Technical field
[0001] The present invention relates to a method of manufacturing ferromagnetic particles
having excellent polymer coating showing good response sensitively to magnetic field,
to the polymer coated ferromagnetic particles, and to usage of the polymer coated
ferromagnetic particles.
Background Art
[0002] Materials showing ferromagnetic characteristics in bulk state such as ferrite materials
do not show ferromagnetic characteristics but show super-paramagnetic behavior when
the particle size is very small. Furthermore, when the particle size is equal to or
larger than a critical size, the materials show ferromagnetic behavior and apt to
form particle aggregates due to the magnetic attractive force between particles. When
aggregates are formed, the particles behave like particles with effectively larger
particle size, and are prone to yield particle dispersion instability in liquid. Then
various inconveniences for applying the particles occur. There are many efforts of
using the particles to applications avoiding aggregate formation by weakening the
cohesive force between the ferromagnetic particles applying various methods. The methods
of coating the ferromagnetic particles with polymer to provide steric hindrance to
cope with the attractive forces between the ferromagnetic particles, and methods of
providing electrostatic repulsive force between functional groups are examples of
the methods. The polymer coated ferromagnetic particles are widely used in many industrial
fields, for example as magnetic carrier of the toner for electro-photography, magnetic
colloid, magnetic ink, and magnetic paint can be cited. Furthermore, the particles
are widely used as raw materials of molded products, for example, as raw particles
for molded plastic magnets.
[0003] However, problems are pointed out to the existing polymer coated ferromagnetic particles
of relatively large particle sizes of micron meter order with large particle size
scattering. There were little or no methods for controlling polymer coating thickness
and shape, especially for particles having average diameter of 500 nm or less. Therefore,
a new technology that can attain the control has been desired. In biological science
and medical activity in recent years, polymer coated magnetic particles such as polymer
coated ferrite particles, are used as a carrier of a bio-separation, and a magnetic
marker for bio-molecules. In these applications also, a new method of obtaining thickness
and shape controlled coated particles having average diameter of 500 nm or less with
good particle diameter uniformity has been desired.
[0004] Inventors of the present invention developed bonded composite fine particles of polymer
particles and ferrite fine particles (Patent reference 1:
JP-A 2002-090366(KOKAI)), and also developed ferrite particles bonded with organic material in which
the organic material are directly bonded to the ferrite particles (Patent reference
2:
WO 03/066644 A1), and have shown there that these have desirable characteristics in usage of purification
and identification for the specific drug substances.
[0005] A research work related to the work is found for example in "Scientific and Clinical
Applications of Magnetic Carriers, Plenum Press 1997" (Non-patent reference 1), in
which polymer fine particles bonded to ferrite having magnetic response and their
application are described.
[0006] A patent publication for coating inorganic fine particles such as ferrite particles
with polymer and introducing functional groups that react with biological molecules
or chemical molecules on the polymer coats and applying the particles for detecting,
separating and refining specified bio-molecules using the specific interaction characteristics
of the molecules is found in
JP-A 2003-513093(KOKAI) (Patent reference 3).
[0007] When ferrite particles are applied as ferromagnetic particles of polymer coated ferromagnetic
particles, the particle diameter is desired to be at an extent of 100 nm or less than
100 nm for sustaining colloidal dispersed state in liquid. The particles, on the other
hand, are hoped to have magnetization sufficient to respond to handling using magnetic
field. For this purpose, the particle size is required not to be too small such that
the particles show very small magnetization per volume, for example the particle characteristics
designed to have average diameter of equal to or larger than 30 nm. The magnetization
decrease of ferrite particles due to their miniaturization involves nonmagnetic surface
layer. The fraction of the nonmagnetic surface layer increases when the diameter becomes
small and result in rapid decrease of magnetization. As the particle size become small,
the particles show single magnetic domain structure in the first place, and then fluctuation
of the magnetization direction due to thermal fluctuation effect occurs.
[0008] In each application of the polymer coated ferromagnetic particles, the surfaces of
the ferromagnetic particles are desired to be covered sufficiently with polymer. In
addition, the polymer coating is desired to form bonding between polymer and ferromagnetic
particles such as ferrite particles tight enough to avoid dissociation during use
of the particles.
[0009] Core ferromagnetic particles are desired to have large magnetization to obtain polymer
coated ferromagnetic particles with good response to magnetic field for handling.
However, the particles tend to flocculate strongly as a result of strong magnetic
interaction between particles when the ferromagnetic particles have large magnetization.
Therefore, it was difficult to obtain sufficiently dispersed fine polymer coated ferromagnetic
particles in which each particle is coated with polymer.
[0010] When the ferromagnetic particles are ferrite particles, the particle size is desirable
to be 20 nm or more, and is more desirable to be 30 nmor more for obtaining sufficient
magnetization. However, it is very difficult to disperse ferrite particles having
particle diameter of 30 nm or more, because the attractive force between the particles
is strong enough. Then it has been difficult to obtain sufficiently dispersed fine
ferrite particles in which each particle was coated with polymer. For this reason,
known polymer coated ferrite particles having an extent of diameters of about 10 nm
or less are limited to particles the type in which each aggregate of particles is
coated as a whole, and the type in which coated particles of very small diameter ferrite
particles with very weak magnetic aggregating force having very weak response to magnetic
field because the particles have very small magnetization.
[Patent reference 1] JP-A 2002-090366(KOKAI)
[Patent reference 2] WO 03/066644 A1
[Patent reference 3] JP-A 2003-513093(KOKAI)
[Non-patent reference 1] Scientific and Clinical Applications of Magnetic Carriers, Plenum Press 1997
Disclosure of the Invention
[0011] This invention presents manufacturing method for obtaining polymer coated ferromagnetic
particles having small particle size and showing good response to magnetic field,
solving the existing technical problem of dispersing and polymer coating ferromagnetic
particles having strong attractive force, and presents highly dispersed polymer coated
ferromagnetic particles showing good response to magnetic field.
[0012] The method of manufacturing polymer coated ferromagnetic particles of the present
invention comprises an emulsifying process of obtaining emulsified liquid by mixing
hydrophobic ferromagnetic particles having average diameter of 20 to 300 nm and monomer
liquid containing monomer and surface activating agent carrying nonionic hydrophilic
group with water and emulsifying, and emulsion polymerization process of conducting
emulsion polymerization adding initiator causing radical addition polymerization to
the emulsified liquid. To obtain the hydrophobic ferromagnetic particles in the present
invention of manufacturing polymer coated ferromagnetic particles, an hydrophobizing
process of adsorbing hydrophilic group of hydrophobizing agent having hydrophilic
group and hydrophobic group to the particles having hydrophobic character can further
be comprised.
[0013] As a result of concentrated research works of the the present invention, they attained
at the present invention finding that sufficiently dispersed polymer coated ferromagnetic
particles could be obtained by providing hydrophobic character to ferromagnetic particles
and the ferromagnetic particles having hydrophobic character were mixed in water and
emulsifying to obtain emulsion liquid with surface activating agent having nonionic
hydrophilic group and by emulsion polymerizing the emulsion liquid, even if the ferromagnetic
particles had average diameter of 20 nm or more and the particles have magnetic adhesive
force showing ferromagnetic characteristics. When the hydrophilic ferromagnetic particles
were ferrite particles, it was found that sufficiently dispersed polymer coated ferrite
particles can be obtained using this method, even if the ferromagnetic particles have
average particle diameter of 30 nm or more. When average diameter of the ferromagnetic
particles is larger than 300 nm, the character of the ferromagnetic particles at the
emulsifying process changes significantly. Therefore, it is found that the method
of this invention is suited to coating ferromagnetic particles having average particle
diameter of 300 nm or less. The monomer described above can be monomer in liquid state
in itself or monomer liquid as a solution of organic solvent. The monomer can also
be a monomer mix containing initiator and so on.
[0014] Nonionic surface activating agent can be used as the surface-activating agent in
the present invention. It is found that especially good result is obtained by using
nonionic surface activating agent and ionic activating agent in combination.
[0015] The polymer coated ferromagnetic particles of the present invention can be particles
having average diameter of from 25 to 400 nm, comprising hydrophilic ferrite particles
having average particle diameter of 20 to 300 nm, hydrophobizing agent having hydrophilic
group and hydrophobic group to provide hydrophobic characteristics to the ferrite
particles adsorbing to the ferrite particles through the hydrophilic group of the
agent, and polymer coat to adsorb to the hydrophobizing agent and coat the hydrophobized
ferrite particles.
[0016] Polymer coated ferromagnetic particles that are used in organic solvent according
to the present invention are polymer coated ferromagnetic particles durable to organic
solvent as explained above. The magnetic solid phase carrier particles for combinatorial
chemistry, the magnetic solid carrier particles for affinity chromatography of protein,
peptide, or nucleic acid, and magnetic solid phase carrier particles for chemical
synthesis of peptide or nucleic acid of the present invention are characterized by
using these polymer coated ferromagnetic particles.
[0017] The magnetic solid carrier particles for combinatorial chemistry, the magnetic carrier
particles for affinity chromatography, and the magnetic carrier particles for chemical
synthesis having such construction can have significant solvent durability resistive
to the dissolution to the solvents and resistive to the polymer desorption from the
particles keeping the polymer coating stable even if the particles are immersed into
organic solvents including methanol, ethanol, isopropanol, tetrahydrofuran, acetonitrile,
ethyl acetate, dioxane, N,N-dimethylformamide, dimethylsulf oxide, acetone, diethylether,
toluene, dicloromethane, chloroform and hexane. The particles can have an advantage
of using in organic solvent for magnetic separation since the particles having magnetization
are solvent resistive. The particles, therefore, can be used as carrier that can work
as stable and quick separation process of combinatorial chemistry, affinity chromatography
and chemical synthesis.
[0018] As a result of the present invention, a problem of difficulty for dispersing relatively
large size ferromagnetic particles having strong cohesive force is solved, and homogeneous
and stable polymer coating of ferromagnetic particles such as ferrite particles sufficiently
dispersed to monodispersed state or almost monodispersed state can be realized. The
particles can be used for various applications including bio-separation in fields
of bio-science and clinical medicine, since the polymer coated ferromagnetic particles
obtained applying the present invention can have very small particle diameter, can
have stable polymer coating and can show good magnetic field response. In each industrial
field, for example, significant characteristics increase in magnetic colloid, magnetic
ink and magnetic paint can be obtained due to the distinctive character showing good
response to magnetic field and stability.
Brief Description of Drawings
[0019]
[FIG. 1] FIG.1 shows a process flow of an embodiment for manufacturing polymer coated
ferromagnetic particles according to the present invention.
[FIG. 2] FIG.2 shows an embodiment of the emulsifying process shown in FIG.1 as a
flow.
[FIG. 3] FIG.3 shows an embodiment of the process for providing hydrophilic character
shown in FIG.2 as a flow.
[FIG. 4A] FIG. 4A is another embodiment of the emulsifying process shown in FIG.1
as a flow.
[FIG. 4B] FIG.4B is a yet other embodiment of the emulsifying process shown in FIG.1.
[FIG. 5] FIG.5 schematically shows an embodiment of the process for coating polymer
to ferromagnetic particles partially.
[FIG. 6] FIG. 6 schematically shows an embodiment of the process for coating polymer
to ferromagnetic particles partially.
[FIG.7] FIG. 7 schematically shows an embodiment of polymer coated ferromagnetic particles.
[FIG. 8 ] FIG. 8 shows an electron microscope photographs for an embodiment of polymer
coated ferromagnetic particles.
Description of Symbols
[0020] 100...hydrophobizing process, 110... ferromagnetic particles, 120...hydrophobizing
material, 130... hydrophobic ferromagnetic particles, 200... emulsifying process,
202... first hydrophilic ferromagnetic particles, 203... first process for providing
hydrophilic characteristics, 204... second hydrophilic ferromagnetic particles, 205...
the second process for providing hydrophilic characteristic, 210... process for providing
hydrophilic characteristics, 211... nonionic and ionic surface activating agent, 212...
hydrophilic ferromagnetic particles, 213... nonionic surface activating agent, 214...
ionic surface activating agent, 220...monomer adding and mixing process, 221... monomer
liquid, 222... monomer emulsifying process, 223... monomer emulsion liquid, 224...
mixing process, 230... hydrophobic initiator, 240... sonication, 250... water, 260...
emulsion liquid, 300... emulsion polymerization process, 310... water, 320... sonication,
330...heating, 340...hydrophilic initiator, 350...rinsing process, 360...polymer coated
ferrite particles, 360a...polymer coat, 710... epoxy group, 720...amino group, 730...
ethylene glycol glycidylether (EGDE).
Best Mode for Carrying out the Invention
[0021] Embodiments of the present invention will be explained specifically below with reference
to figures. The description given below shows as examples specific embodiments of
the present invention and the description does not limit the scope of the present
invention.
(1) Polymer coating process for ferromagnetic Particles
[0022] FIG.1 shows a process flow of an embodiment for manufacturing polymer coated ferromagnetic
particles. To begin with the hydrophobizing process 100 of FIG.1, the hydrophobic
ferromagnetic particles 130 are obtained adding hydrophobizing material 120 such as
aliphatic acid to adsorb to the ferromagnetic particles 110. At the emulsifying process
200, nonionic surface activating agent having nonionic hydrophilic group such as polyethylene
oxide (PEO) chain and ionic surface activating agent having cationic hydrophilic ion
group 211 such as primary amine or anionic group such as carboxyl group are mixed
with the hydrophobic ferromagnetic particles 130, and monomer liquid 221 containing
monomer carrying functional group having potential of radical addition polymerization
such as styrene and glycidyl metacrylate (GMA), for example, with organic solvent
as needed, is added with water 250 to the hydrophobic ferromagnetic particles. The
mixture is then emulsified and emulsion-polymerized. Especially good result is obtained
by controlling polymer-coating formation to the ferromagnetic particles of the emulsion
polymerization process. In the monomer liquid, hydrophobic initiator 230 such as azobisisobutylonitrile
(AIBN) is added as needed. To the monomer liquid 221, cross-linking agent such as
divinylbenzene for example is added as needed. Adequate quantity of water 250 is added
as needed. Emulsion liquid 260 is obtained mixing and emulsifying the mixture. For
the emulsification at the emulsification process 200, sonication 240 of giving ultra
sound vibration is proved useful.
[0023] At the next process of emulsion polymerization process 300, the emulsion liquid 260
after sonification is heated at temperature equal to or lower than 100°C, desirably
at 50 to 90°C, and more desirably at 6 to 80°C, and then hydrophilic initiator is
added to polymerize the monomer in the emulsion. In the emulsion polymerization process,
it is inferable that the polymerization of monomers proceeds various interactions
between monomers inside an emulsion particle, and outside the emulsion particle and
monomers between another emulsion particle. The length of the polymerization time
period can be set arbitrarily and it may proceed polymerization for about 24 hours.
[0024] After removing the surface activating agent by rinsing the polymerized emulsion particles,
polymer coated ferromagnetic particles can be obtained.
[0025] The emulsifying process 200 explained above and shown in FIG.1 can be proceeded dividing
so as to divide in two processes of process for providing hydrophilic character 210
and monomer adding and mixing process 220 to be processed sequentially.
[0026] At the process for providing hydrophilic character 210 shown in FIG.2,hydrophilicferromagnetic
particles 212 dispersion liquid is obtained by adding and adsorbing surf ace activating
agent 211 containing nonionic surface activating agent and ionic surface activating
agent to hydrophobic ferromagnetic particles 130 and further by dispersing, supplying
adequate quantity of water 250 as needed. The monomer adding and mixing process 220
can be constructed such that the emulsion liquid 260 is obtained by adding, mixing
and emulsifying the monomer liquid 221 explained above to the dispersion liquid of
hydrophilic ferromagnetic particles 212. In these processes, sonication 240 providing
ultrasonic vibration can be used.
[0027] In these way, polymer coated ferromagnetic particles with desirable polymer coating
formed at each particle of the hydrophobic ferromagnetic particles 130 can be obtained
as a result of polymerizing at the emulsion polymerization process the emulsified
emulsion liquid 260.
[0028] The process for providing hydrophilic character 210 shown in FIG.2 is desirable to
be divided to the two processes. The first process for providing hydrophilic character
203 is a process for obtaining the first hydrophilic ferromagnetic particles 202 adsorbing
nonionic surface activating agent 213 to the hydrophobic ferromagnetic particles 130.
The second process for providing hydrophilic character 205 is a process for obtaining
the second hydrophilic ferromagnetic particles 204 adsorbing ionic surface activating
agent 214 to the first hydrophilic ferromagnetic particles as shown in FIG.3.
[0029] In this way, dispersion degree of the ferromagnetic particle having hydrophilic character
can be increased and the highly dispersed state can be stabilized. Polymer coated
ferromagnetic particles having further desirable dispersion degree, and further good
polymer coating with sharp particle size distribution can be obtained by proceeding
the emulsion polymerization of the emulsion liquid 260 prepared using the ferromagnetic
particles having hydrophilic character.
[0030] The emulsifying process 200 shown in FIG.1 can have a constitution as shown in FIG.4A.
At the emulsifying process 200 shown in FIG.4A, the dispersion liquid of the ferromagnetic
particles having hydrophilic character 212 is obtained by providing hydrophilic character
to the hydrophobic ferromagnetic particles adding water solution of surface activating
agent 213 having nonionic hydrophilic group to hydrophobic ferromagnetic particles
130. At the monomer emulsifying process 222, on the other hand, monomer emulsion liquid
223 is obtained adding water solution of nonionic surface activating agent and ionic
surface activating agent 211 to the monomer liquid 221 and mixing and emulsifying
adding water 250 as needed. The process can be constructed such that the emulsion
liquid 260 is obtained by mixing the dispersion liquid of the ferromagnetic particles
having hydrophilic character 212 and the monomer emulsion liquid 223 at the mixing
process 224. In each of these emulsifying process, sonication 240 giving ultrasonic
vibration to liquid can be applied.
[0031] As a result of emulsion polymerizing the polymerized liquid 260 in this way, polymer
coated ferrite particles having desirable polymer coating to each of the hydrophobic
ferromagnetic particles 130 and having desirable dispersion characteristics can be
obtained.
[0032] As shown in FIG.4B, nonionic surface activating agent 213 is used similar to the
case for FIG.4A at the process for providing hydrophilic character 210 in the emulsifying
process 200 of providing hydrophilic character to the hydrophobic ferromagnetic particles
130. For emulsifying monomer liquid 221, on the other hand, the ionic surface activating
agent 214 can be used. In this way, as a result of emulsion polymerizing the polymerized
liquid 260, polymer coated ferrite particles having desirable polymer coating to each
of the hydrophobic ferromagnetic particles 130 and having desirable dispersion characteristics
can be obtained.
[0033] FIG.5 and FIG.6 are figures schematically showing an embodiment for polymer coating
to ferromagnetic particles.
[0034] Processing the hydrophilic ferromagnetic particles 110 shown (a) in FIG.5 with hydrophobizing
material 120 such as aliphatic acid as shown (b) in FIG. 5 to hydrophilic ferromagnetic
particles 110 shown (a) in FIG.5, hydrophobic ferromagnetic particles 130 hydrophobized
by using hydrophobizing material 120 are obtained.
[0035] Dispersion liquid in which hydrophilized ferromagnetic particles 202 are dispersed
in water as shown schematically (a) in FIG. 5 is obtained by immersing and dispersing
the hydrophobic ferromagnetic particles 130 in water solution of nonionic surface
activating agent 213.
[0036] As shown (c) in FIG.5, dispersion liquid of hydrophilic ferromagnetic particles dispersing
ferromagnetic particles having hydrophilic ferromagnetic character 202 and emulsion
liquid 221 shown (d) in FIG.5 are mixed, i.e., the emulsion liquid 221 prepared by
mixing monomer liquid having water as continuous phase using nonionic surface activating
agent 213 and ionic surface activating agent 214. The mixture is emulsified giving
ultrasonic vibration as sonication. The obtained emulsion is then heated up to 50
to 90°C, desirably to 60 to 80°C, and emulsion was polymerized adding and mixing initiator.
Then emulsion polymerized particles 300a shown schematically (e) in FIG.5 are obtained.
After removing nonionic surface activating agent 213 and ionic surface activating
agent 214 from the emulsion polymerized particles 300a by rinsing, polymer coated
ferromagnetic particles 360 coated with polymer coat 360a as shown schematically (f)
in FIG.5 are obtained. According to this procedure, polymer coated ferromagnetic particles
having desirable dispersibility, coating quality and sharp particle diameter distribution
can be obtained.
[0037] The emulsion polymerization can be performed using nonionic surface activating agent
solution 213 to obtain hydrophilic property of the hydrophobic ferromagnetic particles
130 at one hand as shown (a) in FIG.6, and using only surface activating agent 214
having hydrophilic group do obtain monomer emulsion liquid 221, at the other hand,
as shown (b)in FIG6. According to this procedure, polymer coated ferromagnetic particles
360 having desirable dispersibility, polymer coat 360a with desirable coating quality
and sharp particle diameter distribution can be obtained.
(2) Ferromagnetic Particles
[0038] As the ferromagnetic particles applied to these ferromagnetic particles, magnetite
(Fe
3O
4), maghemite (γ-Fe
2O
3), and particles having intermediate composition of these particles can be used. In
addition, ferrite particles in which the characteristics of the particle are controlled
adequately for each purpose replacing a part of Fe elements in magnetite particles
by other element such as Li, Mg, Mn, Co, Ni, Cu and Zn, can be used. For example,
larger magnetization can be obtained by replacing part of Fe in ferrite such as magnetite
by Mn or Zn. Further, metal particles having ferromagnetic characteristics such as
Fe, Co, and Ni can be applied instead of ferrite particles. Particles having larger
saturation magnetization per volume can be obtained by using metal alloys or inter-metallic
compounds. Inorganic ferromagnetic particles can be applied utilizing their advantageous
characteristics. It is essentially important to achieve resistance to corrosion for
applying these particles. When Fe particles are used, for example, the surfaces are
desirable to be covered with stable oxide such as magnetite. Polymer coating of these
Fe particles can be obtained using the method similar to the case for polymer coating
to magnetite particles.
[0039] For the purpose of handling polymer coated ferromagnetic particles easily using magnetic
field, the particles are desirable to show ferromagnetic character at temperature
at which the coated particles are used. When the ferromagnetic particles are ferrite
particles, for example, the particle average diameter of the ferrite particles is
desirable to be 30 nm or more. From the point of ensuring sufficient dispersion stability
of the ferrite particle dispersion liquid, however, the particle average diameter
of the ferrite particles is desirable to be 300 nm or less and more desirable to be
100 nm or less. The average diameter of ferrite particles in the present invention
described above is obtained calculating arithmetic average of the measured diameter
values of 500 particles obtained by use of transmission electron microscope photographs.
(3) Material for providing hydrophobic character
[0040] As the agent material for providing hydrophobic character to ferromagnetic particles
having hydrophilic character, materials adsorbing tightly at the surface of the ferromagnetic
particles and providing hydrophobic character to ferromagnetic particles with abrasion
resistive at treatments such as water treatment are desirable. Materials having hydrophilic
group such as carboxyl group and phosphoric group, such as aliphatic acid and phosphatide
showing tight adsorption character, for example, are desirable for this purpose. The
aliphatic acid can be adsorbed to ferromagnetic particles by contacting the aliphatic
acid water solution to the ferromagnetic particles and adjusting pH value of the solution.
[0041] The material for providing hydrophobic character is desirable to carry functional
group having capability of radical polymerization reaction. When the material for
providing hydrophobic character carries functional group having capability of radical
polymerization, co-polymerization between the material for providing hydrophobic character
and the monomer. Then sufficient and stable polymer coats can obtained that coat the
ferromagnetic particles. As the atomic groups having capability of radical polymerization,
atomic groups having double bond between carbon atoms at the terminal such as vinyl
group (CH
2=CH-), methacryl group (CH
2=C(CH
3)-CO-) can be cited.
[0042] When aliphatic acid carrying double bond between carbon atoms at the terminal of
hydrophobic group and carrying no other double bond between other carbon atoms is
applied as the material for providing hydrophobic character, the number of carbons
is desirable to be from 6 to 18. The number of carbons more desirable to be from 8
to 15, and further more desirable to be from 10 to 15. Of these the aliphatic acids,
10-undecenoic acid is one of the materials for providing hydrophobic character applied
in the present invention. When aliphatic acid carrying double bond between carbon
atoms at the terminal of hydrophobic group side and further carrying other double
bond between carbon atoms as the material for providing hydrophobic character to obtain
hydrophobic ferromagnetic particles, the number of carbons is desirable to be from
6 to 20, more desirable to be from 10 to 20, further desirable to be from 12 to 18.
[0043] The material for providing hydrophobic character applied in the present invention
is desirable to be material having atomic groups that form bond with hydroxyl group
at the surface of ferromagnetic particles. As such material, metal alkoxides such
as aluminum coupling agent, silane coupling agent and titanium coupling agent, acid
chloride, carboxylic acidanhydride, and organic compounds carrying isocyanate groups
can be cited.
[0044] These materials for providing hydrophobic character are also desirable to carry atomic
groups having capability of radical polymerization reaction with the radical polymerizing
monomers. As explained already, since the materials providing hydrophobic character
having functional group capable of radical polymerization reaction of the materials
for providing hydrophobic character provides desirable and stable polymer coating
to the ferromagnetic particles.
[0045] In recent years, methods of synthesizing ferrite particles in organic solvents, represented
by polyol reduction method and inverse micelle method, have been generally used as
described in
Sun S. et al. J. Am. Chem. Soc. (2004), 126(1); 273-279, and
Jongnam P et al. Nature Mater. (2004) 3 891-895. Ferrite particles using these methods show hydrophobic character having reactant
material adsorbed already at the surface of the ferrite particles after the synthesis
reaction. Of course the ferrite particles synthesized using these methods can be available
as the hydrophobic ferrite particles of the present invention.
(4) Surface activating agent
[0046] In the present invention, nonionic surface activating agent and ionic surface activating
agent can be used as the surface activating agent for providing hydrophilic character
by adsorbing the agent to hydrophobic ferromagnetic particles that are provided with
hydrophobic character for providing the agent, for emulsifying adding emulsifying
monomer liquid, and for polymerizing the emulsion. As the surface activating agent
for the purpose, adequate combination of nonionic surface activating agent and ionic
surface activating agent can be used. Instead of using the adequate combination of
nonionic surface activating agent and ionic surface activating agent, surface activating
agent having both nonionic functional group and ionic functional group in one molecule
of surface activating agent can be used.
[0047] As the nonionic surface activating agent having nonionic hydrophilic group used in
the present invention, various surface activating agent having polyethylene oxide
(PEO) chains, or the one having PEO chains with partially replaced by oxypropylene
or oxybutylene chains can be desirably applied. As the surface activating agents having
nonionic hydrophilic group, polyoxyethylene alkylether (product name: Emulgen (supplied
by Kao Co.) ) and nonylphenol polyethoxylate Trinton X-405 can be used.
[0048] These nonionic surface-activating agents can be used as water solution at a concentration
of 70%, for example. The quantity of addition is therefore desirable to be at the
rate of 0.012 g or more per 1 g of monomer. The quantity is more desirable to be at
the rate of 0.047 g or more per 1 g of monomer. Too much addition of surface activating
agent, however, is not desirable because polymer-coating formation becomes difficult.
Therefore, the quantity of addition thereof is desirable to be 0.23 g or less and
is more desirable to be 0.1 g or less per 1 g of monomer.
[0049] Of ionic surface activating agents, various surface activating agents having anionic
hydrophilic group such as sulfonic acid group, sulfuric acid group, phosphoric acid
group, or polyphosphoric acid group can be used in addition to the surface activating
agent having carboxyl group such as aliphatic acid. As surface activating agent having
carboxyl group, aliphatic acids carrying 11-15 carbons with straight chain alkyl group
can be desirably used. As surface activating agents having cationic hydrophilic atomic
group, various surface activating agents having amino group such as long chain primary
amine, secondary amine, various tertiary amine, and quaternary ammonium ion. Similarly,
surface activating agents having unsaturated bond in the alkyl chain can also be used
desirably. The hydrophobic group of the ionic surface activating agent is desirable
to be a long chain having prescribed length or more to maintain micelles of the emulsion
stable in the process of emulsion polymerization process. For example, the molecule
of linear chain type primary amine C
nH
2n+1NH
2 is desirable to have long chain of n being 10 or more, and the molecule is further
desirable to have chain of n being 11 or more. On the other hand, when n is too large,
the function as the agent for forming emulsion is not sufficient. Therefore, the n
value is desirable to be 17 or less, and the n value is more desirable to be 15 or
less, such as the molecule, for example, aminoundecane.
[0050] It is difficult to determine the quantity of adding the ionic surface-activating
agent, because the quantity depends on the purpose and the size of the polymer coated
ferromagnetic particles. Here, only outline of the desirable quantity is described.
An example of the desirable quantity is 1.5 µmol or more, and the more desirable quantity
is 6 µmol or more. On the other hand, the quantity of the ionic surface-activating
agent is desirable to be less than 50 µmol or equal to 50 µmol, and is more desirable
to be less than 16.5 µmol or equal to 16.5 µmol.
(5) Monomer and organic solvent for forming monomer solution
[0051] The most suitable monomer used for the present invention can be chosen from various
monomers carrying functional group having capability of radical polymerization reaction
on its purpose. As these monomers carrying functional group having capability of radical
polymerization reaction: aromatic vinyl compounds including styrene, α-methyl styrene,
o-vinyl toluene, m-vinyl toluene, p-vinyl toluene and divinyl benzene; unsaturated
carboxylic acids including (meta) acrylic acid and crotonic acid; (meta) acrylates
including methyl(meta) acrylate, ethyl(meta) acrylate, n-propyl (meta) acrylate, i-propyl
(meta) acrylate, n-butyl (meta) acrylate, t-butyl (meta) acrylate, n-hexyl (meta)
acrylate, 2-ethylhexyl(meta) acrylate, (poly)ethylene glycol di(meta)acrylate, (poly)
polypropyleneglycol di(meta)acrylate, trimethylol propane tri(meta)acrylate, glycidyl(meta)acrylate;
vinyl cyanide compounds including (meta) acrylonitrile, vinylidene cyanide;Vinyl halide
compounds including vinyl chloride, vinylidene chloride, vinyl floride, vinylidene
floride, tetra fluoroethylene can be cited. Of these monomers, aromatic vinyl compounds
and (meta) acrylates of these monomers can especially be used desirably. These monomers
can be used as one type or as mixture of plural types. At least one type of these
monomers used is desirable to have functional group that can bond to other material
placed at the polymer coated surf ace after polymer coating. When a combination of
styrene and glycidylmetacrylate (GMD) is used at the surface of the formed coating,
glycidyl group (epoxy group) can be placed at the surface of the coating, for example
and various compounds including biologically active substance through the functional
group.
[0052] Various organic solvents can be used as organic solvents for solving these monomers
to obtain monomer solution. For example, alkanes having 10-20 carbon atoms per molecule,
diethyl ether and so on can be used. Diethyl ether shows hydrophobic character due
to the two ethyl groups of the molecule, although the ether has hydrophilic ether
bond. Adding surface activating agent in water, emulsion particles of diethyl ether
can be obtained. So, the diethyl ether can desirably be used as organic solvent for
monomer solution liquid. The monomer for use can be solved into organic solvent in
a predetermined composition ratio and can be used as monomer mix adding hydrophobic
initiator to the solution as needed. Composition of the monomer mix can be controlled
such that desirable polymer coated ferromagnetic particles are formed by emulsion
polymerization.
(6) Initiator and cross linking agent
[0053] In order to carry out radical polymerization of the monomer, the emulsion of the
monomer mix is heated and hydrophilic initiator is added and mixed to the continuous
water phase of the emulsion. Hydrophobic initiator also can be used by adding and
mixing to the monomer.
[0054] As water solve hydrophilic initiators, peroxides including benzoyl peroxide, potassium
peroxodisulfate (KPS), and ammonium peroxodisulfate (APS); and water soluble azo compounds
including V-50 (product name, supplied by WAKO Co., (2,2'-Azobis(2-methylpropionamidine)
dihydrochloride, (2, 2'-Azobis(2-amidinopropane) dihydrochloride)) can be used. As
hydrophobic initiators, various azo-compounds such as azobisisobutyronitrile (AIBN)
can be used.
[0055] As other initiators, azo-compounds including VA-080 (product name, by WAKO Co.,
(2,2'-Azobis{2-methyl-N-[1,1-bis(hydroxymethyl)-2-hydroxyeth yl] propionamide) , VA-085
(product name, by WAKO Co.,
(2,2'-Azobis{2-methyl-N-[2-(1-hydroxybuthyl)]-propionamide}), VA-086 (product name,
by WAKO Co.,
(2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)-propionamide]), VA-057 (product name, by
WAKO Co., (2,2'-Azobis (N-(2-carboxyethyl) -2-methyl-propionamidine,
(2,2'-Azobis{2-[N-(2-carboxyethyl) amidino]propane}), V-501 (product name, by WAKO
Co., (4,4'-Azobis(4-cyanovaleric acid),
(4,4'-Azobis(4-cyanopentanoic acid)), VPE-0201 (product name, by WAKO Co. ), and VPE-0601
(product name, by WAKO Co.) can be used.
[0056] As cross-linking agent, at least either one of cross-linking agents including divinyl
benzene, triarylamine, 1,3,5-triacryloil-hexahydro-s-triazine, trimecin acid triaryl,
and ethyleneglycol dimethaclilate can be used.
(7) Polymer coated ferromagnetic particles
[0057] Several examples of the polymer coated ferromagnetic particles obtained in these
procedures are explained.
[0058] FIG. 7 illustrates schematically an embodiment of the polymer coated ferromagnetic
particles according to the present invention. The (a) of FIG. 7 is a figure showing
the polymer coated ferromagnetic particles 360a, monomer forming coating and polymerizing
ferromagnetic particles 110 through material providing hydrophobic character adsorbed
to the hydrophilic ferromagnetic particles.
[0059] The (b) of FIG.7 shows 10-undecenoic acid adsorbed to the hydrophilic ferromagnetic
particles 110 and co-polymerized with styrene and glycidyl metacrylate coating the
hydrophilic ferromagnetic particles 110. At the surface of the coated particles, many
terminals of epoxy group 710 are placed. Actually, many terminals of epoxy group 710
are existed on the surface of each particle, schematically only one terminal is shown
for simplicity. The (c) of FIG.7 shows one of the particles opening the glycidyl group
(epoxy group) and providing hydroxy group terminals and amino group 720 terminals
by treating the particles shown (b) in FIG.7 with ammonium. The (d) of FIG.7 shows
the particles providing spacer 730 by bonding monoethylene glycol glycidylether or
polyethylene glycol glycidylether (EGDE) molecule to the amino group 720 shown (c)
in FIG. 7. The particles can be applied as carrier of affinity chromatography. Providing
epoxy group 710 at the top end of the spacers 730 that bond biological molecules,The
particles can easily bond variousmoleculesavoiding steric hinderance.
[0060] When the particles of the polymer coated ferromagnetic particles are ferrite particles,
the particle can be used for various applications by choosing the diameter size of
within 25-400 nm because the magnetization can be obtained at suitable values for
handling using magnetic field. For use as media for performing magnetic separation
of biological molecules, for example, it is desirable that the average ferrite particle
diameter of 30-100 nm and the average polymer coated particle diameter of 35-150 nm
with weight ratio of the magnetic particles to 1/10 or more, and more desirable to
be 1/4 or more to ensure magnetic attractive force of the particles. These polymer
coated ferromagnetic particles are desirable to have uniformity in their particle
sizes. When the particle size uniformity are lost, measurement results using the particles
loose their reproducibility. For this reason, standard deviation of the particle distribution
is desirable to be no more than 50 percent of the average particle diameter and more
desirable to be no more than 10 per cent. The average diameter is arithmetic average
diameter averaged to number of the particles.
[0061] The organic solvent durability of the polymer coating can be increased by cross-linking
the polymer using cross-linking agent. The organic solvent durability can be increased
further by applying the EGDE modification to the polymer coating.
[0062] These particles according to the present invention can be used as media for magnetic
handling in biological science application, medical applications and various industrial
application, because each particle of these polymer coated ferromagnetic particles
can be separated each other having uniform particle size and shows desirable response
to magnetic field. Many applications of the particles making best use of the particle
characteristics of the particles are expected such as magnetic colloid application
showing excellent magnetic field response and stability compared with magnetic colloids
using known polymer coated ferromagnetic particles.
[0063] It is found that the polymer coated ferromagnetic particles according to the present
invention can be fine particles with excellent organic solvent durability. The polymer
coating can be not solved by organic solvents and can keep their shapes even if the
particles are immersed in organic solvents. The solvent durability can increase by
cross-linking the polymer. Increase of the organic solvent durability can also be
obtained by providing spacer such as EGDE.
[0064] The polymer coated ferromagnetic particles having such constitution can be used for
various applications such as carrier particles of affinity chromatography for chemical
materials including proteins, peptides, nucleic acid and drugs, magnetic solid phase
magnetic carrier particles for combinatorial chemistry, as the magnetic solid carrier
particles for affinity chromatography, and as magnetic solid phase carrier particles
for chemical synthesis of peptide or nucleic acid. For example when the particles
are used as magnetic carrier of affinity chromatography, the availability of the particles
in organic solvent allows bonding water insoluble compounds to the coating of the
ferromagnetic particles quantitatively as ligands in organic solvent.
[0065] As a method for detecting biological molecules including nucleic acids, methods using
a magnetic sensor are known. As the magnetic sensors, giant magnetoresistance effect
device (GMR), tunnel magnetoresistance effect device (TMR), hall sensor, and SQUID
type flux meter are cited. Bio-molecules are fixed on the device and are also fixed
on he magnetic particles. A magnetic signal can be obtained only when there are interactions
between these bio-molecules. The polymer coated ferromagnetic particles according
to the present invention can be spherical particles with narrow particle size distribution.
Since the particles can be homogeneous and each particle can carry similar number
of ferromagnetic particles, the particles are useful as an excellent magnetic marker
to bio-molecules of a magnetic sensor system.
[Example 1]
[0066] 100 µl of 10-undecenoic acid is added to 150 mg of ferromagnetic ferrite particles
having average particle diameter of 40 nm obtained by precipitating from water solution
and the 10-undecenoic acid was adsorbed in saturation to the ferromagnetic particles.
Remained 10-undecenoic acid that did not adsorbed to the particles was eliminated
by rinsing. Then hydrophobic ferromagnetic particles were obtained.
[0067] Nonionic surface activating agent water solution containing 0.3 g of Emulgen 1150S-70
(produced by KAO Co.) having chemical formula 1 and carrying PEO chain was added to
the hydrophobic ferromagnetic particles and adsorbed the nonionic surface activating
agent to the ferromagnetic particles having hydrophilic character, and ultrasonic
vibration was applied as sonication. Then colloidal water liquid of ferrite particles
having hydrophilic character was obtained.

[0068] The water solution dissolving 10 µl of ionic surface activating agent aminoundecane
solved in 56 µl of 1 M HCl was added to the colloidal water liquid of ferrite particles
having hydrophilic character. Then a state of coexisting nonionic surface activating
agent and ionic surface activating agent at the surface of ferrite particle colloid
having hydrophilic character was established.
[0069] Then emulsion liquid was obtained by adding monomer mix containing 2.7 g of styrene
(monomer), 0.3 g of GMA (glycidyl metacrylate, monomer), 0.025 g of AIBN (azobisisobutylonitrile,
initiator), 0.08 g of DVB (divinylbenzene, cross linking agent) and 2.5 g of diethylether
to the colloidal liquid and applying ultrasonic vibration as sonication.
[0070] Then water was added to the emulsion liquid such that the total liquid quantity of
125 g and applied ultrasonic vibration of sonication. The liquid was then heated under
mixing at rotation speed of 350 rpm. When the temperature of the liquid attained at
70°C about 20-30 minutes after beginning of the heating, water soluble initiator V-50
(product of WAKO PURE CHEMICAL Co.) was added and polymerization reaction was proceeded
for 12 hours.
[0071] Polymer coated ferrite particles were obtained after rinsing the emulsion polymerized
particles. As a result of electron microscope observation using a transmission electron
microscope, the obtained polymer coated ferrite particles were monodispersed particles
carrying 1-3 ferrite particles inside each particle having average particle diameter
of 163 nm with the diameter standard deviation of 20 nm.
[0072] FIG.8 shows an example of electron microscope photographs for the prepared polymer
coated ferrite particles using this preparation method.
[0073] The polymer coated ferrite particles showed strong magnetization and the particles
could be easily attracted by magnetic field gradient caused by using magnet and so
on.
[Example 2]
[0074] Polymer coated ferrite particles were obtained by using the process described in
the Example 1, except replacing nonionic surface activating agent by 0.3 g of Triton
X-405 given by [Chemical equation 2] having PEO chain, replacing the ionic surface
activating agent by 10 µl of 10-undecenoic acid dissolved in 56 µl of 1 M NaOH solution,
and replacing the water soluble initiator by 25 mg of KPS.

[0075] As a result of observing the obtained polymer coated ferrite particles using the
transmission electron microscope, it was found that the particles were monodispersed
particles carrying 1-3 ferrite particles inside each particle and having average particle
diameter of 125 nm.
[Example 3]
[0076] Polymer coated ferrite particles were obtained using the process condition described
in the Example 1, except changing the quantity of V-50 addition to 100 mg. As a result
of observing the obtained polymer coated ferrite particles using the transmission
electron microscope, it was found that the particles were monodispersed particles
carrying 1-5 ferrite particles inside each particle having average particle diameter
of 153 nm with the diameter standard deviation of 22 nm.
[Example 4]
[0077] Polymer coated ferrite particles were obtained using the process condition described
in the Example 3, except changing the quantity of nonionic surface activating agent
Emulgen 1150S-70 addition to 0.5 g. As a result of observing the obtained polymer
coated ferrite particles using the transmission electron microscope, it was found
that the particles were monodispersed particles carrying 1-4 ferrite particles inside
each particle having average particle diameter of 90 nm with the diameter standard
deviation of 22 nm.
[Example 5]
[0078] Polymer coated ferrite particles were obtained using the same composition and process
condition described in the Example 1, except replacing the ferrite particles by ferrite
particles having average diameter of 70 nm. As a result of transmission electron microscope
observation for the obtained polymer coated ferrite particles, it was found that the
particles were monodispersed particles carrying 1-3 ferrite particles inside each
particle having average particle diameter of 200 nm with the diameter standard deviation
of 30 nm.
[Example 6]
[0079] Polymer coated ferrite particles were obtained by using the same composition and
process condition described in the Example 1, except using processes of obtaining
emulsion liquid having water as continuous phase of: obtaining ferrite particle water
dispersion by dispersing ferrite particles having hydrophobic character using 0.2
g of nonionic surface activating agent Emulgen 1150S-70; obtaining emulsion liquid
mixing the monomer mix containing monomer, organic solvent, initiator, and cross linker
agent dissolving 10 µl aminoundecane as surface activating agent dissolved in 56 µl
of 1 M HCl solution and adding 0.1 g of nonionic surface activating agent Emulgen
1150S-70 applying ultrasonic vibration of sonication; and mixing the ferrite particle
water dispersion and the emulsion liquid.
[0080] As a result of transmission electron microscope observation for the obtained polymer
coated ferrite particles, it was found that the particles were monodispersed particles
carrying 1-5 ferrite particles inside each particle having average particle diameter
of 175 nm with the diameter standard deviation of 12 nm.
[Example 7]
[0081] Polymer coated ferrite particles were obtained using the same composition and process
condition described in the Example 1, except using processes of forming emulsion liquid
having water as continuous phase of: obtaining ferrite particle water dispersion prepared
by dispersing ferrite particles having hydrophobic character using 0.3 g of nonionic
surface activating agent Emulgen 1150S-70; obtaining monomer liquid obtained by dissolving
10 µl aminoundecane dissolved in 56 µl of 1 M HCl solution to polymer mix containing
monomer,organicsolvent,initiator and cross linker agent, mixing with water and giving
ultrasonic vibration as sonication; and mixing the ferrite particle water dispersion
and the monomer liquid.
[0082] As a result of transmission electron microscope observation for the obtained polymer
coated ferrite particles, it was found that the particles were monodispersed particles
carrying 1-3 ferrite particles inside each particle having average particle diameter
of 120 nm with the diameter standard deviation of 12 nm.
[0083] The conditions and results of the Examples 1-7 are shown in Table 1 and Table 2.
[Table 1]
|
Example 1 |
Example 2 |
Example 3 |
Ferrite particles |
Average diameter (nm) |
40 |
40 |
40 |
Standard deviation (nm) |
10 |
10 |
10 |
Hydrophobizing agent |
10-undecenoic acid |
10-undecenoic acid |
10-undecenoic acid |
Surface activating agent (SA) |
|
|
|
Nonionic |
Emulgen 1150S-70 |
Triton X-405 |
Emulgen 1150S-70 |
(KAO Co.) 0.3 g |
(Sigma Co.) 0.3 g |
(KAO Co.) 0.3 g |
Ionic |
Aminoundecane |
10-undecenoic acid |
Aminoundecane |
|
10 µl 1M HCl 56 µl |
10 µl 1M NaOH 56 µl |
10 µl 1M HCl 56 µl |
Monomer mix |
Styrene 2.7 g |
Styrene 2.7 g |
Styrene 2.7 g |
GMA 0.3 g, |
GMA 0.3 g, |
GMA 0.3 g, |
Diethylether 2.5 g |
Diethylether 2.5 g |
Diethylether 2.5 g |
AIBN 0.025 g |
Cross linking agent |
Cross linking agent |
Cross linking agent |
Divinylbenzene 0.08 g |
Divinylbenzene 0.08 g |
Divinylbenzene 0.08 g |
|
|
Emulsifying process |
1st hydrophilic -> 2nd hydrophilic -> -> Mix. monomer |
1st hydrophilic -> 2nd hydrophilic -> -> Mix. monomer |
1st hydrophlic -> 2nd hydrophlic -> -> Mix. Monomer |
Hydrophilic initiator |
V50 50mg/5ml |
KPS 25mg |
V50 100mg |
Polymer coated ferrite particles |
Average diameter (nm) |
163 |
125 |
153 |
Standard deviation (nm) |
20 |
15 |
22 |
Number of particles |
1-3 |
1-3 |
1-5 |
Magnetic property |
Magnetic field |
Magnetic field |
Magnetic field |
|
response: good |
response: good |
response: good |
[Table 2]
|
Example 4 |
Example 5 |
Example 6 |
Example 7 |
Ferrite Particles |
Average diameter(nm) |
40 |
70 |
40 |
40 |
Standard deviation(nm) |
10 |
20 |
15 |
15 |
Hydrophobizing agent |
10-undecenoic acid |
10-undecenoic acid |
10-undecenoic acid |
10-undecenoic acid |
Surf. Activ. Agent. (SA) |
|
|
|
|
Nonionic |
Emulgen 1150S-70 |
Emulgen 1150S-70 |
Emulgen 1150S-70 |
Emulgen 1150S-70 |
|
(KAO Co.) 0.5 g |
(KAO Co.) 0.3 g |
(KAO Co.) 0.3 g |
(KAO Co.) 0.3 g |
Ionic |
Aminoundecane |
10-undecenoic acid |
Aminoundecane |
Aminoundecane |
|
10 µl 1M HCl 56 µl |
10 µl 1M HCl 56 µl |
10 µl 1M HCl 56 µl |
10 µl 1M HCl 56 µl |
Monomer mix |
Styrene 2.7 g |
Styrene 2.7 g |
Styrene 2.7 g |
Styrene 2.7 g |
GMA 0.3 g, |
GMA 0.3 g, |
GMA 0.3 g, |
GMA 0.3 g, |
Diethylether 2.5g |
Diethylether 2.5 g |
Diethylether 2.5g |
Diethylether 2.5g |
AIBN 0.025 g |
Cross linking agent |
AIBN 0.025 g |
AIBN 0.025 g |
Cross linking agent Divinylbenzene0.08g |
Divinylbenzene0.08g |
Crosss linking agent Divinylbenzene0.08g |
Cross linking agent Divinylbenzene0.08g |
Emulsifying process |
1st hydrophilic -> 2nd hydrophilic -> -> Mix. Monomer |
1st hydrophilic -> 2nd hydrophilic -> -> Mix. monomer |
Mixing: Ferrite dispersion. with nonionic SA and monomer with nonionic and ionic SA |
Mixing Ferrite dispersion. with nonionic SA and monomer with ionic SA |
Hydrophilic initiator |
V50 100mg |
V50 50mg/5ml |
V50 50mg/5ml |
V50 50mg/5ml |
Polymer coated Ferrite particles |
Average diameter( nm ) |
90 |
200 |
175 |
120 |
Standard deviation (nm) |
22 |
30 |
12 |
10 |
Number of particles |
1-4 |
1-3 |
1-5 |
1-3 |
Mag. property |
Mag. field response: good |
Mag. field response: good |
Mag. field response: good |
Mag. Field response: good |
[Example 8]
[0084] Organic solvent durability test was performed for the polymer coated ferrite particles
of the Example 1. Particles are examined after the test condition of immersing in
solvent for 12 hours. As the result, the polymer coatings after immersion were maintained
for organic solvents of methanol, ethanol, isopropanol, tetrahydrofuran, acetonitrile,
acetic ether, dioxane, N, N-dimethylformamide, dimethylsulfoxide, acetone, diethylether,
toluene, dichloromethane, chloroform and hexane, and durability to these organic solvents
was proved.
[Example 9]
[0085] Modification of bonding EGDEs as spacers for the polymer coated ferrite particles
manufactured in the Example 1 was performed.
[0086] First of all, epoxy groups of GMAs were reacted adding NH
4OH solution and adjusting pH using HCl solution. Then the epoxy groups of GMAs were
opened.
[0087] Excess EGDE molecules were supplied to the amino groups appeared as a result of opening
to the polymer coated ferrite particles and stirred adjusting pH with NaOH water solution,
and combined a epoxy group of a EGDE molecule to a amino group of the polymer coated
ferrite particles. Supplying EGDE molecules in excess, bonding formation of epoxy
groups at both sides of an EGDE molecule with amino groups of polymer coated ferrite
particles was avoided. After the bonding reaction, the particles were rinsed with
water applying handling technique of magnetic separation. Then modified polymer coated
ferrite particles having EGDE spacers were obtained.
[0088] Organic solvent durability test was performed to the polymer coated ferrite particles
having EGDE modification. The test condition is the same as explained in the Example
7 of immersing for 12 hours in each solvent. As the result, the polymer coatings after
immersion were maintained for organic solvents of methanol, dioxane, DMF (dimethylformamide)
and DMSO (dimethylsulfoxide), and durability of the particles to these organic solvents
was proved.
[0089] Furthermore, organic solvent durability tests of the EGDE modified polymer coated
ferrite particles were conducted for solvents of diethylether, acetone, toluene, chloroform
and hexane respectively under the same condition as explained above. As the result,
the polymer coatings after immersion were maintained for each of these organic solvents,
and durability to these organic solvents was also proved.
(Comparative example 1)
[0090] Preparation of polymer coated ferrite particles were tried using the process described
in the Example 6, except using only 0.3 g of water solution of nonionic surface activating
agent Emulgen 1150S-70 (produced by KAO Co.), and not using ionic surface activating
agent. However, the obtained polymer coated ferrite particles were polydisperse particles
lacking homogeneity. It was shown that this condition of Comparable example 1 is insufficient
to form homogeneous monodisperse polymer coated ferrite particles.
(Comparative example 2)
[0091] Preparation of polymer coated ferrite particles were tried using the process described
in the Example 6, except adding only 20 ml (1%) of ionic surface activating agent
dodecyl sodium sulfate and not using nonionic surface activating agent. However, polymer
coated ferrite particles were not formed. Then it was found that this condition of
Comparable example 2 of using only ionic surface activating agent, and not using nonionic
surface activating agent was insufficient for forming polymer coated ferrite particles.
(Comparative example 3)
[0092] Preparation of polymer coated ferrite particles were tried using ferrite particles
without providing hydrophobic character instead of the ferrite particles provided
with hydrophilic character, and other composition and condition were the same as described
in the Example 6. It was shown that this case of Comparative example 3 using ferrite
particles without providing hydrophobic character, the condition is insufficient for
realizing emulsion polymerization.
Industrial availability
[0093] According to the present invention, polymer coated ferromagnetic particles with very
small diameter, having desirable polymer coating with sufficient magnetization for
handling the particles using magnetic field can be obtained. Due to these features,
the polymer coated ferromagnetic particles can be used for separating biological materials
magnetically, for carriers bonding and carrying drugs to the polymer coated ferrite
particles and for magnetic markers. Furthermore, wide variety of applications in industrial
fields can be expected making use of these distinguishing properties.
1. A method of manufacturing polymer coated ferromagnetic particles comprising:
an emulsifying process of obtaining emulsified liquid by mixing hydrophobic ferromagnetic
particles having average diameter of 20 to 300 nm and monomer liquid containing monomer
containing surface activating agent carrying nonionic hydrophilic group with water
and emulsifying; and
emulsion-polymerization process of conducting emulsion polymerization adding initiator
causing radical addition polymerization.
2. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, further comprising a hydrophobizing process of obtaining the hydrophobic ferromagnetic
particles with average diameter of 20-300 nm by adsorbing hydrophobizing agent having
hydrophilic group and hydrophobic group to the ferromagnetic particles through the
hydrophilic group.
3. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
2, wherein the agent providing hydrophobic character carries hydrophobic group having
capability of performing addition polymerization.
4. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
3, wherein the hydrophobizing agent is aliphatic acid.
5. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
4, wherein the aliphatic acid is 10-undecenoic acid.
6. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, wherein the surface activating agent carrying nonionic hydrophilic group contains
surface activating agent carrying ionic hydrophilic group.
7. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, wherein the monomer carries a functional group having capability of performing
radical addition polymerization.
8. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
7, wherein the monomer is at least one selected from the group consisting of glycidylmethacrylate
and styrene.
9. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, wherein the hydrophobic ferromagnetic particles are obtained by hydrophobizing
ferrite particles.
10. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
9, wherein the average diameter of the ferrite particles is 30 to 100 nm.
11. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, wherein the ferromagnetic particles are obtained by hydrophobizing one kind of
particles selected from the group consisting of metal particles and inorganic compound
particles.
12. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, wherein the emulsifying process comprises: a process for providing hydrophilic
character of obtaining dispersion liquid of the ferromagnetic particles having hydrophilic
character by adding and adsorbing the nonionic surface activating agent and ionic
surface activating agent to the ferromagnetic particles having hydrophobic character
and dispersing in water; and a process for adding monomer and mixing of obtaining
emulsion liquid by adding monomer liquid to the dispersion liquid of the ferromagnetic
particles having hydrophilic character and mixing.
13. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
12, wherein the process for providing hydrophilic character comprises: a first process
for providing hydrophilic character of obtaining first dispersion liquid of the ferromagnetic
particles having hydrophilic character by adsorbing nonionic surface activating agent
to the hydrophobic ferromagnetic particles and dispersing in water; and a second process
for providing hydrophilic character of obtaining dispersion liquid of second ferromagnetic
particles having hydrophilic character by adsorbing ionic surface activating agent
to first dispersion liquid of the ferromagnetic particles having hydrophilic character
and dispersing in water.
14. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, wherein the emulsifying process comprises: a process for providing hydrophilic
character of obtaining dispersion liquid of the hydrophilic ferromagnetic particles
by adding and adsorbing nonionic surface activating agent and ionic surface activating
agent to the hydrophobic ferromagnetic particles and dispersing in water; a monomer
emulsifying process of obtaining monomer emulsion liquid by mixing liquid of monomer
carrying a functional group having capability of performing radical addition polymerization,
nonionic surface activating agent and ionic surface activating agent with water; and
a mixing process of mixing the dispersion liquid of mixing the hydrophobic ferromagnetic
particles and the monomer emulsion liquid.
15. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, wherein the emulsifying process comprises; a process for providing hydrophilic
character of obtaining dispersion liquid of the hydrophilic ferromagnetic particles
by adding and adsorbing nonionic surface activating agent to the hydrophobic ferromagnetic
particles and dispersing in water, a monomer emulsifying process of obtaining monomer
emulsion liquid by mixing liquid of monomer carrying a functional group having capability
of performing radical addition polymerization and ionic surface activating agent with
water, and a mixing process of mixing the dispersion liquid of the hydrophobic ferromagnetic
particles and the monomer emulsion liquid.
16. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, wherein the monomer liquid comprises diethyl ether.
17. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, wherein the nonionic surface-activating agent comprises hydrophilic group of polyethylene
chain or polyoxyethylene chain replaced in part by at least one selected from the
group consisting of oxypropylene and oxybutylene.
18. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, wherein the ionic surface-activating agent carries carboxyl group as the hydrophilic
group.
19. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
18, wherein the surface activating agent carrying carboxyl group has linear chain
with 11 to 15 carbons.
20. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1, wherein the ionic surface-activating agent carries primary amine as hydrophilic
group.
21. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
20, wherein the ionic surface-activating agent comprising primary amine carries linear
carbon chain with 11 to 15 carbons.
22. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
1 further comprising a process of cross-linking adding cross-linking agent in the
monomer liquid in addition to the emulsion polymerization.
23. The method of manufacturing polymer coated ferromagnetic particles as claimed in claim
22, wherein the cross-linking agent is at least one selected from the group consisting
of divinylbenzene, triarylamine, 1,3,5-triacryloil hexahydro-s-triazine, trimecin
acid triaryl, and ethyleneglycol dimethaclilate.
24. Polymer coated ferromagnetic particles manufactured by a method of manufacturing polymer
coated ferromagnetic particles, comprising: an emulsifying process of obtaining emulsified
liquid by mixing monomer liquid containing monomer containing surface activating agent
carrying nonmagnetic hydrophilic group and hydrophobic ferromagnetic particles having
average diameter of 20 to 300 nm and emulsifying with water; and emulsion polymerization
process of conducting emulsion polymerization adding initiator causing radical addition
polymerization.
25. The polymer coated ferromagnetic particles as claimed in claim 24 used as a magnetic
marker of a bio-magnetic sensor detecting reaction between biological molecules.
26. Polymer coated ferromagnetic particles having average particle diameter of 25 to 400
nm, comprising hydrophobic ferromagnetic particles having average particle diameter
of 20 to 300 nm; and polymer coating the hydrophobic ferromagnetic particles.
27. The polymer coated ferromagnetic particles as claimed in claim 26, wherein the hydrophobic
ferromagnetic particles is ferrite particles having hydrophobic character and average
particle diameter of 30 to 100 nm.
28. The polymer coated ferromagnetic particles as claimed in claim 26, wherein the particles
comprise hydrophobizing agent carrying functional group having capability of co-polymerizing
with monomer and forming part of the polymer.
29. The polymer coated ferromagnetic particles as claimed in claim 26, wherein primary
component of the ferromagnetic particles are at least one kind of ferrite particles
selected from the group consisting of Fe3O4, γ-Fe2O3, and intermediate between Fe3O4 and γ-Fe2O3.
30. The polymer coated ferromagnetic particles as claimed in claim 26, wherein each of
the polymer coated ferromagnetic particles has one ferrite particle.
31. The polymer coated ferromagnetic particles as claimed in claim 26, wherein standard
deviation of particle diameter distribution of the polymer coated ferromagnetic particles
is 50 percent or less of average diameter of the ferromagnetic particles.
32. The polymer coated ferromagnetic particles as claimed in claim 26, wherein standard
deviation of particle diameter distribution of the polymer coated ferromagnetic particles
is 10 percent or less of average diameter of the ferromagnetic particles.
33. Polymer coated ferromagnetic particles having organic solvent durability with average
particle diameter of 25 to 400 nm comprising: hydrophobic ferromagnetic particles
having average particle diameter of 20 to 300 nm; and organic solvent durable polymer
coating each of the hydrophobic ferromagnetic particles.
34. The polymer coated ferromagnetic particles as claimed in claim 33, wherein organic
solvent durability of the polymer coating is increased by comprising cross-linking.
35. The polymer coated ferromagnetic particles as claimed in claim 33, wherein the polymer
coated ferromagnetic particles are used in at least one selected from the group consisting
of methanol, ethanol, isopropanol, tetrahydrofuran, acetoanylyl, ethyl acetate, dioxane,
N,N-dimethylformamide, dimethylsulf oxide, diethylsulfoxide, acetone, diethylether,
toluene, dicloromethane, chloroform and hexane.
36. The polymer coated ferromagnetic particles as claimed in claim 33, wherein the polymer
coating have increased organic solvent durability by comprising surface modification.
37. Magnetic solid phase carrier for combinatorial chemistry using organic solvent durable
polymer coated ferromagnetic particles having average particle diameter of 25 to 400
nm, comprising: hydrophobic ferromagnetic particles having average particle diameter
of 20 to 300 nm, and polymer coats coating each of the hydrophobic ferromagnetic particles.
38. Magnetic solid phase carrier for affinity chromatography using organic solvent durable
polymer coated ferromagnetic particles having average particle diameter of 25 to 400
nm, comprising: hydrophobic ferromagnetic particles having average particle diameter
of 20 to 300 nm, and polymer coats coating each of the hydrophobic ferromagnetic particles.
39. Magnetic solid phase carrier for chemically synthesizing peptide or nucleotide using
organic solvent durable polymer coated ferromagnetic particles having average particle
diameter of 25 to 400 nm, comprising: hydrophobic ferromagnetic particles having average
particle diameter of 20 to 300 nm, and polymer coats coating each of the hydrophobic
ferromagnetic particles.