Technical Field
[0001] The present invention relates to an elevator apparatus allowing the deceleration
of a car at a time of emergency braking to be adjusted.
Background Art
[0002] In a conventional brake device for an elevator, the braking force of an electromagnetic
brake is controlled at the time of emergency braking such that the deceleration of
a car becomes equal to a predetermined value, based on a deceleration command value
and a speed signal (for example, see
JP 07-157211 A).
[0003] US 2004/173 413 A1 relates to a method for preventing an inadmissibly high-speed of an elevator car.
This is achieved by a reaction generator with a timer that is triggered when the speed
of the elevator car exceeds a prescribed limit value. If this is the case, a braking
signal is transmitted to a first braking device before the speed of the elevator car
is rechecked after a predetermined time set by the timer. If the speed is still too
high, the reaction generator generates a second braking signal for a second braking
device and here again the speed of the elevator car is rechecked after a predetermined
time set by the timer. This process is potentially repeated for a third braking device.
[0004] Furthermore,
JP 2006 044 894 A relates to an elevator device which is capable of changing an overspeed detection
level according to the position of the elevator car. This is realized by detecting
two different sorts of overspeed.
[0005] If a first overspeed is detected, the power supply to the motor section is intercepted
leading to braking of the driving sheave. If the second overspeed is detected, an
emergency stop device is activated.
Disclosure of the Invention
Problem to be solved by the Invention
[0006] In the conventional brake device as described above and a braking control device,
however, the basic operation of emergency braking and the control of a braking force
are both performed by a single braking force control unit. Therefore, in a case where
the deceleration of the car is excessively low owing to a malfunction in the braking
force control unit or the like, the breaking distance becomes excessively large.
[0007] The present invention has been made to solve the above-mentioned problem, and it
is therefore an obj ect of the present invention to obtain an elevator apparatus allowing
the car to be stopped more reliably even in the event of a malfunction in a brake
control portion while suppressing the deceleration at the time of emergency braking.
Means for solving the Problems
[0008] An elevator apparatus according to the present invention is defined in claim 1.
Brief Description of the Drawings
[0009]
Fig. 1 is a schematic diagram showing an elevator apparatus according to Embodiment
1 of the present invention.
Fig. 2 is a schematic diagram showing an elevator apparatus according to Embodiment
2 of the present invention.
Fig. 3 is a schematic diagram showing an elevator apparatus according to Embodiment
3 of the present invention.
Fig. 4 is a schematic diagram showing an elevator apparatus according to Embodiment
4
Fig. 5 is a schematic diagram showing an elevator apparatus according to Embodiment
5
Fig. 6 is a schematic diagram showing an elevator apparatus according to Embodiment
6
Fig. 7 is a schematic diagram showing an elevator apparatus according to Embodiment
7 of the present invention.
Fig. 8 is a schematic diagram showing an elevator apparatus according to Embodiment
8 of the present invention.
Fig. 9 is a schematic diagram showing an elevator apparatus according to Embodiment
9
Fig. 10 is a schematic diagram showing an elevator apparatus according to Embodiment
10
Best Modes for carrying out the Invention
[0010] Preferred embodiments of the present invention will be described hereinafter with
reference to the drawings in Figures 1-3, 7, and 8. The remaining Figures are for
explanation only and do not describe embodiments of the invention.
Embodiment 1
[0011] Fig. 1 is a schematic diagram showing an elevator apparatus according to Embodiment
1 of the present invention. Referring to Fig. 1, a car 1 and a counterweight 2 are
suspended within a hoistway by a main rope 3 . The car 1 and the counterweight 2 are
raised/lowered within the hoistway due to a driving force of a hoisting machine 4.
[0012] The hoisting machine 4 has a drive sheave 5 around which the main rope 3 is looped,
a motor 6 for rotating the drive sheave 5, a brake drum 7 as a brake rotational body
that is rotated integrally with the drive sheave 5 as the car 1 runs, and a brake
portion body 9 for braking rotation of the drive sheave 5. The driving of the motor
6 is controlled by a drive control portion 10 as an operation control portion.
[0013] The brake portion body 9 has a brake shoe 15 that is brought into contact with and
away from the brake drum 7, an armature 16 mounted on the first brake shoe 15, a braking
spring 17 for pressing the brake shoe 15 against the brake drum 7, and a brake coil
18 disposed facing the armature 16 to generate an electromagnetic force for opening
the brake shoe 15 away from the brake drum 7 against the braking spring 17.
[0014] A brake switch 22 and a timer switch 28 are connected in series between the brake
coil 18 and a power supply 19. By opening at least one of the switches 22 and 28,
the supply of a power to the brake coil 18 is shut off, so the brake shoe 15 is pressed
against the brake drum 7 by the braking spring 17. The timer switch 28 is normally
closed. Accordingly, during normal operation, when the brake switch 22 is closed,
the brake coil 18 is thereby supplied with a power, so the brake shoe 15 is opened
away from the brake drum 7.
[0015] The turning ON/OFF of the brake switch 22 is controlled by a brake control portion
23. The brake control portion 23 is constituted by a microcomputer having a calculation
processing portion (a CPU), a storage portion (a ROM, a RAM, and the like), and signal
input/output portions.
[0016] When a brake actuation command (including a normal braking command and an emergency
braking command) is generated, the brake control portion 23 opens the brake switch
22, and shuts off the supply of a current to the brake coil 18 to cause the brake
portion body 9 to perform braking operation. When the brake actuation command is canceled,
namely, when a brake opening command is generated, the brake control portion 23 closes
the brake switch 22 to cancel a braking force of the brake portion body 9. The brake
actuation command and the brake opening command are generated by an elevator control
portion including the drive control portion 10, and then input to the brake control
portion 23.
[0017] When a brake actuation command, namely, an emergency braking command is generated
while the car 1 is running, the brake control portion 23 estimates a deceleration
(the absolute value of a negative acceleration) of the car 1 based on deceleration
estimation information for estimating the deceleration of the car 1, and controls
an electromagnetic force generated by the brake coil 18 (an open/closed state of the
brake switch 22) such that the deceleration of the car 1 does not become excessively
high or low. Thus, the brake control portion 23 controls a pressing force with which
the brake shoe 15 is pressed against the brake drum 7.
[0018] Available as the deceleration estimation information is information from a hoisting
machine rotation detector for detecting rotation of the motor 6, a car position detector
provided on a speed governor, a return pulley rotation detector for detecting rotation
of a return pulley around which the main rope 3 is looped, a weighing device for detecting
a load within the car 1, a speedometer mounted on the car 1, an accelerometer mounted
on the car 1, an axial torque meter for detecting an axial torque of the drive sheave
5, or the like. Employable as the rotation detectors and the car position detector
are encoders or resolvers.
[0019] Employed as the second brake switch 22 is a switch allowing the amount of the current
supplied to the brake coil18 to be adjusted, for example, an open/close switch capable
of chopping or a slid switch for continuously changing a resistance value. The following
description of Embodiment 1 of the present invention will be given as to a case where
the open/close switch is employed. However, in a case where the slide switch is employed,
the switch is slid to change the resistance value instead of being turned ON/OFF.
[0020] The timer switch 28 is opened in response to an opening command from a timer circuit
29. When a brake actuation command is generated, the timer circuit 29 starts measuring
(counting down) a time, and outputs the opening command to the timer switch 28 after
the lapse of a predetermined time from a moment when the brake actuation command is
generated. Accordingly, the control of the braking force of the brake portion body
9 performed by the brake control portion 23 is invalidated after the lapse of a predetermined
time from a moment when an emergency braking command is generated.
[0021] When the brake actuation command is canceled, the measurement of the time by the
timer circuit 29 is reset, so the timer switch 28 is closed. A brake device in Embodiment
1 of the present invention has the brake portion body 9, the brake switch 22, the
brake control portion 23, the timer switch 28, and the timer circuit 29.
[0022] In the elevator apparatus structured as described above, the control of braking force
performed by the brake control portion 23 is invalidated after the lapse of the predetermined
time from the moment when the emergency braking command is generated. It is therefore
possible to stop the car 1 more reliably even in the event of a malfunction in the
brake control portion 23 while suppressing the deceleration of the car 1 at the time
of emergency braking.
Embodiment 2
[0023] Next, Fig. 2 is a schematic diagram showing an elevator apparatus according to Embodiment
2 of the present invention. Referring to Fig. 2, a current limiter 27 and a changeover
switch 27a are connected between the brake coil 18 and the power supply 19. The current
limiter 27 limits the current flowing through the brake coil 18. Employed as the current
limiter 27 is, for example, a resistor. The changeover switch 27a makes a changeover
between an operation of limiting a current from the power supply 19 by means of the
current limiter 27 to supply the brake coil 18 with the limited current and an operation
of supplying the brake coil 18 with the current from the power supply 19 without the
intermediation of the current limiter 27.
[0024] More specifically, the changeover switch 27a has normally been changed over to a
circuit side from which the current limiter 27 is excluded. In this state, when a
brake actuation command is generated, the changeover switch 27a is changed over to
a circuit side including the current limiter 27. When the brake actuation command
is canceled, the changeover switch 27a is returned to the circuit side from which
the current limiter 27 is excluded. Embodiment 2 of the present invention is identical
to Embodiment 1 of the present invention in other configurational details and other
operational details.
[0025] In the elevator apparatus structured as described above, the current limiter 27 is
employed to set an upper limit of the amount of the current supplied to the brake
coil 18 which can be controlled by the brake control portion 23, so only part of a
power-supply voltage is applied to the brake coil 18. Accordingly, it is possible
to suitably limit the amount of the control of the brake portion body 9 performed
by the brake control portion 23.
Embodiment 3
[0026] Next, Fig. 3 is a schematic diagram showing an elevator apparatus according to Embodiment
3 of the present invention. Referring to Fig. 3, a forcible braking switch 26 is provided
between the brake coil 18 and the power supply 19. The forcible braking switch 26
is connected in series to the brake switch 22 and is normally closed. By opening the
forcible braking switch 26, the brake portion body 9 is forced to perform braking
operation regardless of a command from the brake control portion 23. That is, the
forcible braking switch 26 invalidates the control of braking force performed by the
brake control portion 23 in response to an external signal, thereby forcing the brake
portion body 9 to generate a total braking force. Embodiment 3 of the present invention
is identical to Embodiment 2 of the present invention in other configurational details
and other operational details.
[0027] In the elevator apparatus structured as described above, the forcible braking switch
26 is provided between the brake coil 18 and the power supply 19. It is therefore
possible to invalidate the control performed by the brake control portion 23 according
to need and cause the brake portion body 9 to perform braking operation immediately.
Embodiment 4
[0028] Next, Fig. 4 is a schematic diagram showing an elevator apparatus according to Embodiment
4. Referring to Fig. 4, the brake switch 22 is directly opened/closed depending on
whether or not there is a brake actuation command (brake opening command), without
being controlled by the brake control portion 23. An adjustment switch 22a, the current
limiter 27, and the timer switch 28 are connected in parallel with the brake switch
22 between the power supply 19 and the brake coil 18.
[0029] In this example, a normal open/close switch is employed as the brake switch 22. Employed
as the adjustment switch 22a is a switch allowing the amount of the current supplied
to the brake coil 18 to be adjusted, for example, an open/close switch capable of
chopping or a slide switch for continuously changing a resistance value. During normal
operation, the adjustment switch 22a is open, and the timer switch 28 is closed. The
following description of Embodiment 4 will be given as to a case where the open/close
switch is employed. However, in a case where the slide switch is employed, the switch
is slid to change the resistance value instead of being turned ON/OFF.
[0030] The turning ON/OFF of the adjustment switch 22a is controlled by the brake control
portion 23. More specifically, the brake control portion 23 monitors the deceleration
of the car 1 during the running thereof regardless of whether or not there is a brake
actuation command, and controls an electromagnetic force generated by the second brake
coil 18, namely, an open/close state of the adjustment switch 22a such that the deceleration
of the car 1 does not become excessively high or low. The timer switch 28 is opened
after the lapse of a predetermined time from a moment when a brake actuation command
is generated. The brake control portion 23 detects and monitors the deceleration of
the car 1 independently of the drive control portion 10. Embodiment 4 is identical
to Embodiment 1 of the present invention in other configurational details and other
operational details.
[0031] In the elevator apparatus structured as described above, the adjustment switch 22a
for adjusting a braking force is disposed in parallel with the brake switch 22 in
a circuit, and the brake switch 22 is opened immediately in response to a brake actuation
command. It is therefore possible to cause the brake portion body 9 to perform braking
operation immediately without an operational delay when the brake actuation command
is generated.
[0032] The brake control portion 23 detects and monitors the deceleration of the car 1 independently
of the drive control portion 10. It is therefore possible to improve the reliability.
Embodiment 5
[0033] Next, Fig. 5 is a schematic diagram showing an elevator apparatus according to Embodiment
5. Referring to Fig. 5, a brake actuation command is also input to the brake control
portion 23. When the brake actuation command is input to the brake control portion
23, the brake control portion 23 monitors the deceleration of the car 1 during the
running thereof, and controls an electromagnetic force generated by the brake coil
18, namely, an open/closed state of the adjustment switch 22a such that the deceleration
of the car 1 does not become excessively high or low. Embodiment 5 is identical to
Embodiment 4 in other configurational details.
[0034] As described above, it is also appropriate to allow the brake control portion 23
to control the deceleration of the car 1 only when the brake actuation command is
generated.
Embodiment 6
[0035] Next, Fig. 6 is a schematic diagram showing an elevator apparatus according to Embodiment
6. Referring to Fig. 6, the forcible braking switch 26 is provided between the brake
coil 18 and the power supply 19. The forcible braking switch 26 is normally closed.
By opening the forcible braking switch 26, the brake portion body 9 is forced to perform
braking operation regardless of a command from the brake control portion 23 and an
open/closed state of the brake switch 22. Embodiment 6 is identical to Embodiment
4 in other configurational details and other operational details.
[0036] In the elevator apparatus structured as described above, the forcible braking switch
26 is provided between the brake coil 18 and the power supply 19. It is therefore
possible to invalidate the control performed by the brake control portion 23 according
to need.
[0037] It is also appropriate to input a brake actuation command to the brake control portion
23 and allow the brake control portion 23 to control the deceleration of the car 1
only when the brake actuation command is generated.
Embodiment 7
[0038] Next, Fig. 7 is a schematic diagram showing an elevator apparatus according to Embodiment
7 of the present invention. Referring to Fig. 7, the hoisting machine 4 has the drive
sheave 5, the motor 6, the brake drum 7, a first brake portion body 8 for braking
rotation of the drive sheave 5, and a second brake portion body 9 for braking rotation
of the drive sheave 5.
[0039] The first brake portion body 8 has a first brake shoe 11 that is moved into contact
with and away from the brake drum 7, a first armature 12 mounted on the first brake
shoe 11, a first braking spring 13 for pressing the first brake shoe 11 against the
brake drum 7, and a first brake coil 14 disposed facing the first armature 12 to generate
an electromagnetic force for opening the first brake shoe 11 away from the brake drum
7 against the first braking spring 13.
[0040] The second brake portion body 9, which corresponds to the brake portion body 9 in
Embodiment 2 of the present invention, has a second brake shoe 15, a second armature
16, a second braking spring 17, and a second brake coil 18.
[0041] A first brake switch 20 is provided between the first brake coil 14 and the power
supply 19. The first brake switch 20 is directly opened/closed depending on whether
or not there is a brake actuation command. When the brake actuation command is generated,
the first brake switch 20 is opened to shut off the supply of a power to the first
brake coil 14, so the first brake shoe 11 is pressed against the brake drum 7 by the
first braking spring 13. When a brake opening command is generated, the first brake
switch 20 is closed, so the braking force of the first brake portion body 8 is canceled.
[0042] The second brake switch 22 corresponds to the brake switch 22 in Embodiment 2 of
the present invention. That is, the turning ON/OFF of the second brake switch 22 is
controlled by the brake control portion 23. The first brake portion body 8 has a sufficient
braking force to stop the car 1 even when the braking force exerted by the second
brake portion body 9 remains canceled.
[0043] A brake device in Embodiment 7 of the present invention has the first brake portion
body 8, the second brake portion body 9, the first brake switch 20, the second brake
switch 22, the brake control portion 23, the current limiter 27, the changeover switch
27a, the timer switch 28, and the timer circuit 29. Embodiment 7 of the present invention
is identical to Embodiment 2 of the present invention in other configurational details
and other operational details.
[0044] In the elevator apparatus structured as described above, when a brake actuation command
is generated, the first brake portion body 8 performs braking operation immediately
regardless of the control state of the second brake portion body 9. It is therefore
possible to prevent a delay in starting braking operation more reliably.
[0045] In Embodiment 7 of the present invention, the second brake portion body 9 first performs
braking operation when a brake actuation command is generated, and reduces a braking
force when the deceleration of the car 1 becomes excessively high. However, it is
also appropriate to keep the second brake switch 22 closed even when a brake actuation
command is generated, and open the second brake switch 22 to perform braking operation
when the deceleration of the car 1 is equal to or lower than a predetermined value.
Embodiment 8
[0046] Next, Fig. 8 is a schematic diagram showing an elevator apparatus according to Embodiment
8 of the present invention. Referring to Fig. 8, the forcible braking switch 26 is
provided between the second brake coil18 and the power supply 19. The forcible braking
switch 26 is normally closed. By opening the forcible braking switch 26, the second
brake portion body 9 is forced to perform braking operation regardless of a command
from the brake control portion 23. Embodiment 8 of the present invention is identical
to Embodiment 7 of the present invention in other configurational details and other
operational details.
[0047] In the elevator apparatus structured as described above, the forcible braking switch
26 is provided between the brake coil 18 and the power supply 19. It is therefore
possible to invalidate the control performed by the brake control portion 23 according
to need.
Embodiment 9
[0048] Next, Fig. 9 is a schematic diagram showing an elevator apparatus according to Embodiment
9. Referring to Fig. 9, the hoisting machine 4 has the drive sheave 5, the motor 6,
the brake drum 7, the first brake portion body 8 for braking rotation of the drive
sheave 5, and the second brake portion body 9 for braking rotation of the drive sheave
5.
[0049] The first brake portion body 8 has the first brake shoe 11, the first armature 12,
the first braking spring 13, and the first brake coil 14 as in the cases of Embodiments
7 and 8 of the present invention. The second brake portion body 9, which corresponds
to the brake portion body 9 in Embodiment 4, has the second brake shoe 15, the second
armature 16, the second braking spring 17, and the second brake coil 18.
[0050] The first brake switch 20 is provided between the first brake coil 14 and the power
supply 19. The first brake switch 20 is directly opened/closed depending on whether
or not there is a brake actuation command.
[0051] The second brake switch 22 corresponds to the brake switch 22 in Embodiment 4. That
is, the second brake switch 22 is directly opened/closed depending on whether or not
there is a brake actuation command, without being controlled by the brake control
portion 23. The adjustment switch 22a, the current limiter 27, and the timer switch
28 are connected in parallel with the second brake switch 22 between the power supply
19 and the second brake coil 18.
[0052] The turning ON/OFF of the adjustment switch 22a is controlled by the brake control
portion 23. More specifically, the brake control portion 23 monitors the deceleration
of the car 1 during the running thereof regardless of whether or not there is a brake
actuation command, and controls an electromagnetic force generated by the second brake
coil 18, namely, an open/closed state of the adjustment switch 22a such that the deceleration
of the car 1 does not become excessively high or low. The timer switch 28 is opened
after the lapse of a predetermined time from a moment when the brake actuation command
is generated.
[0053] A brake device in Embodiment 9 has the first brake portion body 8, the second brake
portion body 9, the first brake switch 20, the second brake switch 22, the adjustment
switch 22a, the brake control portion 23, the current limiter 27, the timer switch
28, and the timer circuit 29. Embodiment 9 is identical to Embodiments 4 and 7 of
the present invention in other configurational details and other operational details.
[0054] In the elevator apparatus structured as described above, when a brake actuation command
is generated, the first brake portion body 8 performs braking operation immediately
regardless of the control state of the second brake portion body 9. It is therefore
possible to prevent a delay in starting braking operation more reliably.
[0055] The adjustment switch 22a for adjusting a braking force is disposed in parallel with
the second brake switch 22 in a circuit, and the second brake switch 22 is directly
opened/closed depending on whether or not there is a brake actuation command. It is
therefore possible to cause the second brake portion body 9 to perform braking operation
immediately without an operational delay when the brake actuation command is generated.
[0056] It is also appropriate to input a brake actuation command to the brake control portion
23, and allow the brake control portion 23 to control the deceleration of the car
1 only when the brake actuation command is generated.
Embodiment 10
[0057] Next, Fig. 10 is a schematic diagram showing an elevator apparatus according to Embodiment
10. Referring to Fig. 10, the forcible braking switch 26 is provided between the second
brake coil 18 and the power supply 19. The forcible braking switch 2 6 is normally
closed. By opening the forcible braking switch 26, the second brake portion body 9
is forced to perform braking operation regardless of a command from the brake control
portion 23. Embodiment 10 is identical to Embodiment 9 in other configurational details
and other operational details.
[0058] In the elevator apparatus structured as described above, the forcible braking switch
26 is provided between the second brake coil 18 and the power supply 19. It is therefore
possible to invalidate the control performed by the brake control portion 23 according
to need.
[0059] In Embodiment 10, it is also appropriate to input a brake actuation command to the
brake control portion 23, and allow the brake control portion 23 to control the deceleration
of the car 1 only when the brake actuation command is generated.
[0060] Further, although the brake control portion 23 is constituted by the computer in
the foregoing examples, an electric circuit for processing analog signals may be employed
to constitute the brake control portion 23.
[0061] Still further, although the brake device is provided on the hoisting machine 4 in
the foregoing examples, it is also appropriate to provide the brake device at another
position. That is, the brake device may be a car brake mounted on the car 1, a rope
brake for gripping the main rope 3 to brake the car 1, or the like.
[0062] Yet further, the brake rotational body is not limited to the brake drum 7. For example,
the brake rotational body may be a brake disc.
[0063] Further, three or more brake portion bodies may be provided for a single brake rotational
body.
[0064] Still further, the brake device is disposed outside the brake rotational body in
the foregoing examples. However, the brake device may be disposed inside the brake
rotational body.
[0065] Yet further, the brake rotational body may be integrated with the drive sheave 5.
1. Aufzugsvorrichtung, umfassend:
eine Fahrstuhlkabine (1); und
eine Bremseinrichtung zum Anhalten der Fahrzeugkabine (1),
wobei
die Bremseinrichtung aufweist:
einen Bremssteuerungsabschnitt (23) zur Steuerung einer Bremskraft, die zu einem Zeitpunkt
einer Notbremsung erzeugt wird, um eine Verzögerung der Fahrstuhlkabine (1) anzupassen;
wobei der Bremssteuerabschnitt (23) eine Verzögerung der Fahrstuhlkabine (1) auf der
Grundlage von Verzögerungsermittlungsinformationen zum Ermitteln der Verzögerung der
Fahrstuhlkabine (1) ermittelt und eine von einer Bremsspule (18) erzeugte elektromagnetische
Kraft steuert, wobei die Verzögerungsermittlungsinformationen Informationen von einem
Hebemaschinendrehungsdetektor zum Erfassen der Drehung eines Motors (6), einem Fahrstuhlpositionsdetektor,
der an einem Geschwindigkeitsregler vorgesehen ist, einem Umlenkrollendrehungsdetektor
zum Erfassen der Drehung einer Umlenkrolle, um die ein Hauptseil (3) geschlungen ist,
einer Wiegevorrichtung zum Erfassen einer Last innerhalb der Fahrstuhlkabine (1),
einem an der Fahrstuhlkabine (1) angebrachten Geschwindigkeitsmesser, einem an der
Fahrstuhlkabine (1) angebrachten Beschleunigungsmesser oder einem Axialdrehmomentmesser
zum Erfassen eines Axialdrehmoments einer Antriebsscheibe (5) sind,
einen Bremsschalter (22), der durch den Bremssteuerungsabschnitt (23) gesteuert wird;
wobei der Bremsschalter (22) ein Schalter ist, der es ermöglicht, die der Bremsspule
(18) zugeführte Strommenge einzustellen;
dadurch gekennzeichnet, dass die Bremseinrichtung ferner aufweist:
einen Bremsabschnittkörper (9) aufweisend:
eine Bremsbacke (15), an der ein Anker (16) angebracht ist, und die in Kontakt mit
und weg von einem Bremsdrehkörper (7) bewegt wird, der gedreht wird, wenn sich die
Fahrstuhlkabine (1) bewegt;
eine Bremsfeder (17) zum Drücken der Bremsbacke gegen den Bremsdrehkörper (7); und
die Bremsspule (18) so angeordnet ist, dass sie dem Anker (16) zugewandt ist und zum
Erzeugen der elektromagnetischen Kraft zum Lösen der Bremsbacke (15) vom Bremsdrehkörper
(7) gegen die Bremsfeder (17);
einen Zeitgeberschalter (28); und
eine Zeitgeberschaltung (29) zum außer Kraft setzen der Steuerung der Bremskraft,
die von dem Bremssteuerungsabschnitt (23) durchgeführt wird, durch Öffnen des Zeitgeberschalters
(28) nach Ablauf einer vorbestimmten Zeit von einem Zeitpunkt an, wenn ein Notbremsbefehl
erzeugt wird, wobei der Bremsschalter (22) und der Zeitgeberschalter (28) in Reihe
zwischen der Bremsspule (18) und einer Stromversorgung geschaltet sind,
und
die Bremseinrichtung dazu eingerichtet ist, die Bremskraft zu erzeugen, indem mindestens
einer von dem Bremsschalter (22) und dem Zeitgeberschalter (28) geöffnet wird, indem
die Stromversorgung der Bremsspule (18) unterbrochen wird und die Bremsbacke (15)
durch die Bremsfeder (17) gegen den Bremsdrehkörper (7) gedrückt wird.
2. Aufzugsvorrichtung nach Anspruch 1, wobei:
der Bremssteuerungsabschnitt (23) die von der Bremsspule (18) zum Zeitpunkt der Notbremsung
erzeugte elektromagnetische Kraft steuert; und
die Zeitgeberschaltung (29) die Stromversorgung der Bremsspule (18) nach dem Ablauf
der vorbestimmten Zeit von dem Zeitpunkt an, wenn der Notbremsbefehl erzeugt wird,
abschaltet.
3. Aufzugsvorrichtung nach Anspruch 2, wobei die Bremseinrichtung ferner einen Strombegrenzer
(27) zum Begrenzen eines durch die Bremsspule (18) fließenden Stroms aufweist.
4. Aufzugsvorrichtung nach Anspruch 1, die ferner einen Betriebssteuerungsabschnitt (10)
zum Steuern des Betriebes der Fahrstuhlkabine (1) umfasst, wobei
der Bremssteuerabschnitt (23) eine Verzögerung der Fahrstuhlkabine (1) unabhängig
von dem Betriebssteuerungsabschnitt (10) erfasst.
5. Aufzugsvorrichtung nach Anspruch 1, wobei die Bremseinrichtung einen Zwangsbremsschalter
(26) aufweist, um die Steuerung der Bremskraft, die von dem Bremssteuerabschnitt (23)
ausgeführt wird, in Reaktion auf ein externes Signal außer Kraft zu setzen, um zwangsweise
eine Erzeugung einer Gesamtbremskraft zu verursachen.
1. Système d'ascenseur, comprenant :
une cabine (1) ; et
un dispositif formant frein destiné à stopper un déplacement de la cabine (1),
dans lequel
le dispositif formant frein présente :
une partie de commande de frein (23) destinée à commander une force de freinage produite
lors d'un freinage d'urgence afin d'adapter une décélération de la cabine (1) ; la
partie de commande de frein (23) estimant une décélération de la cabine (1) sur la
base d'informations d'estimation de décélération destinées à estimer la décélération
de la cabine (1), et commande une force électromagnétique produite par une bobine
de frein (18), les informations d'estimation de décélération étant des informations
issues d'un détecteur de rotation de machine de levage destiné à détecter une rotation
d'un moteur (6), d'un détecteur de position de cabine fourni sur un régulateur de
vitesse, d'un détecteur de rotation de poulie de renvoi destiné à détecter une rotation
d'une poulie de renvoi autour de laquelle un câble principal (3) forme une boucle,
d'un dispositif de pesée destiné à détecter une charge dans la cabine (1), d'un indicateur
de vitesse monté sur la cabine (1), d'un accéléromètre monté sur la cabine (1), ou
d'un indicateur de couple axial destiné à détecter un couple axial d'une poulie motrice
(5),
un commutateur de frein (22) commandé par la partie de commande de frein (23) ;
le commutateur de frein (22) étant un commutateur permettant à la quantité de courant
alimentant la bobine de frein (18) d'être adaptée ;
caractérisé en ce que le dispositif formant frein inclut en outre :
un corps de partie formant frein (9) présentant :
un patin de frein (15), sur lequel un induit (16) est monté, et qui vient en contact
et s'éloigne d'un corps rotatif de frein (7) qui est mis en rotation lorsque la cabine
(1) se déplace ;
un ressort de freinage (17) destiné à presser le patin de frein contre le corps rotatif
de frein (7) ; et
la bobine de frein (18) disposée en face de l'induit (16) et destinée à produire la
force électromagnétique pour ouvrir le patin de frein (15) en éloignement du corps
rotatif de frein (7) contre le ressort de freinage (17) ;
un commutateur de temporisateur (28) ; et
un circuit temporisateur (29) destiné à invalider la commande de la force de freinage
réalisée par la partie de commande de frein (23) en ouvrant le commutateur de temporisateur
(28) après un laps d'un temps prédéterminé à partir d'un moment où une commande de
freinage d'urgence est produite, dans lequel le commutateur de frein (22) et le commutateur
de temporisateur (28) sont connectés en série entre la bobine de frein (18) et une
alimentation en énergie,
et
le dispositif formant frein est configuré pour produire la force de freinage en ouvrant
au moins un du commutateur de frein (22) et du commutateur de temporisateur (28).
2. Système d'ascenseur selon la revendication 1, dans lequel :
la partie de commande de frein (23) commande la force électromagnétique produite par
la bobine de frein (18) au moment d'un freinage d'urgence ; et
le circuit temporisateur (29) coupe l'alimentation en énergie de la bobine de frein
(18) après le laps de temps prédéterminé à partir du moment où la commande de freinage
d'urgence est produite.
3. Système d'ascenseur selon la revendication 2, dans lequel le dispositif formant frein
présente en outre un limiteur de courant (27) destiné à limiter un courant circulant
à travers la bobine de frein (18).
4. Système d'ascenseur selon la revendication 1, comprenant en outre une partie de commande
de fonctionnement (10) destinée à commander le fonctionnement de la cabine (1), dans
lequel
la partie de commande de frein (23) détecte une décélération de la cabine (1) indépendamment
de la partie de commande de fonctionnement (10).
5. Système d'ascenseur selon la revendication 1, dans lequel le dispositif formant frein
présente un commutateur de freinage par la force (26) destiné à invalider la commande
de la force de freinage réalisée par la partie de commande de frein (23) en réponse
à un signal externe pour provoquer par la force la production d'une force de freinage
totale.