa	tcaacagaaa	gtaggcagca	60
	aagccaaaga	aaatagccta	aggcacagcc	actaaaagga	acgtgatcat	gtcctttgca	120
	gggacatggg	tggagctgga	agccgttagc	ctcagcaaac	tcacacagga	acagaaaacc	180
	agcgagaccg	catggctctca	cttataagtg	ggagctgaac	aatgagaaca	catggtcaca	240
	tggcggcgt	caacacacac	tggtgcctgt	ttagcggggt	gctggggagg	gagagtacca	300
	ggaagaatag	ctaagggtt	ctgggtttaa	tacctgggt	atgggatgtat	ctgtacagca	360
	aaccatcatg	ggccacacac	ctatgttaca	aacctgcaca	tcctgcacat	tcaccggcaga	420
	acttcaataa	aaagttggac	ggccaggcgt	ggtggctcac	gcctgttata	ccagcactt	480
	gggaagccga	ggcgttgaga	tcacctaagg	tcaggagttc	gagaccagcc	cgggcaacat	540
	ggtgaaaccc	cgtctctact	aaaaatacaa	aaatcagcca	gatgtggcac	gcacctataaa	600
	ttccacctac	tcgggaggct	gaagcagaat	tgcttgaacc	cgagaggcgg	agggtgcagt	660
	gagccgcca	gatcgcgcca	ctgcacttca	gcctgggcca	cagcgtgaga	ctacgtcata	720
	aaataaaata	aaataaacaca	aaataaaata	aaataaaata	aaataaaata	aaataataaa	780
	ataaaaataa	ataaaaataaa	ataaaaataaa	ataaaagcaat	ttcccttcct	ctaagcggcc	840
	tccacccctc	ccccctgccc	tgtgaagcgg	gtgtgcgaac	tccgggatcg	cagcgttct	900
	aggaaattt	cccccgat	gtcccccgc	gccagttcgc	tcgcacact	tcgtgcggt	960
	cctcttcctg	ctgtctgttt	actccctagg	ccccgtctgg	gacctgggaa	agaggggaaag	1020
	gcttccccgg	ccagctgcgc	ggcgaactccg	gggactccag	ggcgcggcc	tcgcggccgac	1080
	gcccggggt	cagcggccgc	cggggcttgg	gccggcggg	gtccgcggg	ccctccagaa	1140
	gagcggccgg	cgccgtgact	cagcacttgg	gcggagcggg	gcgggaccac	cttataagg	1200
	ctcggaggcc	gcgaggccct	cgctggagtt	tcgcgcgc	agtcttcgcc	accagttagt	1260
	acgcgcggcc	cgctccccgg	ggatggggct	cagagctccc	agcatggggc	caacccgcag	1320
	catcaggccc	gggctcccg	cagggtctct	cgcccaccc	gagaccgggg	acggggggct	1380
	aggggaccca	ggacgtcccc	agtgcgttta	gcggcttca	ggggggccgg	agcgccttcgg	1440
	ggaggggatgg	gaccccccggg	gcggggaggg	ggggcagggt	gcgcgttcc	cgccctggca	1500
	tcctcccccc	gcgtccagca	aactttttt	ttttcgttgc	agtgcgc	tacaccgtgg	1560
	tctattttcc	agttcgaggat	aggagcatgt	gtctggcagg	gaaggaggagc	agggggctggg	1620
	gctcagcccc	acagccccctc	gcccacccgg	agagatccga	accccccattat	ccctccgtcg	1680
	tgtggctttt	accccccggcc	tccttctgt	tcggcccttc	tcggccatg	cctgtcccc	1740
	gccccagtgt	tgtgtaaat	tttcggagga	acctgtttac	ctgttccctc	cctgcactcc	1800
	tgacccctcc	ccgggttgc	gcgaggcgg	gtcgccccgg	tcggccatc	tcgtacttct	1860
	ccctccccgc	aggccgtgc	gcggccctgc	gcatgctgt	ggcagatcag	ggccagagct	1920
	ggaaggagga	ggtgttgacc	gtggagacgt	ggcaggaggg	ctcaactaaa	gcctccctgcg	1980
	taagtggcca	tgcccccggca	aggggagggg	gtgtctgggg	ttagggggct	gtgacttagga	2040
	tcgggggacg	cccaagctca	gtggccctcc	ctgagccatg	cctccccccaa	cagctatacg	2100
	ggcagctccc	caagttccag	gacggagacc	tcaccctgt	ccagttcaat	accatccgtc	2160
	gtcacccctgg	ccgcacccct	ggtgagttct	gaacctccaa	gtccggggca	ggcatgggca	2220
	agcctctgcc	cccgagcc	ttttgtttaa	atcagctgcc	ccgcagccct	ctggagtgaa	2280
	ggaaaacttgg	acccacttgg	tttacgttagt	ttqcccaaq	tcaaqccctq	ttqccctqca	2340

5	tccttgccct	gtgccaggct	gcctcccagg	tgtcagggtga	gctctgagca	cctgtgtgt	2400
	ggcagtctct	catccttcca	cgcacatct	cttcccctcc	tcccaggctg	gggctcacag	2460
	acagccccct	ggtggccca	tccccagtga	ctgtgtgtt	atcaggcgcc	cagtcacgcg	2520
	gcctgtccct	ctccacccaa	ccccagggt	ctatggaaag	gaccaggcagg	aggcagccct	2580
	ggtggacatg	gtgaatgacg	gcgtggagga	cctccgctgc	aaatacatct	ccctcatcta	2640
10	caccaactat	gtgagcatct	gcaccagggt	tgggcactgg	gggctgaaca	aagaaagggg	2700
	cttcttgtc	cctcaccccc	cttacccctc	aggtggctt	ggctgacccc	ttcttgggtc	2760
	agggtgcagg	ggctgggtc	gctctgggcc	aggggcccag	gggcctggga	caagacacaa	2820
	cctgcaccc	tattgcctgg	gacataaacc	agccaagta	cgggtcatgg	gggcgagtgc	2880
	aaggacagag	acccctcagca	actgggttt	tgtatctcc	tgggtggcg	agggcttctt	2940
15	ggagtagcca	gaggtggagg	aggatttgc	gccagttct	ggatggagg	gctggcactt	3000
	ttagctgagg	aaaatatgc	gacacagagc	acattttgggg	acctgggacc	agttcagcag	3060
	aggcagcgt	tgtgcgcgt	cgtgtgcgt	tgtgtgcgt	tgtgtgtta	cgcttgcatt	3120
	tgtgtcggt	gggtaaggag	atagagatgg	gcgggcagta	ggcccaggtc	ccgaaggcct	3180
	tgaaccact	ggttggagt	ctcctaagg	caatgggggc	cattgagaag	tctgaacagg	3240
20	gctgtgtctg	aatgtgaggt	ctagaaggat	cctccagaga	agccagctct	aaagctttt	3300
	caatcatctg	gtgagagaaac	ccagcaagga	tggacaggca	aatggaata	gagatgagtt	3360
	ggcagctgaa	gtggacaggaa	tttggacta	gcctgggtt	ggggagcaag	cagaggagaa	3420
	tctgggactc	tgtgtctgg	cctggggcag	acgggggtt	ctcaggggt	ggggggatgt	3480
	agagtaggt	gatacatgg	ggtgtctggc	aggaggccgg	caaggatgac	tatgtgaagg	3540
25	caactgcccgg	gcaactgaag	ccttttgaga	ccctgctgtc	ccagaaccag	ggaggcaga	3600
	ccttcattgt	gggagaccag	gtgagcatct	ggccccatgc	tgttcttcc	tcgcccaccc	3660
	ctgcttccag	atggacacag	gtgtgagcca	tttggtttgc	aaagcagagc	agaccttaggg	3720
	gatgggctta	ggccctctgc	cccccaattcc	tccagcctgc	tcccgttgc	ttagtcccta	3780
	gccccccctgc	cctgcagatc	tccttcgtct	actacaacct	gctggactt	ctgctgatcc	3840
30	atgaggctct	agccccctggc	tgcctggat	cgttccccct	gctctcagca	tatgtggggc	3900
	gcctcagtgc	ccggccccaa	ctcaaggcct	tcctggcctc	ccctgagtt	gtgaacctcc	3960
	ccatcaatgg	caacggggaa	cagtgggggt	tggggggact	ctgagcggga	ggcagagtt	4020
	gccttcctt	cttcaggacc	aataaaaattt	ctaagagagc	tactatgagc	actgttttc	4080
	ctgggacggg	gcttaggggt	tctcagcctc	gaggtcggt	ggagggcaga	gcagaggact	4140
35	agaaaacagc	tcttcagca	cagtcaatgg	cttcctggag	ccctcagcct	ggctgtgttt	4200
	actgaacctc	acaaactaga	agaggaagaa	aaaaaaagag	agagagaaac	aaagagaaat	4260
	<210>	18					
	<211>	866					
	<212>	DNA					
	<213>	Homo sapiens					
	<220>						
	<221>	misc_feature					
	<222>	315					
40	<223>	n = a, c, g or t					
	<400>	18					
	acttatatat	ctgacagttt	atttgcctc	acctctaaat	tggaaattta	gcatcacctg	60
	gttcgattta	atgcaatgt	gaatttgc	taaaaacta	cattaaagcc	ttagattt	120
	agtagcta	acgacttct	tgtatgt	agggactgct	ctaaatactt	catatatatt	180
45	aactccctta	ttctgtactt	ctgttccgt	tttatacagc	agggaaattga	aacactgaga	240
	ggttaagtaa	ctaaagttac	agagcttagag	tgacaggagt	aaagcttcaa	ctcaggcaac	300
	ccagacgtcc	agagntctga	tctccactac	taagctgct	gcatagctt	tctggtaact	360
	attttaatt	caatataatt	cgaatgatct	atctaacaag	tcatcactt	gacaactcag	420
	tgacttgtaa	tgtaaaattt	ttcattgtaa	ttcaactt	attattgttt	ctctgtgt	480
	aaaaatcat	agcaatcgag	atgtatattt	ttactctccc	tcccacctcc	ggcatctt	540
	gctaattctt	ctggccctgc	gacctcccc	gacttttac	tatgcgtgt	aactggccat	600
	aacttcctt	cttgtctgggg	actggggccg	tggggcata	cccccgaggg	gtacggggct	660
	agggcttaggc	aggctgtgc	gttggggccgg	gcccctgtcc	ccactgcgg	gtgcgggtc	720
	ggaagcggag	agagaagcag	ctgtgtatc	cgctggatgc	ggaccagggc	gctcccccatt	780
	cccgtcggga	gccccccgat	tggctgggt	tgggcgcac	tgaccgacat	gtggctgtat	840
	tggtgccagcc	cgccagggt	tcactg				866
50	<210>	19					
	<211>	10386					
	<212>	DNA					
	<213>	Homo sapiens					
	<220>						
	<221>	misc_feature					
55	<222>	9531					
	<223>	n = a, c, g or t					

	<400>	19					
5	attgaggact	cgaaaatgag	gtccaagggt	agccaaggat	ggctgcagct	tcataatgatc	60
	agttgttaaa	gcaagttgag	gcactgaaga	tggagaactc	aatcttcga	caagagctag	120
	aagataattc	caatcatctt	acaaaactgg	aaactgaggc	atctaataatg	aaggaagtac	180
	ttaaacaact	acaaggaaatg	attgaagatg	aagctatggc	ttcttctgga	cagattgatt	240
	tattagagcg	tcttaaagag	cttaacttag	atagcagtaa	tttccctgga	gtaaaactgc	300
	ggtcaaaaat	gtccctccgt	tcttatggaa	gccgggaaagg	atctgtatca	agccgttctg	360
	gagagtgcag	tcctgttccct	atgggttcat	ttccaagaag	agggttgtt	aatggaagca	420
	gagaaagtac	tgatattta	gaagaacttg	agaaagagag	gtcattgctt	ttgctgatc	480
10	ttgacaaaga	agaaaaggaa	aaagactgtt	attacgctca	acttcagaat	ctcactaaaa	540
	gaatagatag	tcttccttta	actgaaaat	tttccttca	aacagatatg	accagaaggc	600
	aattggata	tgaaggaaagg	caaatcagag	ttgcgtatgga	agaacaacta	gttacctgccc	660
	aggatatgga	aaaacgagca	cagcgaagaa	tagccagaat	tcagcaaatac	aaaaaggaca	720
	tacttcgtat	acgacagctt	ttacagtccc	aagcaacaga	agcagagagg	tcatctcaga	780
	acaagcatga	aaccggctca	catgtgctg	agcggcagaa	tgaaggtaa	ggagtgggag	840
	aaatcaacat	ggcaacttct	ggtatggtc	agggttcaac	tacacaatg	gaccatgaaa	900
15	cagccagtgt	tttgagttct	agtagcacac	actctgcacc	tcgaaggctg	acaagtcatc	960
	tgggaaccaa	ggtggaaatg	gtgtattcat	tgttgtcaat	gcttggtaact	catgataagg	1020
	atgatatgtc	gcaacttttgc	ctagctatgt	ctagctccca	agacagctgt	atatccatgc	1080
	gacagttctgg	atgtcttccct	ctcctcatcc	agcttttaca	tggcaatgac	aaagactctg	1140
	tattgttggg	aaattcccg	ggcagtaaag	aggctgggc	cagggccagt	gcagcactcc	1200
	acaacatcat	tcaactcacag	cctgtatgaca	agagaggcag	gcgtgaaatc	cgagtccctc	1260
20	atcttttgg	acagatacgc	gcttactgtt	aaaaccttgg	ggagtggcag	aaagctcatg	1320
	aaccaggcat	ggaccaggac	aaaaatccaa	tgccagctcc	tgttgaacat	cagatctgtc	1380
	ctgctgtgt	tgttctaattg	aaactttcat	ttgatgaaag	gcatagacat	gcaatgaatg	1440
	aactaggggg	actacaggcc	attgcagaat	tattgcaagt	ggactgtgaa	atgtacgggc	1500
	ttactaatga	ccactacagt	attacactaa	gacgatatgc	tggatggct	ttgacaaaact	1560
	tgacttttgg	agatgttagcc	aacaaggcta	cgctatgctc	tatgaaaggc	tgcatgagag	1620
25	cacttgcgc	ccaaactaaaa	tctgaaagtg	aaagacttaca	gcaggttatt	gcaagtgtt	1680
	tgaggaattt	gtcttggcga	gcagatgtaa	atagtaaaaa	gacgttgcga	gaagttggaa	1740
	gtgtgaaagc	attgtatggaa	tgtgctttag	aagttaaaaaa	ggaatcaacc	ctcaaaaagcg	1800
	tattgagtc	ctttaggaat	ttgtcagcac	attgcacttg	gaataaagct	gatatatgtg	1860
	ctgttagtgg	tcactgtca	tttttgggtt	gcactcttac	ttacccggac	cagacaaaaca	1920
	ctttagccat	tattgaaagt	ggaggtggga	tattacggaa	tgtgtccagc	ttgatagcta	1980
30	caaatgagga	ccacaggcaa	atcctaagag	agaacaactg	tctacaaact	ttattacaac	2040
	acttaaaatc	tcatagtttgc	acaatagtca	gtaatgcatt	tggaaatttt	tggatctct	2100
	cagcaagaaa	tcctaaagac	caggaagcat	tatgggacat	gggggcagtt	agcatgctca	2160
	agaacccat	tcattcaaag	cacaaaatga	ttgctatggg	aagtgtgc	gctttaagga	2220
	atctcatggc	aaataggcct	gcbaagatca	aggatgccaa	tattatgtct	cctggctcaa	2280
	gcttgcacat	tcttcatgtt	agggaaacaaa	aagccctaga	agcagaattt	gatgctcagc	2340
	acttatcaga	aacttttgc	aatatagaca	attatagtcc	caaggcatct	catcgtagta	2400
35	agcagagaca	caagcaaagt	ctctatggt	attatgtttt	tgacaccaat	cgacatgtat	2460
	ataataagtc	agacaatttt	aatactggca	acatgactgt	cctttccacca	tatttgaata	2520
	ctacagtgtt	accagctcc	tcttcatcaa	gaggaagctt	agatagttct	cgttctgaaa	2580
	aagatagaag	tttggagaga	gaacgcggaa	ttggtctagg	caactaccat	ccagcaacag	2640
	aaaatccagg	aacttcttca	aagcgagggt	tgcatgatctc	caccactgca	gcccgaggatt	2700
	ccaaagtcat	ggaagaagtg	tcagccattc	atacctctca	ggaagacaga	agttctgggt	2760
40	ctaccactga	attacattgt	gtgacagatg	agagaaatgc	acttagaaga	agctctgctg	2820
	cccatacaca	tccaaacact	tacaatttca	ctaagtgcgg	aaattcaaat	aggacatgtt	2880
	ctatgcctt	tgccaaat	gaatacaaga	gatcttcaaa	ttagatttt	aatagtgtca	2940
	gttagtagtga	tgtttaggtt	aaaagaggtc	aatatggaaacc	ctcgattgaa	tcctattctg	3000
	aagatgtatg	aagtaagttt	tgcatgtatg	gtcaatacc	agccgaccta	gccccataaaaa	3060
	tacatagtgc	aaatcatatg	gatgataatg	atggagaact	agatacacc	ataaaattata	3120
	gtcttaataa	ttcagatgtt	cagttgaact	cttggaggca	aagtccatc	cagaatgaaa	3180
45	gatgggcag	acccaaacac	ataatagaag	atgaaataaa	acaaagttag	caaagacaat	3240
	caaggaatca	aagtacaact	tatccctttt	atactgagag	cactgatgt	aaacacccatc	3300
	agttccaacc	acattttgg	cagcaggaat	gttttctcc	atacaggtca	cggggagcc	3360
	atggttcaga	aacaaatcg	gtgggttcta	atcatgaaat	taatcaaaat	gtaagccagt	3420
	ctttgtgtca	agaagatgac	tatgaagatg	ataaggctac	caattatagt	gaacgttact	3480
	ctgaagaaga	acagcatgaa	gaagaagaga	gaccaacaaa	ttatagcata	aatatataatg	3540
	aagagaaaac	tcatgtggat	cagccatttgc	attatgtttt	aaaatatgcc	acagatattc	3600
	cttcatcaca	gaaacagtca	ttttcttctt	caaaggttc	atctggacaa	agcagaaaaaa	3660
	ccgaacatata	gtcttcaagc	agtgagaata	cgtccacacc	ttcatctaat	gccaagaggc	3720
	agaatcagct	ccatccaagt	tctgcacaga	gttagaagtgg	tcagctcaaa	aggctgcca	3780
	cttgcaaaat	ttcttcttatt	aaccaagaaa	caatacagac	ttattgtgtt	gaagataactc	3840
	caatatgtt	ttcaagatgt	agttcattat	catcttgc	atcagctgaa	gatgaaatag	3900
55	gatgtaatca	gacgacacag	gaagcagatt	ctgctaaatc	cctgcaaata	gcagaaataa	3960
	aagaaaagat	tggaaactagg	tcagctgaa	atccctgtgag	cgaaggttcca	cgagtgtcac	4020

5	agcaccctag aaccaaatcc agcagactgc agggttctag tttatcttca gaatcagcca ggcacaaagc ttttgaattt tcttcaggag cggaaatctcc ctccaaaagt ggtgctcaga cacccaaag tccacctgaa cactatgttc aggagacccc actcatgttt agcagatgt cttctgtcag ttcaacttgcgat agttttgaga gtcgttcgat tgccagctcc gttcagatgt aaccatgcag tggaaatggta agtggcatta taagcccaag tgatcttcca gatagccctg gacaaaccat gccaccaagc agaagtaaaa cacctccacc acctccctaa acagctcaaa ccaagcgaga agtacctaataa aataaagcac ctactgctga aaagagagag agtggaccta agcaagctgc agttaatgtct gcagttcaga gggtccaggt tcttccagat gctgatactt tattacattt tgccacggaa agtactccag attgattttc ttgttcatcc agcctgagtg ctctgagcct cgtatgagcct tttatcaga aagatgtgga attaagaata atgcctccag ttcagaaaaa tgacaatggg aatgaaacag aatcagagca gcctaaagaa tcaaataatgaaa accaagagaa agaggcgagaa aaaactattt attctgaaaaa ggaccttataa gatgattcag atgatgtgta tattgaaataa ctagaagaat gtatatttc tgccatgcca acaaagtcat cacgtaaagc aaaaaagccca gcccagactg cttccaaaattt acctccaccc ttggcaagga aaccaagtca gctgcctgtg tacaacttc taccatcaca aaacagggtt caaccccaaa agcatgttag ttttacaccg ggggatgata tgccacgggt gtattgtttt gaagggacac ctataaactt ttccacagct acatcttcaat gtatcttcaac aatcgaatcc cttccaaatg agttagctgc tggagaagga gtttagaggag gggcacatgc aggtgaattt gaaaaacgag ataccattcc tacagaaggc agaagttacag atgaggctca aggaggaaaaa actctatctg taaccatacc tgaattttgtt gacaataaaag cagaggaaagg tgatattttt gcagaatgca ttaattctgc tatgccccaa gggaaaatgc acaaggctttt ccgtgtgaaa aagataatgg accaggctca gcaagcatct gcgtcgctt ctgcacccca aaaaatctg ttagatggta agaaaaagaa accaacttca ccagtaaaac ctataccaca aaataactgaa tataggacac gtgtaagaaaa aatgcagac tcaaaaaata atttaatgc tgagagagtt ttctcagaca acaaagattc aaagaaacag aatttggaaa ataattccaa ggacttcaat gataagctcc caaataatga agatagatc agaggaagtt ttgcttttga ttcacccat cattacacgc ctattgaagg aactcccttac tttttttcac gaaatgatcc tttgagtttctt ctatattttt atgatgtgta ttttgcaccc tccaggaaaaa aggtgttcaattt aagaaaggca aagaaaaata aggaatcaga ggctaaagttt accaggccca cagaactaacc ctccaaacca caatcagct ataagacaca agtatttgc aaggcccaaa taaatcgagg tcagccctaa cccataacttc agaaacaatc cacttttcc cagtcattca aagacatacc agacagagggg gcagcaactg atgaaaatgtt acagaatttt gctattgaaa atactccatgtt ttgcttttctt ctttttt ctctgagttc ttcagttgcattt attgaccaag aaaacaacaa taaagaaaaat gaaccttatca aagagactga gccccctgac tcacagggg aaccaagttt acctcaagca tcaggctatg ctcctaaatc atttcatgtt gaaatccccc cagtttgcattt ctcaagaaac agttctctca gttctcttag tattgacttca gaaatgacc ttttgcagga atgtataatgc tccgcaatgc caaaaaagaa aaaggccctca agactcaagg gtgataatgaaa aacatcatgtt cccagaaata tgggtggcat attaggtgaa gatctgacat ttgatggaaa agatatacag agaccaggatt cagaacatgg tctatccctt gattcggaaa attttggattt gaaagctt caggaagggt caaattccat agtaagtagt ttacatcaag ctgctgctgc tgcatttttca tcttagacaag cttcgtctga ttccatgttcc atcccttccccc tggaaatcagg aatctctctg ggttccat ttcatcttac acctgttcaaa gaagaaaaac ctttacaag taataaaggc ccacgaattt taaaaccagg ggagaaaaat acattggaaa cttaaaagat agaatctgaa agttaaaggaa tcaaaggagg aaaaaaaatgtt tataaaatgtt tgattactgg aaaagttcga tctaattcag aaattttccat cccaaatggaaa cagcccccttca aagcaaaatcat gccttcaatc ttcgaggca ggacaatgtt tccatgttcc gggatggaaa atagcttccctt aagttttttccat aaaaaggccc acccccttcaag actcccgctt cccaaagccc tagtgaaggtt caaacagccca ccactttcc ttagggagcc aagccatctg tggaaatcaga attaaggctt gttggccaggc agacatccc aataggtggg tcaagttaaag cacccttcttccat atcaggatctt agagattcga ccccttcaag acctggccatcc caaccattaa gttagacccat acgttccctt gggccaaact caattttcccc tggatggaaa ggaataatgc ctttcaacaa attatcttca cttccaaagga catcatcccc tagtacttgc tcaactaagt ctttccatgtt tggaaaaatgtt tcatatacat ctccaggtagt acagatgagc caacagaacc ttacccaaaca aacagggttta tccaaatgt ccagtagat tccaaatgtt ggttccatgtt cccaaatgtt aatcagatgtt aataatggta atggagccaa taaaatgtt gaaatgttccat aactaaatca agtggaaatgt aatctgtatgtt atcggatggaaa ctttccatgtt aatcggatggaaa ctttccatgtt aatcggatggaaa caagcccaac ctttccatgtt aatcggatggaaa ctttccatgtt aatcggatggaaa ctttccatgtt catcttagacc agtcttccccc acttaggtccc aggcacaaac tccatgtt tccatgtt ttccatgtt ggttccatgtt cccaaatgtt aatcggatggaaa ctttccatgtt aatcggatggaaa cacctaatttccat cccaaatgtt aatcggatggaaa ctttccatgtt aatcggatggaaa ctttccatgtt tttgcacccat tccatgtt aatcggatggaaa ctttccatgtt aatcggatggaaa ctttccatgtt aacgttgcattt tccatgtt aatcggatggaaa ctttccatgtt aatcggatggaaa ctttccatgtt gaagttccat tccatgtt aatcggatggaaa ctttccatgtt aatcggatggaaa ctttccatgtt atggaaaaaca tggatggaaa ctttccatgtt aatcggatggaaa ctttccatgtt aatcggatggaaa caaaaggaaac atggatggaaa atggatggaaa ctttccatgtt aatcggatggaaa ctttccatgtt agaccgtttc ctcaggtctt acaaaatgtt ctttccatgtt aatcggatggaaa ctttccatgtt cacctgtt tccatgtt aatcggatggaaa ctttccatgtt aatcggatggaaa ctttccatgtt atccttagatc tggatggaaa ctttccatgtt aatcggatggaaa ctttccatgtt aatcggatggaaa aaaaggccaaatccat tggatggaaa ctttccatgtt aatcggatggaaa ctttccatgtt aatcggatggaaa
20	
25	
30	
35	
40	
45	
50	
55	

	atggcagtgt	tcccatgcgt	accgtgggtt	tggaaaatcg	cctgaactcc	tttattcagg	8220
	tggatgcccc	tgaccaaaaa	ggaactgaga	taaaaccagg	acaaaataat	cctgtccctg	8280
5	tatcagagac	taatgaaagt	tctatagtgg	aacgtacccc	attcagttct	agcagctcaa	8340
	gcaaacacag	ttcacctagt	gggactgttg	ctgcccagagt	gactcccttt	aattacaacc	8400
	caagccctag	gaaaaggcgc	gcagatagca	cttcagctcg	gccatctcg	atcccaactc	8460
	cagtgaataa	caacacaaag	aagcgagatt	ccaaaactga	cagcacagaa	tccagtggaa	8520
	cccaaagtcc	taagcgccat	tctgggtctt	accttgcac	atctgtttaa	aagagaggaa	8580
10	gaatgaaact	aagaaaattc	tatgttaatt	acaactgcta	tatagacatt	ttgtttcaaa	8640
	tgaaaactta	aaagactgaa	aaattttgt	aataggtttt	attcttgc	gagggtttt	8700
	gttctggaag	ccatatttgc	tagtatactt	tgcttcact	ggcttttattt	tgggaggcac	8760
	tcttgatggt	taggaaaaaa	atagtaaagc	caagtatgtt	tgtacagtt	gttttacatg	8820
	tatTTaaagt	agcatcccat	cccaacttcc	tttattttt	gctgtctta	aaataatgaa	8880
	cactacagat	agaaaatatg	atataattgt	gttatcaatc	atTTCTAG	tataaactgaa	8940
15	ctaaacttac	atcaggggaa	aattgttatt	tatgcaaaaa	aaaatgtttt	tgtccttgc	9000
	agtccatcta	acatcataat	taatcatgtg	gctgtgaaat	tcacagtaat	atggttcccg	9060
	atgaacaagc	tttacccagc	ctgtttgc	tactgcac	atgaaactga	tgttcaatt	9120
	tcagaagtaa	tgatTAACAG	ttatgtggtc	acatgtatgt	catagagata	gtacagtgt	9180
	aataatttac	actatTTGT	gctccaaaca	aaacaaaaat	ctgtgtact	gtaaaacatt	9240
	gaatgaaact	atTTTACCTG	aactagattt	tatctgaaag	taggtaaat	tttgcata	9300
	ctgtatTTG	ttgtatattc	tggatTTGA	ggtagatgg	ctgctttttt	attatgaga	9360
	catgaatTTG	gtctcaacag	aaactaaatg	acatTTTCAG	aataaattat	tgtgtatgt	9420
20	aaactgttac	tgaaaatttgg	atttgcatt	agggttttgc	ttcacatttgc	tattaataat	9480
	tgtttaaaat	gccttttta	aaagcttata	taaattttttt	ncttgcattt	ctatgcattt	9540
	agagaaaaat	tcctttact	gtaataaaaa	caattgaaag	agactgttgc	cacttaacca	9600
	ttccatgcgt	tggcacttat	ctattcctg	aattttttt	tgtgatttgc	tcatcttgat	9660
	ttttaacatt	tttccactta	aactttttt	tcttacttca	ctggagctca	gtaaaagtaa	9720
	attcatgtta	tagcaatgca	agcagcttgc	cacagactaa	gcattgagc	taataggccc	9780
	acataatttcc	ctcttttta	attattataga	aatttgcatt	ttgaaatttgc	ttcttagaca	9840
25	tttcagtttgc	tttcagggtt	tacagtgtt	actgttgc	cccttcattt	tcttgcata	9900
	actgggtctg	acatgaacac	tttttatc	cctgtatgtt	aggcaagat	ctcagcagt	9960
	aagtataatc	agcactttgc	catgctcaga	aaattcaat	cacatgaaac	tttagaggtt	10020
	gatTTAAATC	gattaagata	ttcagaagta	tatTTAGAA	tccctgcctt	ttaaggaaac	10080
	tttatttttg	gtaggtacag	ttctgggtt	catgttaat	gtccccctt	acagtggagg	10140
	gaagtcttcc	tttcttgcagg	aaaataaact	gacacttatt	aactaagata	atttacttta	10200
30	tatatcttcc	ctgatTTGTT	ttaaaagatc	agagggttgc	tgatgtatca	tgcatacata	10260
	tttgcatttgc	ttatTTTTG	tgatTTGTT	tgatTTGTT	cataacttct	gtatTTGGGG	10320
	agagaaaaacc	tttttaagca	ttgtggggca	ctcagatagg	agtgaataca	cctaccttgc	10380
	gttcat						10386
	<210>	20					
	<211>	2762					
35	<212>	DNA					
	<213>	Homo sapiens					
	<400>	20					
	gtgacagaag	tagtaggaag	tgagctgttc	agaggcagga	gggtctattt	tttgcctaaag	60
	gggggaccag	aattccccc	tgccat	tgccat	tgaggactgg	gatgcccaga	120
40	tccgagcagg	gtttgtctgg	gcaccgtcgg	ggtagatcc	ggaacgcatt	cgaaaggc	180
	tttgcaagca	tttacttgg	aggagaactt	gggatcttt	tggaaacccc	ccgccccggc	240
	tggattggcc	gagcaagcct	ggaaaatgca	attgaaacac	agagcaccag	ctctgaggaa	300
	ctcgcccaa	ccccccatc	tccacttcc	ccccctcgag	tgtacaaacc	ctgcttcgtc	360
	tgccaggaca	aatcatcagg	gtaccactat	ggggtcagcg	cctgtgagg	atgtaaaggc	420
	tttttccgca	gaagtattca	gaagaatatg	atttacactt	gtcaccggaa	taagaactgt	480
45	tttatttataa	aagtccac	gaatcgatgc	caatactgtc	gactccagaa	gtgtttgaa	540
	gtgggaatgt	ccaaaatgtt	tgtcaggat	gacggaaaca	agaaaaaaag	ggagacttgc	600
	aagcaagaat	gcacagagag	ctatgaaat	acagcttgc	tggacatct	cacagagaag	660
	atccgaaaat	ctcaccagg	aactttcc	tcactctgc	agctgggtt	atacaccacg	720
	aattccatgt	ctgaccatcg	agtccgactt	gacctgggg	tctgggacaa	attcagttaa	780
	ctggccacca	agtgccattat	taagatgtt	gatTTGTT	aacgtctgc	tgttttactt	840
	ggcttgcacca	tcgcagacca	aatttcc	ctgaggcc	cctgccttgc	catcctgtt	900
50	cttagaattt	gcaccagg	taccccgaa	caagacacca	tgacttttgc	agacggcc	960
	acccttaatc	gaactcgat	gcacaatgt	ggatTTGGTC	ctctgtact	ccttgcgtt	1020
	acctttggca	accagcttct	gcctttggaa	atggatgaca	cagaacacgg	ccttctcagt	1080
	gccatctgc	taatctgtt	agaccggc	gaccttgg	aaccgcacaa	agtagataag	1140
	ctacaagaac	cattgttgc	agcactaaaa	atttatca	gaaaaagacg	acccagcaag	1200
	cctcacatgt	ttccaaagat	cttaatgaaa	atcacagatc	tccgtatgc	cagtgtatca	1260
55	ggtgcagagc	gtgttattac	tttgcatttgc	gaaatttgc	gatcaatgc	acctcttatt	1320
	caagaaatgc	tggagaattt	tgaaggat	gaccccttgc	ccccaaat	aagtggaaac	1380
	acagcagagc	acagtccctag	catctcaccc	agctcagtgg	aaaacagtgg	ggtcagtca	1440

5	tcaccactcg	tgcaataaga	cattttctag	ctacttcaa	cattccccag	tactttcagt	1500
	tccaggattt	aaaatgcaga	aaaaaacatt	tttactgctg	cttagtttt	ggactgaaaa	1560
	gatattaaaa	ctcaagaagg	accaagaagt	ttcatatgt	atcaatata	atactcctca	1620
	ctgtgtact	tacctagaaa	tacaaacttt	tccaatttt	aaaatcagc	catttcatgc	1680
	aaccagaaac	tagttaaaag	cttctat	cctcttggaa	cactcaagat	gcatggcaaa	1740
	gaccaggatca	aatgattt	cccctgtt	agtttctgaa	gacttgc	atacagaagt	1800
	atggctctgt	tcttctata	ctgtatgtt	gggtcttcc	tttgc	catactcaaa	1860
	ataaccatga	caccaagggt	atgaataga	ctactgtaca	cgtctacca	gttcaaaaaa	1920
	gataactgtc	ttgtcttcat	ggaatagtca	agacatcaag	gtaaggaaac	aggactattt	1980
	acaggactat	tgtacagtat	gacaagataa	ggctgaaat	attctacttt	atttagatgt	2040
10	gaagcttgc	tttgctctt	ctgatgctct	caaactgcat	cttttatttc	atgttgccca	2100
	gtaaaagtat	acaaattccc	tgcaactgca	gaagagaatt	ctgtatcagt	gtactgcca	2160
	gttcagttaa	tcaaatgtca	tttgttcaat	tgtaatgtc	actttaaatt	aaaagtgggt	2220
	tattacttgt	ttaatgacat	aactacacag	ttagttaaaa	aaaattttt	tacagtaatg	2280
	atagctcca	aggcagaaac	actttcagt	gttaagttt	tgtttacttg	ttcacaagcc	2340
	attagggaaa	tttcatggga	taattagcag	gctggctac	cactggacca	tgtaactctca	2400
	gtgtccttcc	tgattcatgc	ctgatattgg	gattttttcc	cagcccttct	tgatgccaag	2460
	ggctaattat	attacatccc	aaagaaacag	gcatagaatc	tgcccttcc	gacccgttcc	2520
	aatcactatg	aagcagagtg	aaagctgtgg	tagatgggtt	aacagataca	agtgtcagtt	2580
	tcttagttct	catttaagca	ctactggaa	ttttttttt	gatatattag	caagtctgt	2640
	atgtactttc	actggctctg	tttgatcatt	gagattggttt	gtttaaataat	gctttctatg	2700
	ttcatatact	gtttacctt	ttccatggac	tctcctggca	aagaataaaa	tatattttatt	2760
20	tt						
	<210>	21					
	<211>	8670					
	<212>	DNA					
	<213>	Homo sapiens					
25	<400>	21					
	gagctcaaga	gttcaagacc	cgtctggca	agatggcaaa	actccatcac	cacaaaagat	60
	gcaaaaagat	gcbcacagt	gcbcacac	atagccccag	ttactgagga	gtttaatgt	120
	ggaggatcac	atgaggctgc	agttagctgt	gatggctca	ctgtactcca	gccttggcga	180
	cagttagtct	atgtctcaa	taagtaagta	aacaaaatt	aaaagaatc	cagtccacag	240
	ggcatttga	ggcaagagga	aaagatgcca	gaatcagaga	tggggagaag	atgggcttca	300
	cgcacccgt	gagggttgg	aatgagacag	ataggctgag	tgtgggttgg	agagaggatg	360
	ggcagagaga	ctgaggctgg	tctgaatgg	aatggatgt	tagggtctc	agggttatcg	420
	gggaaatatt	ggagcttct	ggaaagggtt	aacgttgtga	ccacctgtt	gcgtcatggc	480
	tccccacccc	ttactaattt	tgtgaattt	gcagacttt	agtctcagt	ttctcctct	540
	tgaagtgggg	tcatcttatt	ccaactcctg	ggattgtt	gtgaattaaa	tgggttaatg	600
	tacggagagc	acctgacgca	cagcgtgtc	ttcaaaattt	cagtctgcac	cccccagca	660
	aggatatgc	cacgcccatt	gtgagtgaca	aatccaggat	gacctgaacc	caatgtgata	720
	acgtgggtcc	tcgcatgct	gtcatgct	cgggagacac	ttatggatcc	aattagtaca	780
	acaggggaaa	taaatattt	aatgcattt	gtaagacag	aatacctcag	aacttatttt	840
	gtgggggtgg	gcataaaaa	gggggtcctt	ctgctgaaa	cgtttaagct	cagggtcg	900
	gcaccacta	accaaggtcg	acagtacac	ataagccag	aggcaatgc	aggactaaa	960
	ctaaacctgt	ggccccccaca	atgaggccat	ttctcttcc	cctgaacggc	ctggggaaag	1020
	gggggtgggt	ggcagaactt	ggcagtgcc	aatccctc	ttctgtcccc	tggtttctc	1080
	ctgcccattat	ctctaggctt	gcatttattt	attgattt	acagggtctt	gctctgtcg	1140
	ccaggctgga	gtgcagtggc	acgatcatgg	ctcactgc	cctcaactc	ctaggctcaa	1200
	gtggctttc	cgccttctat	ctcccgtt	cccatatccc	taggctttt	aatggctt	1260
	caggtatctg	gtgtccgtct	cagacatcca	cctgggttcc	tggcaggga	ctgtccggga	1320
	aacctcatct	atgttggca	gtgtgggtt	taggaaggcc	gcttggaaat	gaatcagcac	1380
	tgtcttctgt	tttagtgcgt	agcaggccgc	cagagggtt	ggcggacaag	aaagggagga	1440
	tgacaggagg	ccggcactgc	aatgacacgc	cttagccacc	agaggccgc	aagcactgt	1500
	gcaaaaatccc	ggggggcccc	tgttgaaaa	tttctggc	ctgggcccc	gagatgggtt	1560
	ggacggaaatg	ttaggacc	gttctctt	gctggggccgg	ggcagagtca	ctgctttgg	1620
	tgtccgcagg	gcctgtttt	gttttact	ctctgcctt	gttagacagct	ggagaatgt	1680
	agagtggat	ttggatcgga	ctctaggcc	attccgtaca	actctctgc	cctggcg	1740
	gggaggggagt	tgcccaaggt	tacgcacaa	tttagtggca	aatgaatacg	attatcacca	1800
	gtctcaggta	tatggccatt	tgtatggc	agtcgcac	tcagttcct	agacagagac	1860
	acctgattaa	ggacaggccct	tcaggagct	accctgt	cccgcggct	tgctgtcg	1920
	tctgtttt	tccctggct	ttccatct	ctgactt	gtcttctt	tctggctg	1980
	tgtctccgt	tcgtcccgct	gggggtttt	ctcaactccc	tcactgggtc	ctggggagcc	2040
	cagtttctgt	ctgtcactcc	tcaaggat	tttgc	gaactctt	tccgacc	2100
	tgtctcggtt	ccactcttgg	gttccagagg	agggtt	atttcgt	atagtctgt	2160
	gtgtgattt	acgggggtt	aaggactccc	tttgcctt	gcactctcc	agtgacccct	2220
	gttgccatgt	gttagccgt	agcactgg	ggcacctgg	gtggggcg	gagacccct	2280
	atgcagaaat	gagtaagact	gttgagct	ctatgtgggg	tgaggctg	aqaaaacaag	2340

5	tacacagggtg attcagtcaa aatcagaatt ctctaagtac acacgaaaag ggcaaaaggg gcgcttgc aaggacagaa caggtagaca ctgaatccgg ttggcccttg gaaaggctcc ctgcagtggc ctttgaaggg ggggttggat ttcagcagga tagagggcat gggcatgtgt gggcacgttc tgaacagagg ggtcagcgc agccgagggt ctggccaca ctagttgcatt gtgccgtgt gtttaaggga cacgcagcag caggccgagt ctggagcgc tcactgccc gcttttaaa aatttttaat ttttaattta ttttattttt ttttacttt aagttctggc atacatgtgc aqaatgtgt ttgttacata ggtatacatg tgccatggg gtttgcgtca cctatcaacc catcatctag gtttaagcc cgcgcgtc caggtattag tcctaattgt ctccccccccc ttggccccc ctttccccc gcaactgccc acaggccctg gtatgtgtt tttccccc tttgttccata ttgttccatt gttcaactcc cactttagag tgagaacata ccgcctggct ttaagggaca gccatgggg tgcactgcag tttctgagca gggaaaggccc ttgtggaggcc cttagttaaa aggaagaat ggctgtgaaa atcgatgc tgcgcctcc ttgtccctcac ctcagtggt aagggtttt attccgagg tctacttgcag taggcctcga ttggaaagaca agtagcatga ggggttcaag tactgagggg agcaaggac actcgggtggc ttgtgccaagg ttgtagaagag gacactgggg gccccaaagac ctgacttcat gtacactgt caggctggcc cccaaagtcc acgggttaccc acgggttaccc ctaggaaggg accaggctgt atccatcagc catgttccata tccaaagctc ttccctggcag ggccttcttgg gggctctgt ggcagggtttt tccctggcc gctggggctgg gctttccccc tactgttctg gggactgtgc tgccctggcc ctggggggagg agggttgc gctgagttcac tgcctgggca tctggggctgg gaacctcggg ttgatctactt agggttgcagg tagaggggtt gggggagggg aagaagctac tcgacagctg gaggcaggag gggagctggg gccacaggaa gggcggtggc ctgatgccc gacggggccgg gatagacaaa gggccaaggaa ggaaggggcc ctggggagggg gcaaggccccc cttgggctgg ggtctgaaat gcacagtgtt tgccttctc cgggttctgg gaggacatgt gtgtggggggg cagttagagaa gggctgtggc tgagggctgt gcttcaggcc tggattctgg cttgggaaagc tggcctggc gtttttcag ctttgggttag ggatgttacc ctgtttagcc accaggccct caagctggag aagaggaggc caaagggtttt ctgtttagcc ttaaactact cgggacttcc ttatgttccc caagactgtt gggccagccc aactgcggct gtgtgttagag caacccatt tcttactgtt tcccatctt tccagacacc ttcctacaca gaggacatcc cccaggatt tctaaagcaca cttagttacc tcattaccc attaagaggt attctggtgc tggccattaa aagtcaactcc acttcatcca tccctgttca gtcgttctgt cttctccctc ctgatgtccc ccagctgcct cctctggccc ccagcttctt aagggttggcc caggttgcctt ctcttcaca cacacggggc catgtatgtt cagcagcaact ggaccatgaa gtctcagcgt gtgctcacag ctcttcacac agggttggc tggacttccatc aggcgttca tgagaatgtag gcctggcacc agtcttcagg ccccgagca ggggttgc cccctccacc cgggttccaga tgcccagtcc ccacgacacc tccctactcc cactgttggc tgggttggct caggggctgc ccttgacctg gccttagagcc ctccccccagc tgggttggta gctggactc tctggggagg agggggctgg gagggaatgaa gtgggaatgg caagaggcca ggggttggg gatcagggt gaggcagggtt tgggttccctt aaaatgcca gttggggggc agtggggccc acatataaat ccttcaccctg ggagcctggc tgccttgc tcccttctgg gtctgtctt gccacccgtt ctggtgatgtt cctctgttccat gcttggggca ggggttggag gatccccgtt ggtctctgtc tttgccttccat ctttgccttccat ttttgccttccat ctttgccttccat atcaactgg gcctttccccc ttggaaagaac tctctgttca gtcgttcaat gttgactgaa ggttttttt tt gtgatctcg ctcactgc ttt tcccggatgtt ctgggactgc aggcggccac caccatgccc ggcttaattttt tttgttatttt tagtagat ggggtttcac catgttagcc aggatgttct cgtatcttgc atctctgtat ccacccatct cggccctccca aagtgttggg attacaggag taaggccaccg cggccggccg actgaagggtt ttttgccttcag gtttttgcctt ggggttcttca tgcagggggtt gctctgaggc cctccctgg atatctcgat ctggggccc ttcttttttttttttttttttttttttttt ggtgtgtcat tgggttgc tggcaaaaaaa gtttttttttttttttttttttttttttt ttgcaaaatgc ctggatttca gcaaggactaa ggttcaatgg atccctgat ggggggttct cctgggtcat ggcccccaagc agcaaaatgc tggcccttgc ggcataatgc tcttggccctc catgtgggc ccagggtat cccctgcctt ggttcaatgg ttctcagagg ccttggccct ctgcctaacc ttccaggat ggttcaatgg atccctgat ggggggttcttccat ccatccgtat cccaaaggca tggcaatcc atatctttaa ttctaaattcc aacaggatcc ttccctgggg agagaatgtt aagtttgc ttttttttttttttttttttttttttt gctcaggggc ctttcagggtt agggggagca ctttttttttttttttttttttttt gagagaggaa acactcttcg ccaaggggac ttcccttgc ttttttttttttttt tggcttcagg agtccctcgat ctttgccttccat ttttttttttttttt taggtctgtat ccatggctcc tggccaggactt ctttttttttttttt ttgtggccctg ctccccccat gcttgc ttttttttttttttt tcattttccct tctggcagac actaaaaatgg ggggggggggggggggggggggggggggg tgccatcaga ggaggcttgg tgacttccat ggggggggggggggggggggggggggggg gggtgagatg ggggttccat ctttgccttca ggggggggggggggggggggggggggg cctgccttcc ctttgccttca ggggggggggggggggggggggggggggg gatccatcg gcttgc ggggggggggggggggggggggggggggg tctgcagcca ctttgccttca ggggggggggggggggggggggggggg ctacccatcg ctttgccttca ggggggggggggggggggggggggg tqaqqaact tctqccaaq qaqctqccca gtttttttttttttt 55	2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6060 6120 6180 6240 6300 6360 6420 6480
---	---	--

EP 1 980 856 A1

5	gggggagggtc	ctgggtgtgag	tgtgggggtg	caggttaaat	ctctccccca	gttccgggtg	6540
	cctgtcgatg	cagggtccag	ggggggccc	agccccctccc	cactttagct	tcatggctcc	6600
	actggagtgg	aatgaggcc	cgagttggag	tgcttaatta	atggctgtt	cctgaacat	6660
	tccagagaac	catgtctgt	gagggccttc	cgagtcac	tgttaatcc	tgtcattgga	6720
	acttgagaaa	ccagagccc	gaaggaaaa	gtgattgtcc	caagatcaca	cagcaactggc	6780
	acgttctctc	tctcttttt	ctttttttt	ttttttttt	agatggagtt	tcccttctgt	6840
	tgcccaggct	ggagtcaat	ggcacatct	cggtctact	caacccctgc	ctccagggg	6900
	caagaattc	tccgtctca	gcctcctgag	tagctggac	tacaggcgca	tcccactacg	6960
	cccactaat	ttttgtattt	tttagtagaga	cagggttca	ccatattggc	caggctggc	7020
10	tcgaactcct	gacctcgtga	tctaccgtcc	tcggcttccc	aaagtattt	ttgttatttt	7080
	agtagagacg	gggttccatc	atatttgc	ggctggtctc	gaactcctga	cctcagggtga	7140
	tctgcctcc	tcggccctg	aaagtctgg	gcttacaggc	gtgagcacc	tgcccggact	7200
	cctttttttt	ttttttttt	ttgtgttggg	gggacaagat	ctcactctgt	cacccaggt	7260
	ggatcatagc	tcactgtat	ctcgaactcc	ttggctcaag	caatccccc	agtagttgg	7320
	aactacagga	gtattgtcac	catgcctggc	caatttttat	tttttgtaga	gatggagct	7380
	tgctatgtt	tcaggctgg	gtcttactc	ttgggttca	gcaattcc	cacccctggcc	7440
	tcccaagta	ttggattac	agatgtgagc	cactgtgtt	gaccccttc	cattttata	7500
	tgccaaacta	agaaagtat	ttaggatag	aaaaggctt	ctcagatata	tagtctggg	7560
	cattttgtgg	agaaatgcat	cgaccccaa	tttgccttc	accctcccta	tactgactca	7620
	ttgggtattc	ccaaagttag	gtgtcaggct	ttgaacacat	gaggcagg	cttctttcc	7680
	tggtttaatt	ttgtttttgt	ggctgtttaa	attttctaa	ttatttcggc	tagtattaaa	7740
	aaagtgtttt	ttagctgggt	gcagttggct	atgcctgtaa	tccccacagt	gtgggaggt	7800
20	aaggcaggag	gatctttaa	gcccaggagt	tcgaccagcc	tggcaacat	agcaagactc	7860
	catctctaca	aaaataaaa	taaaaattgg	ccaggcatgg	tggcatacgc	ttgttagtccc	7920
	agctacttgg	gaggctaaag	gtgggaggat	tgctggagcc	caggagttt	aggctgcagt	7980
	gagttgtat	tgtccactg	cactccaa	ttggcttaaca	gagcaagacc	ttgtcttaaa	8040
	aaataaaaag	tgttctttt	tgaatttacc	ttggctgtgt	tggggagcag	caacttcgtt	8100
	ttccctcatca	gcagaatggg	gtgatgatac	ctacctcgct	gggctctgt	gggattcgg	8160
	ctgatgcatg	ctcagaggag	catccagtgt	cctccctgt	tccaggagga	gggcacactg	8220
	gagatgctca	ccaatgagta	tctgtctctc	tccttactca	ctggggccctc	ttggtagtctc	8280
	ccagagccctc	ctgcccaccc	tatacccagc	ttggccagtgg	ggagggagag	ctggAACCAA	8340
	cctgaatgt	tgagggtctg	gggtgttgg	ggagctgggg	ttggggctgg	tttgggtatgg	8400
	agtgtatttc	ctgtcacttt	caggagaaag	ttgtatggag	ggggctgaag	aagctgtatgg	8460
	gcagcctgga	tggagaacagt	gaccaggcagg	ttggacttcc	ggagatgtct	ttttccctgg	8520
	cactcatcac	tgtcatgtgc	aatgacttct	ttccagggtct	cccagaccga	ccctgaagca	8580
30	gaacttttga	tttcctgcca	tggatcttt	gggcccagg	ctgttgatgc	ttttgagttt	8640
	tgtattcaat	aaactttttt	tgtctgttga				8670
	<210>	22					
	<211>	2011					
	<212>	DNA					
	<213>	Homo sapiens					
35	<400>	22					
	gagctctgtc	tcttggccag	ctgaatggag	gcccagcggc	aacacagg	ctgcctgggg	60
	atcagggtcg	ctctgcaccc	cacctgtctg	cctggagcc	cccacccgt	aacctctcat	120
	ccctgtctcg	tagatccgg	cccatccccca	ctggccaccc	cacccccc	gactccacc	180
	cagttaac	ttccacgaac	ccccagaacc	agccctcatc	aacaggc	agaaggggcc	240
	cccccccat	cccccccaaa	cgccagccgg	gtgactgt	gcgttggcag	gtctcgaggc	300
	agctaaaaga	tacaaggcc	gggacaggac	atgtccatcc	ccaggaggca	gggaggatata	360
	aggctgggaa	agtttgcct	tgctgggggt	ggtgtatggag	gaggctc	caggatctct	420
	gactgtgaac	ctgtgtctgc	cactgtgtgc	ttgggtgtgg	tcatcttcc	caccaggct	480
	tggcctctgc	aaccttcaag	ggaggagcag	gtcccattgg	ctgagcacag	ccttgcacgt	540
	gaactgaaca	agcaggctcc	ttccctggca	cagggttccat	gtccttatat	ggactcatct	600
	ttgccttattt	cgacacacac	tcaatgaaaca	cttactacgc	gctgcaaaga	gccccgcagg	660
	cctgagggtc	ccccacccctca	ccacttcc	tatttttgtt	taaaaatcc	gttcttgc	720
	accacccctca	aggagggggg	ggaggaggaa	ggcaggatttc	tctaggctg	ggcgaatggcc	780
	cctctgtgtt	cccacgcac	tgtcgctgc	atgcccacca	cctgggtaca	cacagtctgt	840
	gattcccgga	gcagaacgg	ccctggccac	ccgggttctgt	gtgctactca	gtggacagac	900
	ccaaaggcaag	aaagggtgac	aaggacaggg	tcttcccagg	ctggcttga	gttctctagca	960
	ccgcccccc	cccaatcc	tgtggcacat	ggagtcttgg	tccccagagt	cccccagcg	1020
	cctccagat	gtctggagg	gcagttc	tgtggctgc	catagcac	atacaacgg	1080
	cggtgggccc	agacccaggc	tgtgttagacc	cagccccccc	gcccccg	cgttaggtca	1140
	cccactaa	ccccaggcc	ggtcttggct	gggcgtgact	gttacccctca	aaagcaggca	1200
	gctccagggt	aaaagggtg	ctgcccgt	gagcccaact	ccttcc	ggctgggct	1260
	ggtaggtttt	tagccttcat	cacggccac	ctccagccac	tggaccgct	ggcccttgc	1320
	tgtccctgggg	agtgtgttgc	tgcactcta	atggccgca	gccaccgt	tcccccaaca	1380
	ccacactcta	cctctca	ccaggctct	cccttagtgc	ccacc	catttagcta	1440
	gctgagcccc	acagccagag	gtcctcaggc	cctgtttca	qqqcaqttqc	tctqaqtc	1500

5	gcaaggggga	gtgactgcct	ggccactcca	tgccctccaa	gagctcccttc	tgcaggagcg	1560
	tacagaacccc	agggccctgg	caccctgca	gaccctggcc	caccccacct	gggcgctca	1620
	tgcccaagag	atgtccacac	ctaggatgtc	ccgcgggtgg	tggggggccc	gagagacggg	1680
	caggccggg	gcaggcctgg	ccatgcgggg	ccgaaccggg	cactgcccag	cgtggggcgc	1740
	ggggggcacg	gcgcgcgccc	ccagccccg	ggcccagcac	cccaaggcg	ccaaacgcca	1800
	aactccct	cctcctcttc	ctcaatctcg	ctctcgctct	ttttttttt	cgcaaaagga	1860
	ggggagaggg	gttaaaaaaa	tgctgactg	tcggcgaagc	cggtgagtga	gcggcgcggg	1920
	gccaatcgcg	tgcgccgttc	cgaaagtgc	cttttatggc	tcgagcggcc	gcggcggcgc	1980
	cctataaaac	ccagcggcgc	gacgcgccac	c			2011
10	<210>	23					
	<211>	1792					
	<212>	DNA					
	<213>	Homo sapiens					
	<400>	23					
15	cgcgtccgccc	ccgcgagcac	agagcctcgc	cttgccgat	ccgcccggcc	tccacacccg	60
	ccgcccagctc	accatggatg	atgatatcgc	cgcgctcgtc	gtcgacaacg	gtccggcat	120
	gtgcaaggcc	ggcttcgcgg	gcgcacatgc	ccccggggc	gtcttccct	ccatcggtgg	180
	gcgcggccagg	caccaggcg	tgatgtggg	catgggtcg	aaggattct	atgtgggcga	240
	cgaggcccag	agcaagagag	gcatcctc	cttgaagtac	cccatcgagc	acggcatcg	300
	caccaactgg	gacgacatgg	agaaaatctg	gcaccacacc	ttctacaatg	agctgcgtgt	360
	ggctcccgg	gagcaccccc	tgctgtgc	cgaggcccc	ctgaacccca	aggccaaccg	420
	cgagaagatg	acccagatca	tgttgagac	cttcaacacc	ccagccatgt	acgttgctat	480
	ccaggctgtg	ctatccctgt	acgcctctgg	ccgttaccact	ggcatcgta	tggactccgg	540
	tgacggggtc	acccacactg	tgcccatcta	cgaggggtat	gccctcccc	atgccatcct	600
	gcgtctggac	ctggctggcc	gggacactgac	tgactaccc	atgaagatcc	tcaccgagcg	660
	cggctacagc	ttcaccacca	cggccgagcg	ggaaatctgt	cgtgacatta	aggagaagct	720
	gtgctacgtc	gcccggact	tcgagaaaga	gtggccacg	gtctgttca	gtccctccct	780
	ggagaagagc	tacgagctgc	ctgacggcca	ggtcatcacc	atggcaatg	agcggttccg	840
	ctgcccgtag	gcactcttc	agccttc	cctgggcatg	gagttctgt	gcatccacga	900
	aactacccctc	aactccatca	tgaagtgtg	cgtggacatc	cgcaaagacc	tgtacgccaa	960
	cacagtgtc	tctggcggca	ccaccatgt	ccctggcatt	gccgacagga	tgcaagaagga	1020
	gatcaactgc	ctggcaccca	gcacaatgaa	gatcaagatc	attgctc	ctgagcgca	1080
	gtactccgtg	tggatcggcg	gctccatct	ggcctcgctg	tccaccc	acagatgtg	1140
30	gatcagcaag	caggatgtat	acgagtcgg	ccctccatc	gtccaccgca	aatgttctta	1200
	ggcggatat	gacttagtt	cgttacacc	tttcttgaca	aaacctaact	tgcgcagaaa	1260
	acaagatgag	attggcatgg	ctttttttt	ttttttttt	ttttttttt	ttttttttt	1320
	ttttttggctt	gactcaggat	ttaaaaactg	gaacgggtaa	ggtgacatc	gtcggttgg	1380
	gcgagcatcc	cccaaagg	acaatgtgc	cgaggactt	atttgacat	tgttgggg	1440
	ttaatagtca	ttccaaatat	gagatgcatt	tttacaggaa	gtcccttgcc	atccaaatag	1500
	ccacccca	tctctctaag	gagaatggcc	cagtccctc	ccaaatccac	acaggggagg	1560
	tgatagcatt	gtttcgtgt	aaattatgt	atgcaaaatt	tttttaatct	tcgccttaat	1620
	actttttat	tttggatgtat	tttgaatgt	gaggcctcgt	gcccccc	ccccctttt	1680
	gtccccca	tttggatgtat	tgaaggctt	ttgtccccc	gggagtggtt	ggaggcagcc	1740
	agggtttacc	tgtacactga	tttgagacca	tttgaataaa	agtgcacacc	tt	1792
40	<210>	24					
	<211>	7273					
	<212>	DNA					
	<213>	Homo sapiens					
	<400>	24					
45	ggtaccagg	ctggagggtca	ctgggtgtat	catagctcac	taacctcgaa	ctccctgggct	60
	taggaatcc	tcttgcctt	gcctccaaa	gtgcaggat	tacaggcatg	agccaccaca	120
	gtggagctct	caattctgtat	actaataatt	tgtgtcttct	tttttttcc	ttagcctgac	180
	tagagaatt	aactttatgt	ctttaaaag	aaccacctt	ttgggtttac	ccattttctt	240
	ttttgat	ctgttttgc	tttgattgtat	atctactcta	attttttatt	atttctttt	300
	ctctgtttac	tttgaattt	attactttt	ttttttgtat	tctcctaaaa	tagaagctta	360
	tattattgt	tttagatctt	tcttctttt	tattacagca	ctcaatgtat	taaatttccc	420
	tctaaggat	gttttcactg	catcctacaa	tatttcaact	ctattttat	ttagctaaa	480
	agagggttct	aattttctt	gggattttt	tttgacccat	gtgttattca	gaagtgttcc	540
	gtgtgtatctc	caaatatttg	ggagttttt	agctatctt	ctattaatca	tttcttgg	600
	aattttatgt	tggcctgaga	gcataatattg	tatgatattat	attttttt	atgtgttaag	660
	gtgtgtctt	tggtgcagaa	tgcggttat	cttgctatat	gttcctttaga	gaataatgtat	720
	tgttctgtct	ttattggata	aagtgtctat	tagatgtcag	ttacatctcg	ttgatataat	780
	gtgctgttgc	tttgcgtat	gtcctaaatg	attttctgtc	tgctgtatct	gtcttatttct	840
	gacacaaggc	tgttgaagtc	tccaaccata	ataatgaatt	aatcttattt	tctttgcagt	900
	tttatcaatt	ttgtcttata	tatattgtat	ctccattgtt	tggcacatac	acattaagaa	960

5	ttgttatgtc ttcttgaga atttacccctt ccataacatg taacatttcc ctttattccctt gataattttt cttgctcaaa agtttgcctt gttggaaattt accagaacta ctctggcttt atttgat tagttagcatg ctctctt ctctattctt acactttaa tgatatacttg actttgtatt taaagtgggg ttcttataga aaacatatac ttgttagggt gggaaataaa ataaaaagaa atacttgggtt attgggttga tccactctaa caatctctat gtttaattt atgtat tagttagt accattgata ctatattttt tattctcatc cctgtgatta cccagagagc tgcttaattt gattattgtat atagacaaat taataattaa tatctaccgt ttgttactgt tttctat ttttgcattt tacttctgc tcctat ttttgcattt tgctccttt tctgttaattt taggtttga gttat ttttgcattt atcatcttcat tttctctcc tcctcagcat atgaatttattt tttcttttgc acctttttgtt tggctgccc gaagggttgcg atgtacattt acaaccagtc ccaatctcctt tcacaaaaaa acaatactgtt ttcatggctt gtgcaggatc ctaataataa gaagtcaactt ctaatttctt tctcttcatc ttgtatctt tactgttattt catttactt gtacataaagc tgaat ttttgcattt caatacattt ttgtatctt tattttttttt catgttatctt attatatctt tttttttttt gaaaaatagg ccagggtgcag tggcttactt atgtatccc agcactttgg gagaccgatg gattgttgcg gtcaggatc tcgagaccag cttggcaac atagtgaac cctgtctctt ctaaaaaatatac aaaaaaaaaaa attgttggc atgttggcat gggcctgtgg tcacagctac tcggggggctt gaggttgcg atgttgcg gcttgggagg cagaggttgc agtgaaccaaa aatcaagctt ctgcactccca gcctaagtga cagagtgaga ccctgtctca aaaaaaaaaat gaaagaattt tttttttttt tcttcactt ttttcttctt aatgtctttt gtttctttagt tatgtatcatc caagtttctt acctgtatca ttttcttctt ctcaataactt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tacagaattt taggttgcgtt gttttttttt cttcaaggatc aatattttttt tttttttttt tcttcttgc atgttatctg agaagaatgc agatgtatattt cttatcattt ttactttttt gattgttctt gtttcttgc tcttcttgc tcccttctt ctttcttgc atttttttt ttttatgtt gccccatatt tcttagatattt tatgtttttttt tttttttttt tttttttttt tttgatttctt agtttttttt gtttcttgc tttttttttt atatatcttgc aatcgcagg ctgcatgtc cagtctactt ataaggccctt acagacattt ttgacttctg tttttttttt tttgatcttctt agtattttttt ttggaaatttgc catctgttca cttacattt caacatttctt ttgtgtttttt tttttttttt tttttttttt tttttttttt tttttttttt ttgtat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt aagctatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tactgtatgtt aagaaaactca atacatttgc atgttgcgtt aagatgttgc gggaaatgtt gcattttata gtcctatagc aggtctcgcc cttttttttt tttttttttt tttttttttt tttttttttt actttcaaca agtgcgtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt ggggggggggc tagaatttggg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt agtttgcgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt cttcttcttca ttcaggatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt aaataattttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt ggagttttttt ctgtatatttca tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt aaagtgtggg agtcttccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt aattcatcaaa ttacagttca gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt cctgtgcatt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt aagttaggtt atgacatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt gtttgtttttt atttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt catgcaggat cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tcctgcgtc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt atttcttaggt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt attataatgtt acaatcacaa aaaaaaaaaaa atgttgcgtt aatattttttt tttttttttt tttttttttt atattttgtt aaaaagaaagg agatcatgtt tttttttttt tttttttttt tttttttttt tttttttttt tgtttcttca ttgactttagt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttatagctt caaaacttctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt ggactaacgt aaagatcttca tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt catggcataa ctttgccttcaaa gtataacttca aataacccttgc acacaaagct tttttttttt ccaacatgcc atgaaagaaa gaagacagg gtttgcgtt tttttttttt tttttttttt tttttttttt aaccacccaa agaagaaaacg agggaaaatgtt aagaggatc tttttttttt tttttttttt tttttttttt tgtatgtatgtt agttagatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt atttggaaattt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt gcttattact tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt ctgaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt gtctggcaat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt gggcagttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tcatgtatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt atatttttgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttcatgtatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt aacagggtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt ccaaatgtac tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tgtaactttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt agtcccagat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	

ctatcctgtctataataagtga	cagaatttccactatggat	agatggagttcaattccccc	5160
gagtttaaaaataatctaaat	ataatttattccatggccct	gtttttccctcacttttgta	5220
tccaaatctctttcagaca	acagaacaatataatgtctga	taaggaagacaatgtatgt	5280
atcaacttcaaataagcttg	aattcaggatgtatgttaa	aatttttagtaatcttcaca	5340
gtatggattcaaacatggct	tctaacccaaactaacatta	gtagctctaaatctaaactt	5400
caaatttcagtagatgcaac	ctactcccttaaaatgaaac	agaagattgaatattaaa	5460
ttatcaaaaaaaatgatc	cacgctcttggtaaaatgtt	catgtaaatgttccatgcaat	5520
aaataggagtgcataatatg	gaatgtgaaatatgactag	aggaggagaaaggcttccta	5580
gatgagatggattttagtgc	atccgtgtctcatgaaat	cagatgtgtactaaagcttc	5640
aacagttaaaaaaaacct	ccaagtgtgtcttttattt	tttttttcttataaagacttc	5700
tacaaattgtggtagctgg	gtagtttatattttcca	atgctgtcatttctgttaa	5760
tgctaaggacttaggacata	actgaattttctatatttca	cttctttctgggtgtgt	5820
tatataatatatgtatata	cacacacacaatacatata	tatatttttatgtatctacc	5880
ctcacatgtctccctgttag	cactacccatgatagatgtt	aaacaaaagcatccaaacta	5940
ttccaactgttaaaatctcc	cttccatctaattaattctt	catccaaactatgttccaaa	6000
cgagaatagaaaattagccc	caataagccccgaactgaa	aaagtaaaatgtatgtt	6060
ctttagtccatggcacaac	tcataatcttggaaaatgtt	acagaaaagaacaaagagtg	6120
aactttaaaatctgaaat	ttttaccatgtatccatgt	aagggtctagtacccaaata	6180
atccacgcatcaggagagaa	aatgccttaaggcatacggt	ttggacatttgcgtccctg	6240
caaattctggccatcgccgc	ttcccttgcatacgaggaa	caggaaactttatattgtgt	6300
acccgtggagctcacattaa	ctatttacaggttaactgct	taggaccagtattatgagga	6360
gaatttacctttccgcctc	tctttccaagaacaaggag	ggggtgaaggtaggagaac	6420
agtatttctctgttgaag	caacttagtacaaaagataa	attacagctatgtactga	6480
aggttagcttatcattccac	aaaataaagatttttaaaa	agctatgtatgtatcttg	6540
catatagagcagatatacag	cctattaagcgtcgctacta	aaacataaaaaatgtcagcc	6600
tttcttaaccatatacgcc	cagtctgtcccgacgtact	tcctcgaccctctaaagacg	6660
tacagaccacacacggcgc	ggcgcgggaaaggggatc	cctgcgcccccgacgttcag	6720
ggccgcgttagattctggag	aggaaagccaagtgtccttct	gcccctcccccggatccat	6780
ccaaggcgtcgtcccgagaa	ctggctctcgaaagcgtcg	ggcaaagactgcaagaaga	6840
aaagacatctggggaaacc	tgtgcgcctggggcggtgg	actcggggagagagggagg	6900
gatcagacagggagatgggg	actacccctctgtctccaa	attggggcagcttcctgggt	6960
ttccgattttctcatttccg	tggtaaaaaaccctgcccc	caccgggcttacgaatttt	7020
tttaaggggagaggagggaa	aaatttgcgggtacgaa	aaggcggaaaagaacagtca	7080
tttcgtcacaatggctgtgt	tttcagttataaaaaggaa	agtttctctcggttagcgcac	7140
caattgtcatacgacttgc	gtgagcgtcaggacacgtc	caggaaatcttcagcagcgc	7200
ctcccttcgcgtccacagcc	gacgcccccaagacagcaaag	cctaccccccgcggcgcc	7260
ctqccccqaaatctt			7273

<210> 25

<211> 4465

<212> DNA

<213> Homo sapiens

<400> 25

caattgtcat	acgacttgca	gtgagcgtca	ggagcacgtc	caggaactcc	tcagcagcgc	60
ctccttcagc	tccacagcca	gacgcctca	gacagcaaag	cctacccccc	cgccgcgccc	120
tgcccgcgc	tcggatgctc	gcccgcgcc	tgctgctgtg	cgcgttctg	gcgctcagcc	180
atacagcaaa	tccttgtgt	tcccacccat	gtcaaaaaccg	aggtgtatgt	atgagtgtgg	240
gatgttgc	gtataagtgc	gattgtacc	ggacaggatt	ctatggagaa	aactgctcaa	300
caccggaaatt	tttgcacaaga	ataaaaattt	ttctgaaacc	cactccaaac	acagtgcact	360
acatacttac	ccacccaatgc	ggatgttgg	acgttgtaa	taacatccc	ttccttcgaa	420
atgcatttat	gaggatgtgc	ttgacatcca	gatcacattt	gattgacagt	ccaccaactt	480
acaatgtga	ctatggctac	aaaagctggg	aaggcctctc	taacctctcc	tattataacta	540
gagcccttcc	tccgtgcct	gatgattgcc	cgactccctt	gggtgtaaa	ggtaaaaagc	600
agcttcctga	ttcaaatgag	attgtggaaa	aattgtttct	aagaagaaaag	ttcatccctg	660
atccccaggg	ctcaaacatg	atgtttgcatt	tcttgcucca	gcacttcacg	catcagtttt	720
tcaagacaga	tcataagcga	gggccagctt	tcaccaacgg	gctggccat	ggggtgact	780
taaatcatat	ttacggtgaa	actctggcta	gacagcgtaa	actgcgcctt	ttcaaggatg	840
aaaaaatgaa	atatcagata	attgtatggag	agatgtatcc	tcccacagtc	aaagataactc	900
aggcagagat	gacttaccct	cctcaagtcc	ctgagcatct	acggttgc	gtggggcagg	960
aggcttttgg	tctggtgcc	ggtctgtatg	tgtatgccc	aatctgctg	cgggaaacaca	1020
acagagat	cgatgtgtt	aaacaggagc	atcttgaatg	gggtgtatgag	cagtgttcc	1080
agacaaggcag	gctaataactg	ataggagaga	ctattaatgt	tgtgtatgaa	gattatgtgc	1140
aacacttgc	tggttatcac	ttcaaaactga	aatttgaccc	agaactactt	ttcaacaaac	1200
aattccagta	ccaaaatcgt	attgtgtgt	aatttaacac	ccttatcac	tggcatcccc	1260
ttctgcctga	caccccttcaa	attcatgacc	agaaatacaa	ctatcaacag	tttatctaca	1320
acaactctat	attgtggaa	catggatta	cccgagttgt	tgaatcattc	accaggcaaa	1380
ttgctggcag	ggttgtgtgt	ggtaggaatg	ttccacccgc	agtacagaaa	gtatcacagg	1440
cttccattga	ccagagcagg	catagaaat	accagtctt	taatgagta	cgccaaacgct	1500

5	ttatgctgaa gcccstatgaa tcatttgaag aacttacagg agaaaaggaa atgtctgcag agttggaaagc actctatggt gacatcgatg ctgtggagct gtatccgc cttctggtag aaaaggctcg gccagatgcc atctttggt aAACCATGGT agaaggttgga gcaccattct ccttggaaagg acttatgggt aatgttatat gttctcctgc ctactggaaag ccaagcactt ttgggtggaga agtgggtttt caaatcatca acactgcctc aattcagtct ctcatctgca ataacgtgaa gggctgtccc tttacttcat tcagtgttcc agatccagag ctcattaaaa cagtcaccat caatgcaagt tcttcccgct cgggactaga tgatatcaat cccacagttac tactaaaaga acgttcgact gaactgtaga agtctaattga tcataattat ttatttatat gaaccatgtc tattaattta attatttaat aatatttata ttaaactcct tatgttactt aacatctct gtaacagaag tcagttactcc tggtgcggag aaaggagtca tacttgtaa gacttttatg tcactactct aaagattttg ctgttgcgt taagtttggaa aacagttt tattctgtt tataaaccag agagaatga gttttgacgt ctttttactt gaatttcaac ttatattata agaacgaaag taaagatgtt tgaataactta aacactatca caagatggca aatgtgaa agtgggtttaca ctgtcgatgt ttccaaatgca tcttccatgca tgcatttagaa gtaactaatg tttggaaattt taaagtactt ttggtttattt ttctgtcattc aaacaaaaac aggtatcagt gcattattaa atgaatattt aaatttagaca ttaccagtaa ttccatgtct actttttaaa atcagcaatg aaacaataat ttggaaatttca taaattcata gggtagaaatc acctgtaaaa gctgtttga ttctttaaag ttattaaact tgcataatata caaaaaagaa gctgtctgg atttaaatct gtaaaatcag atgaaattttt actacaattt cttgtttaaaa tattttataa gtgatgttcc ttttcacca agagtataaa cttttttagt gtgactgtta aaacttcctt ttaaatcaaa atgccaaatt tattaagggtt gtggagccac tgcagtgtta tctcaaaaata agaatattttt gttgagatatt tccagaattt gtttataatgg ctggtaacat gtaaaatcta tattcagcaaa agggcttacc tttaaaaataa gcaataacaa agaagaaaac caaattattt ttcaaaattta ggtttaaact ttgaagca actttttttt atccttgc actgcaggcc tggtaactcag attttgcatt gaggttaatg aagtaccaag ctgtgcitga ataacgatata gtttctcag attttctgtt gtacagttt attttagcgt ccatatcaca ttgcaaaagt agcaatgacc tcataaaaata cctcttcaaa atgcttaat tcatttcaca cattaatttt attcagttct tgaagccaaat tcagtaggtt cattgaaatc aagcctggct acctgcatgc tggcccttct ctttttttct tttagccatt ttgctaagag acacagtc ctcatcactc cgtttccct atttttttt actagttt agatcaggt tcaatttttt tggactctgc ctatattttc ttacctgaac ttggcaagt ttccaggtt acctcagtc aggactgcta tttagtcctt cttaaagaaga ttaaaagaga aaaaaaaagg cccttttaaa aatagtatac acttattttt agtggaaaagg agagaattttt atttatact aatttttagct atctgttaacc aagatggatg caaagaggct agtgcctcag agagaactgt acggggttt tgactggaaa aagttacgtt cccattctaa ttaatgcctt ttcttattta aaaacaaaaac caaatgatata ctaagtagtt ctcagcaata ataataatga cgataaact tctttccac atctcattgt cactgacatt taatggtaact gtatattact taatttattt aagatttattt tttatgtctt attaggacac tatggttata aactgtgttt aagcctacaa tcattgatt ttttttgtt tgcacaatc agtataatttt ctttgggtt acctctctga atattatgt aacaatccaa agaaatgattt gtattaaagat ttgtgaataa atttttagaa atctgatttg catattgaga tatttaagggt tgaatgtttg tcctttaggtt aggccatgt gctagccac aaagaatattt gtcctcattag cctgaatgtt ccataagact gaccttttaa aatgtttga gggatctgt gatgcttcgt taattttttc agccacaattt tattgagaaa atattctgt tcaagcactg tgggtttaa tattttttaa tcaaacgtctt attacagata atagtattt tataaataat tggaaaaaaat ttcttttgg gaagagggag aaaaatgaaat aatatcatt aaagataact caggagaatc ttctttacaa tttacgtttt agaatgtttt aggttaagaa agaaatagtc aatatgttg tataaaacac tggtaactgtt tttttttaaa aaaaaaaactt gatttgttat taacattgtt ctgctgacaa aacctggaa tttgggttgt gtatgcgaat gtttcagtgc ctcaagacaaa tgcgttatttta acttatgtaa aagataagtc tggaaataaa tgtctgttta tttttgtact attta	1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4465
45		

Claims

50 1. A method of detecting prostate cancer comprising, obtaining a urine sample from a person, and determining the methylation status of only the GSTP1 gene and one or more controls in the urine sample no later than three days after said urine sample was obtained; wherein methylation that exceeds a pre-determined value is indicative of prostate cancer and methylation that does not exceed such pre-determined value is indicative of the absence of prostate cancer.

55 2. A method of detecting prostate cancer comprising, obtaining a urine sample from a person, determining the methylation status of only the S 100 gene and only one more genes selected from the group consisting of the GSTP1

gene, APC, and RAR β 2 and one or more controls in the urine sample no later than three days after said urine sample was obtained; wherein if the Ct value of the methylation of the GSTP1, APC, or RAR β 2 gene less than that of the S 100 gene exceeds a pre-determined value it is indicative of prostate cancer and methylation that does not exceed such pre-determined value is indicative of the absence of prostate cancer.

5

3. The method according to claim 1 or 2 further comprising measuring the presence of a reference Marker and wherein prior to the collection of said urine sample, the person is subjected to prostatic massage for about 20 seconds.
4. A method of detecting prostate cancer comprising, obtaining a urine sample from a patient, determining the methylation status of only the GSTP1 gene, the RAR β 1, the APC gene and one or more controls in the urine sample; wherein methylation that exceeds a pre-determined value is indicative of prostate cancer and methylation that does not exceed such pre-determined value is indicative of the absence of prostate cancer wherein said method is conducted in a single vessel that is left unopened during the conduct of the method.
- 10 5. A method of detecting prostate cancer comprising, obtaining a urine sample from a patient with an abnormal DRE, determining the methylation status of only the GSTP1 gene, the RAR β 1, the APC gene and one or more controls in the urine sample; wherein methylation that exceeds a pre-determined value is indicative of prostate cancer and methylation that does not exceed such pre-determined value is indicative of the absence of prostate cancer wherein said method is conducted in a single vessel that is left unopened during the conduct of the method.
- 15 6. A method of detecting prostate cancer comprising, obtaining a urine sample from a patient with an abnormal DRE, determining the methylation status of only the GSTP1 gene and the RAR β 1 and one or more controls in the urine sample; wherein methylation that exceeds a pre-determined value is indicative of prostate cancer and methylation that does not exceed such pre-determined value is indicative of the absence of prostate cancer wherein said method is conducted in a single vessel that is left unopened during the conduct of the method.
- 20 7. The method according to claim 4 or 5 or 6 further comprising measuring the presence of a reference Marker.
8. The method of claim 4 or 5 or 6 wherein prior to the collection of said urine sample, the person is subjected to prostatic massage for about 20 seconds.
- 25 9. The method of claim 1, 2, 4, 5 or 6 further comprising the steps of determining the PSA level of said person and conducting said method only on people having a PSA level between 2.5 and 4 ng/ml.
- 10 10. The method of claim 1, 2, 4, 5 or 6 wherein the methylation status of the genes is determined using nested PCR wherein a first round of PCR is conducted followed by a subsequent round of PCR wherein primers and probes for conducting said subsequent PCR are directed to sequences within the sequences amplified in the first round of PCR and wherein the urine samples are spun down to form sediments prior to conducting the first round of PCR.
- 30 11. A kit for conducting an assay to detect prostate cancer, comprising: nucleic acid amplification and detection reagents for detecting the presence of genes consisting essentially of GSTP1 and one or more control genes and instructions that direct its use in patients in having measured PSA levels of 2.5-4 ng/ml.
12. A kit for conducting an assay to detect prostate cancer, comprising: nucleic acid amplification and detection reagents for detecting the presence of genes consisting essentially of GSTP1, RAR β 1 and one or more control genes and instructions that direct its use in patients in having measured PSA levels of 2.5-4 ng/ml.
- 35 13. A kit for conducting an assay to detect prostate cancer, comprising: nucleic acid amplification and detection reagents for detecting the presence of genes consisting essentially of GSTP, RAR β 1, APC and one or more control genes and instructions that direct its use in patients in having measured PSA levels of 2.5-4 ng/ml.
14. A kit for conducting an assay to detect prostate cancer, comprising: nucleic acid amplification and detection reagents for detecting the presence of the S 100A2 gene and one more genes selected from the group consisting of GSTP, RAR β 1, and APC, and one or more control genes.

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	ROUPRÊT MORGAN ET AL: "Molecular detection of localized prostate cancer using quantitative methylation-specific PCR on urinary cells obtained following prostate massage." CLINICAL CANCER RESEARCH : AN OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH 15 MAR 2007, vol. 13, no. 6, 15 March 2007 (2007-03-15), pages 1720-1725, XP002485530 ISSN: 1078-0432 * abstract * * page 1721, column 2, paragraph 2 * * table 3 *	1-10	INV. G01N33/574
Y	-----	11-14	
X	HOQUE MOHAMMAD OBAIDUL ET AL: "Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects." JOURNAL OF CLINICAL ONCOLOGY : OFFICIAL JOURNAL OF THE AMERICAN SOCIETY OF CLINICAL ONCOLOGY 20 SEP 2005, vol. 23, no. 27, 20 September 2005 (2005-09-20), pages 6569-6575, XP002485531 ISSN: 0732-183X * abstract * * page 6570, column 2, paragraph 1; figure 1 *	1-10	TECHNICAL FIELDS SEARCHED (IPC)
Y	-----	11-14	G01N
X	WO 03/044232 A (UNIV JOHNS HOPKINS MED [US]; SIDRANSKY DAVID [US]) 30 May 2003 (2003-05-30) * abstract *	1	

	-/-		
The present search report has been drawn up for all claims			
1	Place of search	Date of completion of the search	Examiner
	Munich	24 June 2008	Bigot-Maucher, Cora
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	BASTIAN PATRICK J ET AL: "Molecular biomarker in prostate cancer: the role of CpG island hypermethylation." EUROPEAN UROLOGY DEC 2004, vol. 46, no. 6, December 2004 (2004-12), pages 698-708, XP004645485 ISSN: 0302-2838 * abstract * * page 701, column 2, paragraph 1 * * page 704, column 2, paragraph 2; figure 3 * -----	2-10, 12-14	
X	YEGNASUBRAMANIAN S ET AL: "Hypermethylation of CpG islands in primary and metastatic human prostate cancer" CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, BALTIMORE, MD, vol. 64, no. 6, 15 March 2004 (2004-03-15), pages 1975-1986, XP002338830 ISSN: 0008-5472 * abstract; table 3 * * page 1980, column 1, paragraph 1 * -----	4-10, 12-14	TECHNICAL FIELDS SEARCHED (IPC)
X	JERÓNIMO CARMEN ET AL: "A quantitative promoter methylation profile of prostate cancer." CLINICAL CANCER RESEARCH : AN OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH 15 DEC 2004, vol. 10, no. 24, 15 December 2004 (2004-12-15), pages 8472-8478, XP002485532 ISSN: 1078-0432 * abstract * ----- -----	2,4-10, 14 -/-	
1	The present search report has been drawn up for all claims		
	Place of search	Date of completion of the search	Examiner
	Munich	24 June 2008	Bigot-Maucher, Cora
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	BERNARDINI S ET AL: "Hypermethylation of the CPG islands in the promoter region of the GSTP1 gene in prostate cancer: a useful diagnostic and prognostic marker?" CLINICA CHIMICA ACTA, AMSTERDAM, NL, vol. 350, no. 1-2, 1 December 2004 (2004-12-01), pages 181-188, XP004629826 ISSN: 0009-8981 * abstract * * page 184, column 2, paragraph 3; figure 1 *	11-14	
X	----- CATALONA WILLIAM J ET AL: "Viewpoint: expanding prostate cancer screening." ANNALS OF INTERNAL MEDICINE 21 MAR 2006, vol. 144, no. 6, 21 March 2006 (2006-03-21), pages 441-443, XP002485533 ISSN: 1539-3704 * abstract * * page 441, column 1, last paragraph *	11-14	TECHNICAL FIELDS SEARCHED (IPC)
T	----- VENER TATIANA ET AL: "Development of a multiplexed urine assay for prostate cancer diagnosis" CLINICAL CHEMISTRY, vol. 54, no. 5, May 2008 (2008-05), pages 874-882, XP001538183 ISSN: 0009-9147 * the whole document *	1-14	
	----- ----- -/-		
1	The present search report has been drawn up for all claims		
	Place of search	Date of completion of the search	Examiner
	Munich	24 June 2008	Bigot-Maucher, Cora
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)						
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim							
T	<p>MEHROTRA JYOTI ET AL: "Quantitative, spatial resolution of the epigenetic field effect in prostate cancer." THE PROSTATE 1 FEB 2008, vol. 68, no. 2, 1 February 2008 (2008-02-01), pages 152-160, XP002485534 ISSN: 0270-4137 * the whole document *</p> <p>-----</p>	1-14							
			TECHNICAL FIELDS SEARCHED (IPC)						
1	<p>The present search report has been drawn up for all claims</p> <table border="1"> <tr> <td>Place of search</td> <td>Date of completion of the search</td> <td>Examiner</td> </tr> <tr> <td>Munich</td> <td>24 June 2008</td> <td>Bigot-Maucher, Cora</td> </tr> </table> <p>CATEGORY OF CITED DOCUMENTS</p> <p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p> <p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>			Place of search	Date of completion of the search	Examiner	Munich	24 June 2008	Bigot-Maucher, Cora
Place of search	Date of completion of the search	Examiner							
Munich	24 June 2008	Bigot-Maucher, Cora							

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 08 25 1398

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

24-06-2008

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 03044232	A 30-05-2003		AT 393240 T	15-05-2008
			AU 2002352745 A1	10-06-2003
			CA 2467455 A1	30-05-2003
			EP 1456413 A1	15-09-2004
			JP 2005509445 T	14-04-2005

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6326145 B [0024]
- US 6270967 B, Whitcombe [0024]
- US 4458066 A [0033]
- US 4683195 A, Mullis [0042]

Non-patent literature cited in the description

- **C. B. PICKETT et al.** *Annu. Rev. Biochem.*, 1989, vol. 58, 743 [0003]
- **B. COLES et al.** *CRC Crit. Rev. Biochem. Mol. Biol.*, 1990, vol. 25, 47 [0003]
- **T. H. RUSHMORE et al.** *J. Biol. Chem.*, 1993, vol. 268, 11475 [0003]
- **B. MANNERVIK et al.** *Biochem. J.*, 1992, vol. 282, 305 [0003]
- **BEAUCAGE.** *Tetrahedron Letters*, 1981, vol. 22, 1859-1862 [0033]
- *CSH-Quantitative Biology*, 1978, vol. 43, 63 [0035]
- **C. RADDING.** *Ann. Rev. Genetics*, 1982, vol. 16, 405-437 [0035]