(19)
(11) EP 2 000 642 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
10.12.2008  Patentblatt  2008/50

(21) Anmeldenummer: 08157030.1

(22) Anmeldetag:  28.05.2008
(51) Internationale Patentklassifikation (IPC): 
F01N 3/28(2006.01)
B01J 35/04(2006.01)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL BA MK RS

(30) Priorität: 06.06.2007 DE 102007026810

(71) Anmelder: J. Eberspächer GmbH & Co. KG
73730 Esslingen (DE)

(72) Erfinder:
  • WIRTH, Georg
    73230, Kirchheim/Teck (DE)

(74) Vertreter: Bongen, Renaud & Partner 
Rechtsanwälte Notare Patentanwälte Königstrasse 28
70173 Stuttgart
70173 Stuttgart (DE)

   


(54) Herstellungsverfahren für Abgasbehandlungseinrichtungen, wie z.B. Abgaskatalysatoren und Partikelfilter


(57) Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen einer Abgasbehandlungseinrichtung (1), die in einem rohrförmigen Gehäuse (4) wenigstens einen Abgasbehandlungseinsatz (2) enthält, insbesondere für eine Abgasanlage einer Brennkraftmaschine,
- bei dem in wenigstens einem Axialabschnitt des jeweiligen Einsatzes (2) eine Umfangsgeometrie des wenigstens einen Einsatzes (2) gemessen wird,
- bei dem der wenigstens eine Einsatz (2) in das Gehäuse (4) axial eingesetzt wird,
- bei dem beim Verformen des Gehäuses (4) die gemessene Umfangsgeometrie des wenigstens einen Einsatzes (2) berücksichtigt wird.




Beschreibung


[0001] Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen einer Abgasbehandlungseinrichtung, die in einem rohrförmigen Gehäuse wenigstens einen Abgasbehandlungseinsatz enthält, insbesondere für eine Abgasanlage einer Brennkraftmaschine. Die Erfindung betrifft außerdem eine Abgasbehandlungseinrichtung, insbesondere für eine Abgasanlage einer Brennkraftmaschine, die in einem rohrförmigen Gehäuse zumindest einen Abgasbehandlungseinsatz enthält.

[0002] Abgasbehandlungseinrichtungen, wie z.B. Katalysatoren und Partikelfilter, weisen wenigstens einen Einsatz auf, der in einem rohrförmigen Gehäuse angeordnet ist. Bekannt sind insbesondere Einsätze aus keramischen Materialien. Ebenso sind metallische Einsätze bekannt. Dabei ist es üblich, den jeweiligen Einsatz mit Hilfe einer den Einsatz umhüllenden Lagermatte im jeweiligen Gehäuse anzuordnen. Diese Lagermatte hat mehrere Funktionen. Zum einen dämpft sie Querbeschleunigungen, denen der Abgasbehandlungseinsatz im Betrieb ausgesetzt sein kann. Zum anderen kann die Lagermatte eine thermische Isolierung bilden, um die thermische Belastung des Gehäuses zu reduzieren. Desweiteren wird regelmäßig mit der Lagermatte eine Lagefixierung des Einsatzes im Gehäuse erreicht. Zu diesem Zweck muss die Lagermatte radial zwischen dem Einsatz und dem Gehäuse verpresst werden. Zum radialen Verpressen der Lagermatte ist es bekannt, den mit der Lagermatte umwickelten Einsatz in das Gehäuse axial einzuschieben, wobei das Gehäuse in diesem Zustand noch einen überhöhten Innenquerschnitt aufweist. Anschließend wird das Gehäuse zusammengedrückt, also radial verformt, bis die gewünschte Verpressung der Lagermatte erreicht ist.

[0003] Bei keramischen Einsätzen, insbesondere wenn sie als Monolith ausgestaltet sind, ist das radiale Verpressen der Lagermatte vergleichsweise problematisch, da es beim Auftreten überhöhter Kräfte zu Beschädigungen der Keramikeinsätze kommen kann. Hinzu kommt der Umstand, dass die Einsätze, insbesondere keramische Monolithen, vergleichsweise große Formtoleranzen aufweisen können, wodurch beim radialen Verformen des Gehäuses lokale Spannungsspitzen auftreten können. Ferner kann dadurch ein radial zwischen dem jeweiligen Einsatz und dem Gehäuse ausgebildeter, von der Lagermatte ausgefüllter Spalt in der Umfangsrichtung ein ungleichmäßiges, radial gemessenes Spaltmaß aufweisen. Dabei kann bei ungünstigen Toleranzketten das Spaltmaß lokal so groß werden, dass die Lagermatte dort nicht hinreichend verpresst ist, was im Betrieb dazu führen kann, dass die Lagermatte an dieser unzulänglich verpressten Stelle herausgelöst wird, wodurch sich im Gehäuse ein den Einsatz umgehender Bypass ausbildet.

[0004] Aus der US 6,954,988 B2 ist ein Verfahren zum Herstellen von Katalysatoren bekannt, bei dem zunächst eine Bruchcharakteristik des Keramikmonolithen bestimmt wird, die von der jeweiligen Kombination aus Keramikmaterial und Lagermattenmaterial abhängt. Diese Bruchcharakteristik beinhaltet insbesondere die Abhängigkeit der beim Verpressen der Lagermatte auftretenden Kräfte von der Geschwindigkeit, mit der die Verpressung durchgeführt wird. Beim bekannten Verfahren wird nun das Verpressen der Lagermatte so durchgeführt, dass eine Beschädigung des Monolithen vermieden wird.

[0005] Die vorliegende Erfindung beschäftigt sich mit dem Problem, für ein Herstellungsverfahren der eingangs genannten Art bzw. für einen Abgasbehandlungseinsatz der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die sich insbesondere dadurch auszeichnet, dass die Gefahr einer Beschädigung des Einsatzes während der Herstellung reduziert ist und/oder dass ein vergleichsweise gleichmäßiger Spaltverlauf in der Umfangsrichtung erreicht wird.

[0006] Dieses Problem wird durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.

[0007] Die Erfindung beruht auf dem allgemeinen Gedanken, beim jeweiligen Einsatz vor dem Einbringen in das Gehäuse die Umfangsgeometrie zumindest in einem Axialabschnitt zu vermessen und die gemessene Umfangsgeometrie beim anschließenden Verformen des Gehäuses zu berücksichtigen. Hierdurch kann die Verformung des Gehäuses insbesondere toleranzbedingte Formabweichungen des jeweiligen Einsatzes berücksichtigen. Dadurch können einerseits Spannungsspitzen vermieden werden. Andererseits kann die radiale Verpressung der Lagermatte gleichmäßiger realisiert werden.

[0008] Insbesondere lässt sich das Verfahren so durchführen, dass zumindest in einem dem jeweiligen Axialabschnitt des wenigstens einen Einsatzes zugeordneten Axialabschnitt des Gehäuses eine Umfangsgeometrie des Gehäuses in Abhängigkeit der gemessenen Umfangsgeometrie des wenigstens einen Einsatzes so verformt wird, dass sich für einen radial zwischen dem Gehäuse und dem wenigstens einen Einsatz ausgebildeten Spalt ein vorbestimmter Spaltverlauf in Umfangsrichtung einstellt. Der vorbestimmte Spaltverlauf kann insbesondere eine optimale Verpressung der Lagermatte berücksichtigen. Ebenso kann der vorbestimmte Spaltverlauf anisotrope Belastungsgrenzen des jeweiligen Einsatzes berücksichtigen. Da das erzielbare Spaltmaß mit der radialen Verpressung der Lagermatte und somit mit den beim Verpressen auftretenden Kräften korreliert, kann über die Vorgabe des Spaltmaßes auch die Belastung des jeweiligen Einsatzes beim Verformen des Gehäuses bestimmt werden.

[0009] Entsprechend einer vorteilhaften Ausführungsform kann die jeweils gemessene Umfangsgeometrie des jeweiligen Einsatzes vorbestimmten Umfangssegmenten des Einsatzes zugeordnet werden, wobei dann außerdem für das jeweilige Umfangssegment eine gemittelte Umfangsgeometrie aus den im jeweiligen Umfangssegment gemessenen Umfangsgeometriewerten bestimmt wird. Die Verformung des Gehäuses erfolgt dann ebenfalls in Umfangssegmenten, die den Umfangssegmenten des jeweiligen Einsatzes zugeordnet sind, wobei die Verformung des Gehäuses in den gehäuseseitigen Umfangssegmenten die gemittelten Umfangsgeometrien berücksichtigt. Diese Vorgehensweise berücksichtigt insbesondere Verformungswerkzeuge die in Umfangsrichtung verteilt angeordnete, segmentierte Formkörper aufweisen.

[0010] Die Erfassung und Berücksichtung der Umfangsgeometrie des jeweiligen Einsatzes erfolgt zumindest in einem Axialabschnitt des Einsatzes. Es ist klar, dass bei anderen Ausführungsformen auch mehrere Axialabschnitte hinsichtlich ihrer Umfangsgeometrie vermessen werden können. Dementsprechend lassen sich dann auch beim Umformen des Gehäuses eine entsprechende Anzahl von Axialabschnitten des Gehäuses in Abhängigkeit der jeweils gemessenen Umfangsgeometrien verformen. Grundsätzlich ist auch eine beliebige Auflösung in Längsrichtung denkbar. Beispielsweise kann die vollständige Außenkontur des jeweiligen Einsatzes z.B. durch sogenanntes 3-D-Scannen erfasst werden. Somit kann zusätzlich auch eine Längsgeometrie des jeweiligen Einsatzes beim Verformen des Gehäuses berücksichtigt werden.

[0011] Eine Abgasbehandlungseinrichtung die nach dem erfindungsgemäßen Verfahren hergestellt ist, kann sich beispielsweise dadurch charakterisieren, dass das Gehäuse einen an den Querschnitt des Einsatzes angepassten Querschnitt aufweist, selbst wenn der jeweilige Einsatz einen bezüglich Drehungen um seine Längsmittelachse einen asymmetrischen Querschnitt besitzt. Der Querschnitt des Gehäuses formt dann die jeweilige Asymmetrie des Einsatzes mehr oder weniger genau nach.

[0012] Keramische Monolithen, deren Zellmatrix ein Gitter aus zueinander senkrecht verlaufenden Stegen aufweist, besitzen eine von der Drehlage variierende Druckbelastbarkeit. Parallel zu Stegen ist der jeweilige Monolith höher belastbar als in Diagonalrichtung der Zellen. Die Abhängigkeit der Druckbelastbarkeit des jeweiligen Einsatzes von seiner Drehlage kann beim Verformen des Gehäuses berücksichtigt werden. Somit kann sich eine Abgasbehandlungseinrichtung, die nach dem erfindungsgemäßen Verfahren hergestellt worden ist, insbesondere auch dadurch charakterisieren, dass das Gehäuse in einem dem jeweiligen Einsatz zugeordneten Axialabschnitt so geformt ist, dass sich in Umfangsrichtung ein Verlauf für die radiale Spaltgeometrie einstellt, der einen von der radialen, mit der Drehlage variierenden Druckbelastbarkeit des jeweiligen Einsatzes abhängigen Verlauf in Umfangsrichtung der radialen Verpressung der Lagermatte berücksichtigt.

[0013] Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.

[0014] Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.

[0015] Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen.

[0016] Es zeigen, jeweils schematisch,
Fig. 1
einen stark vereinfachten, prinzipiellen Verlauf eines Herstellungsverfahrens,
Fig. 2 und 3
jeweils einen stark vereinfacht dargestellten, prinzipiellen Querschnitt eines Abgasbehandlungseinsatzes, bei verschiedenen Ausführungsformen,
Fig. 4
einen Längsschnitt entsprechend der Position V in Fig. 1 durch eine Abgasbehandlungseinrichtung beim Verformen ihres Gehäuses entsprechend Schnittlinien IV in Fig. 5,
Fig. 5
einen Querschnitt durch die Abgasbehandlungseinrichtung aus Fig. 4 entsprechend Schnittlinien V in Fig. 4,
Fig. 6
einen Längsschnitt wie in Fig. 4, jedoch bei einer anderen Ausführungsform entsprechend Schnittlinien VI in Fig. 7,
Fig. 7
einen Querschnitt wie in Fig. 5, jedoch bei der Ausführungsform aus Fig. 6 entsprechend Schnittlinien VII in Fig. 6.


[0017] Entsprechend Fig. 1 werden zum Herstellen einer Abgasbehandlungseinrichtung 1, die in Fig. 1 nur in einem unfertigen Zustand dargestellt ist, zumindest ein Abgasbehandlungseinsatz 2, wenigstens eine Lagermatte 3 und ein rohrförmiges Gehäuse 4 benötigt. Bei der Abgasbehandlungseinrichtung 1 kann es sich beispielsweise um ein Partikelfilter oder um einen Katalysator handeln. Die Abgasbehandlungseinrichtung 1 dient bevorzugt zur Verwendung in einer Abgasanlage einer Brennkraftmaschine, die insbesondere in einem Kraftfahrzeug angeordnet sein kann. Der Abgasbehandlungseinsatz 2, der im Folgenden auch kurz als Einsatz 2 bezeichnet wird, kann somit bevorzugt ein Partikelfiltereinsatz oder ein Katalysatoreinsatz sein. Der Einsatz 2 kann grundsätzlich aus einem metallischen Werkstoff bestehen. Bevorzugt besteht der Einsatz 2 jedoch aus einem keramischen Werkstoff. Insbesondere ist der Einsatz 2 durch wenigstens einen keramischen Monolithen gebildet. Dabei kann der Einsatz 2 aus einem einzigen Monolithen bestehen; ebenso kann der Einsatz 2 aus mehreren Monolithen zusammengebaut sein.

[0018] Die Lagermatte 3 kann ein Drahtgestrick aus Edelstahl sein oder eine Fasermatte aus einem nicht brennbaren Werkstoff sein. Die Lagermatte 3 ist komprimierbar, wobei sie jedoch eine gewisse Federelastizität entwickelt, was bei der montierten Abgasbehandlungseinrichtung 1 zur Lagefixierung des Einsatzes 2 im Gehäuse 4 genutzt werden kann.

[0019] Entsprechend Fig. 1 wird bei I zumindest in einem Axialabschnitt des Einsatzes 2 eine Umfangsgeometrie des Einsatzes 2 gemessen. Eine entsprechende Messeinrichtung ist hier mit 5 bezeichnet. Zur Erfassung der Umfangsgeometrie kann eine Drehung 6 zwischen dem Einsatz 2 und der Messeinrichtung 5 erforderlich sein. Die Umfangsgeometrie kann in einem einzigen Axialabschnitt gemessen werden. Dabei wird unterstellt, dass der insbesondere im Strangpressverfahren hergestellte Einsatz 2 eine in Axialrichtung konstante Umfangsgeometrie aufweist. Bevorzugt wird der Einsatz 2 jedoch in mehreren Axialabschnitten vermessen. Ebenso ist es möglich, den Einsatz 2 in Axialrichtung kontinuierlich zu vermessen, d.h., es wird auch die Axialgeometrie des Einsatzes 2 vermessen. Hierzu kann eine Axialverstellung 7 zwischen dem Einsatz 2 und der Messeinrichtung 5 erfolgen.

[0020] Das Vermessen des Einsatzes 2 erfolgt dabei vorzugsweise bezüglich einer Markierung 8, die hier durch ein Kreuz symbolisiert ist. Diese Markierung 8 kann am jeweiligen Einsatz 2 ohnehin vorhanden sein, beispielsweise in Form einer am Einsatz 2 im Rahmen der Herstellung ausgebildeten Längsnut. Ebenso kann die Markierung 8 gezielt am Einsatz 2 angebracht werden. Beispielsweise lässt sich am Einsatz 2 mit Farbe eine Linie anbringen oder dergleichen.

[0021] Bei II wird der Einsatz 2 mit der Lagermatte 3 versehen. Der mit der Lagermatte 3 umwickelte Einsatz 2 ist bei III dargestellt. Der mit der Lagermatte 3 umwickelte Einsatz 2 wird nun in axialer Richtung in das Gehäuse 4 eingeführt, was bei IV gezeigt ist. Zum axialen Einführen kann insbesondere ein Einführtrichter verwendet werden. Jedenfalls weist das Gehäuse 4 ein Übermaß auf, wodurch das axiale Einführen des mit der noch unverpressten Lagermatte 3 versehenen Einsatzes 2 erleichtert ist.

[0022] Bei V erfolgt nun die Verformung des Gehäuses 4. Entsprechende Formwerkzeuge sind in dabei mit 9 bezeichnet. Die radiale Verformung des Gehäuses 4 ist erforderlich, um eine gewünschte radiale Verpressung der Lagermatte 3 zu erzielen. Erst durch diese radiale Verpressung kann die Lagermatte 3 ihre Fixierungswirkung bzw. Fixierungsfunktion erfüllen. Die verpresste Lagermatte 3 dient unter anderem zur Lagefixierung des Einsatzes 2 relativ zum Gehäuse 4. Beim Verformen des Gehäuses 4 wird nun die zuvor bei I gemessene Umfangsgeometrie und gegebenenfalls die gemessene Axialgeometrie berücksichtigt.

[0023] Insbesondere berücksichtig eine entsprechende, hier nicht gezeigte Steuerung des Umformwerkzeugs 9, die gemessen Umfangsgeometrie bzw. Axialgeometrie derart, dass sich für einen Spalt 10, der sich radial zwischen dem Gehäuse 4 und dem Einsatz 2 ausbildet und in dem die Lagermatte 3 angeordnet ist, ein vorbestimmter Spaltverlauf in Umfangsrichtung einstellt.

[0024] Dabei kann es - je nach Aufbau des Umformwerkzeugs 9 - zweckmäßig sein, die gemessene Umfangsgeometrie vorbestimmten Umfangssegmenten des Einsatzes 2 zuzuordnen und für die Umfangssegmente jeweils eine gemittelte Umfangsgeometrie zu bestimmen, die sich anhand der innerhalb des jeweiligen Umfangssegments gemessenen Umfangsgeometrie berechnen lässt. Beispielsweise weist das Umformwerkzeug 9 in Umfangsrichtung sechs Umformkörper auf, mit denen das Gehäuse 4 radial verformt werden kann. Dementsprechend wird der Einsatz 2 in sechs Umfangssegmente unterteilt, denen jeweils eine mittlere Umfangsgeometrie aus den innerhalb des jeweiligen Umfangssegments gemessenen Umfangsdaten zugeordnet wird. Beim Umformen des Gehäuses 4 kann dann die Umfangsgeometrie des Gehäuses 4 ebenfalls in Umfangssegmenten, die den Umfangssegmenten des jeweiligen Einsatzes 2 zugeordnet sind, in Abhängigkeit der gemittelten Umfangsgeometrien verformt werden. Im Beispiel werden die sechs Umformkörper dann individuell entsprechend den gemittelten Umfangsgeometrien des Einsatzes 2 angesteuert, wodurch das Gehäuse 6 entlang seines Umfangs ebenfalls in sechs Umfangssegmenten individuell verformt wird.

[0025] Je nach Ausgestaltung des zur Verfügung stehenden Umformwerkzeugs kann die Umfangsgeometrie des Einsatzes 2 am Gehäuse 4 in einem einzigen Axialabschnitt oder in mehreren Axialenabschnitten oder quasi in axialer Richtung kontinuierlich umgesetzt werden. Dementsprechend kann der axiale Verlauf der Umfangsgeometrie des Gehäuses 4 in Abhängigkeit des im Einsatz 2 gemessenen axialen Verlaufs der Umfangsgeometrie so verformt werden, dass sich auch in der axialen Richtung ein vorbestimmter Spaltverlauf einstellen kann. Je nach Umformwerkzeug 9 kann es auch hier zweckmäßig sein, den an sich kontinuierlich messbaren axialen Verlauf der Umfangsgeometrie des Einsatzes 2 vorbestimmten Axialabschnitten des Einsatzes 2 zuzuordnen und für den jeweiligen Axialabschnitt aus den gemessenen Werten eine gemittelte Umfangsgeometrie zu bestimmen. Das Gehäuse 4 lässt sich dann ebenfalls in Axialabschnitten, die den vorbestimmten Axialabschnitten des Einsatzes 2 zugeordnet sind, in Abhängigkeit der gemittelten Umfangsgeometrien verformen.

[0026] Für den Umformvorgang des Gehäuses 4 kann es zweckmäßig sein, die Markierung 8 zu berücksichtigen. Beispielsweise kann das Umformwerkzeug 9 selbsttätig die jeweilige Markierung 8 erkennen. Ebenso kann es erforderlich sein, den jeweiligen Einsatz 2 bezüglich seiner Markierung 8 mit einer vorbestimmten Drehlage und/oder Axiallage in das Gehäuse 4 einzusetzen. Die Verformung des Gehäuses 4 erfolgt dann bezüglich der Markierung 8.

[0027] Nach dem Verformen des Gehäuses 4 ist die Lagermatte 3 radial verpresst, was bei VI erkennbar ist. Zur Qualitätssicherung kann bei VI vorgesehen sein, die durch die Verformung des Gehäuses 4 gebildete Ist-Geometrie des Gehäuses 4 bzw. die Ist-Geometrie des Spalts 10 zu vermessen. Entsprechende Messeinrichtungen sind hier mit 11 bezeichnet. In Abhängigkeit der am Einsatz 2 bei I gemessenen Geometrie lässt sich eine Soll-Geometrie für das Gehäuse 4 bzw. für den Spalt 10 ermitteln, die dann mit der bei VI gemessenen Ist-Geometrie verglichen werden kann. Durch eine Rückkopplung 12 kann das Umformwerkzeug 9 bzw. eine damit ausgestattete Umformvorrichtung in Abhängigkeit dieses Soll-Ist-Vergleichs automatisch adaptiert werden.

[0028] Wie vorstehend erläutert lässt sich durch die erfindungsgemäße Vorgehensweise bei der jeweiligen Abgasbehandlungseinrichtung 1 ein in Umfangsrichtung und/oder in Axialrichtung vorbestimmter Spaltverlauf mehr oder weniger genau einstellen. Dieser Spaltverlauf kann insbesondere so gewählt sein, dass sich in der Umfangsrichtung bzw. in der Axialrichtung ein im wesentlichen konstantes Spaltmaß einstellt. Beispielsweise zeigt Fig. 2 eine Ausführungsform, bei welcher die Abgasbehandlungseinrichtung 1 zwischen dem Einsatz 2 und dem Gehäuse 4 einen Spalt 10 aufweist, in dem die Lagermatte 3 angeordnet ist. Der Spaltverlauf in Umfangsrichtung charakterisiert sich hier dadurch, dass der Spalt 10 in Umfangsrichtung ein im wesentlichen konstantes Spaltmaß besitzt. Das Spaltmaß ist hier die in radialer Richtung gemessene Spaltbreite 13 oder Spaltweite. Fig. 2 zeigt in einer übertriebenen Darstellung einen Einsatz 2, der einen bezüglich Drehungen um seine Längsmittelachse 14 asymmetrischen Querschnitt aufweist. Charakteristisch ist für diese Ausführungsform der Abgasbehandlungseinrichtung 1, dass ihr Gehäuse 4 zumindest in dem dem Einsatz 2 zugeordneten Axialabschnitt einen Querschnitt aufweist, der an den asymmetrisch Querschnitt des Einsatzes 2 angepasst ist. Das Gehäuse 4 folgt den Unregelmäßigkeiten der Außenkontur des Einsatzes 2.

[0029] Fig. 3 zeigt ebenfalls in übertriebener Darstellung eine besondere Ausführungsform, bei welcher der Einsatz 2 aus wenigstens einem keramischen Monolithen 15 gebildet ist. Der Monolith 15 weist eine Zellmatrix 16 auf, die ein Gitter aus senkrecht zueinander verlaufenden Stegen 17 besitzt. Ein derartiger Monolith 15 weist für radiale Druckbelastungen eine anisotrope Belastbarkeit auf. Bei Druckbelastungen, die parallel zu Stegen 17 verlaufen, ist die Druckbelastbarkeit des Monolithen 15 größer als bei Druckbelastungen, die gegenüber den Stegen 17 geneigt sind. Insbesondere ist die Druckbelastbarkeit in Richtung von Diagonalen 18 des Gitters am kleinsten.

[0030] Der in der Umfangsrichtung bzw. in der Axialrichtung vorbestimmte Spaltverlauf kann für die Umformung des Gehäuses 4 nun gezielt so gewählt sein, dass die beim Verformen des Gehäuses 4 auftretende radiale Druckbelastung des Einsatzes 2 in Abhängigkeit einer mit der Drehlage bzw. Axiallage variierenden Druckbelastbarkeit des Einsatzes 2 erfolgt. Das bedeutet, dass insbesondere die anisotrope Druckbelastbarkeit des Einsatzes 2 beim Verpressen der Lagermatte 3 berücksichtigt wird. Hierdurch kann in Bereichen, die eine höhere Druckbelastbarkeit aufweisen, eine stärkere Verpressung der Lagermatte 3 erreicht werden.

[0031] Entsprechend Fig. 3 ist bei einer Abgasbehandlungseinrichtung 1, die unter dieser Voraussetzung hergestellt worden ist, das Gehäuse 4 zumindest in einem dem jeweiligen Einsatz 2 zugeordneten Axialabschnitt so geformt, dass sich in der Umfangsrichtung für die radiale Spaltgeometrie ein Verlauf einstellt, der einen von der radialen, mit der Drehlage variierenden Druckbelastbarkeit des Einsatzes 2 abhängigen Verlauf der radialen Verpressung der Lagermatte 3 in Umfangsrichtung berücksichtigt. Im gezeigten konkreten Beispiel ist die radiale Verpressung der Lagermatte 3 in Umfangssegmenten 19, in denen die Stege 17 zumindest in einem mittleren Bereich des jeweiligen Segments 19 senkrecht zum Gehäuse 4 orientiert sind, größer als in anderen Umfangssegmenten 20, in denen die Stege 17 zumindest in einem mittleren Bereich des jeweiligen Umfangssegments 20 um etwa 45° gegenüber dem Gehäuse 4 geneigt sind. In diesen anderen Umfangssegmenten 20 sind insbesondere die Diagonalen 18 zumindest in einem mittleren Bereich des jeweiligen Segments 20 im wesentlichen senkrecht zum Gehäuse 4 orientiert.

[0032] Die Fig. 4 bis 7 zeigen rein exemplarisch und ohne Beschränkung der Allgemeinheit zwei verschiedene Ausführungsformen von Umformwerkzeugen 9, mit deren Hilfe das Gehäuse 4 in Umfangsrichtung und/oder in Längsrichtung segmentweise unterschiedlich deformiert werden kann, um den erwünschten Querschnittsverlauf bzw. Spaltverlauf in Umfangsrichtung bzw. in Längsrichtung erzielen zu können. Beispielsweise ist das Umformwerkzeug 9 bei den in den Fig. 4 bis 7 gezeigten Beispielen mit mehreren Werkzeugsegmenten 21 ausgestattet, die in Umfangsrichtung verteilt angeordnet sind und denen jeweils ein Umfangssegment des Gehäuses 4 zugeordnet ist. Für den Umformvorgang werden die Werkzeugsegmente 21 in radialer Richtung entsprechend Pfeilen belastet. Dabei sind die einzelnen Werkzeugsegmente 21 individuell mit dieser radialen Anpresskraft antreibbar. Die einzelnen Werkzeugsegmente 21 sind vorzugsweise jeweils weggesteuert. Auf diese Weise lässt sich jedem einzelnen Werkzeugsegment 21 eine gemittelte Umfangsgeometrie zuordnen, die dann am Gehäuse 4 im Bereich des jeweiligen Umfangssegments realisiert wird.

[0033] In den Fig. 4 und 6 sind die Lagermatte 3, das Gehäuse 4 und der Spalt 10 im unverformten Zustand mit a gekennzeichnet, während ihr verformter Zustand mit b gekennzeichnet ist. Die Werkzeugsegmente 21 können in axialer Richtung kürzer sein als das Gehäuse 4. Hierdurch lassen sich verschiedene Axialabschnitte des Gehäuses 4 individuell umformen, also mit unterschiedlichen mittleren Querschnittsgeometrien im Bereich der jeweiligen Werkzeugsegmente 21.

[0034] Während bei der Ausführungsform der Fig. 4 und 5 die Werkzeugsegmente 21 als Umformbacken ausgestaltet sind, zeigen die Fig. 6 und 7 eine Ausführungsform, bei welcher die Werkzeugsegmente 21 als Umformwalzen ausgestaltet sind, die im Folgenden ebenfalls mit 21 bezeichnet werden. Die Umformwalzen 21 sind hinsichtlich ihrer Geometrie an die Außenkontur des Gehäuses 4 adaptiert, was in Fig. 7 deutlich erkennbar ist. Beim Umformen kann eine axiale Relativbewegung zwischen dem Gehäuse 4 und den Umformwalzen 21 durchgeführt werden. Beispielsweise kann das Gehäuse 4 durch die stationär angeordneten Umformwalzen 21 axial hindurchgedrückt oder hindurchgezogen werden. Hierbei kommt es zur gewünschten Verformung des Gehäuses 4 in radialer Richtung, und zwar segmentweise entsprechend den umfangsmäßig verteilt angeordneten und jeweils einem Umfangsegment zugeordneten Umformwalzen 21. Auch die Umformwalzen 21 werden für die Umformung des Gehäuses 4 in radialer Richtung mit einer entsprechenden Anpresskraft beaufschlagt, die in Fig. 7 durch Pfeile repräsentiert ist. Auch hier sind die Umformwalzen 21 bevorzugt weggesteuert. Bei dieser Ausführungsform ist es grundsätzlich möglich, beim Durchziehen oder Durchdrücken des Gehäuses 4 zentral durch die Umformwalzen 21 diese für unterschiedliche Axialabschnitte des Gehäuses 4 unterschiedlich einzustellen, und zwar individuell. Dies kann theoretisch kontinuierlich erfolgen. Bevorzugt ist jedoch eine Ausführungsform, bei der die jeweilige Einstellung der Umformwalzen 21 für mehrere, axial aufeinander folgende Axialabschnitte jeweils konstant ist, wobei der Vorschub des Gehäuses 4 zum Einstellen der Umformwalzen, durch Vorgabe neuer Werte für die Querschnittsgeometrie, unterbrochen wird.


Ansprüche

1. Verfahren zum Herstellen einer Abgasbehandlungseinrichtung (1), die in einem rohrförmigen Gehäuse (4) wenigstens einen Abgasbehandlungseinsatz (2) enthält, insbesondere für eine Abgasanlage einer Brennkraftmaschine,

- bei dem in wenigstens einem Axialabschnitt des jeweiligen Einsatzes (2) eine Umfangsgeometrie des wenigstens einen Einsatzes (2) gemessen wird,

- bei dem der wenigstens eine Einsatz (2) in das Gehäuse (4) axial eingesetzt wird,

- bei dem beim Verformen des Gehäuses (4) die gemessene Umfangsgeometrie des wenigstens einen Einsatzes (2) berücksichtigt wird.


 
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass zumindest in einem dem jeweiligen Axialabschnitt des wenigstens einen Einsatzes (2) zugeordneten Axialabschnitt des Gehäuses (4) eine Umfangsgeometrie des Gehäuses (4) in Abhängigkeit der gemessene Umfangsgeometrie des wenigstens einen Einsatzes (2) so verformt wird, dass sich für einen radial zwischen dem Gehäuse (4) und dem wenigstens einen Einsatz (2) ausgebildeten Spalt (10) ein vorbestimmter Spaltverlauf in Umfangsrichtung einstellt.
 
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,

- dass die gemessene Umfangsgeometrie des jeweiligen Einsatzes (2) vorbestimmten Umfangssegmenten zugeordnet wird und für das jeweilige Umfangssegment eine gemittelte Umfangsgeometrie bestimmt wird,

- dass die Umfangsgeometrie des Gehäuses (4) in den Umfangssegmenten des jeweiligen Einsatzes (2) zugeordneten Umfangssegmenten in Abhängigkeit der gemittelten Umfangsgeometrien verformt wird.


 
4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,

- dass außerdem der axiale Verlauf der Umfangsgeometrie des jeweiligen Einsatzes (2) gemessen wird,

- dass der axiale Verlauf der Umfangsgeometrie des Gehäuses (4) in Abhängigkeit des gemessenen Verlaufs des jeweiligen Einsatzes so verformt wird, dass sich auch in axialer Richtung ein vorbestimmter Spaltverlauf einstellt.


 
5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet,

- dass der gemessene axiale Verlauf der Umfangsgeometrie des jeweiligen Einsatzes (2) vorbestimmten Axialabschnitten zugeordnet wird und für den jeweiligen Axialabschnitt eine gemittelte Umfangsgeometrie bestimmt wird,

- dass der axiale Verlauf des Gehäuses (4) in den Axialabschnitten des jeweiligen Einsatzes (2) zugeordneten Axialabschnitten in Abhängigkeit der gemittelten Umfangsgeometrien verformt wird.


 
6. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,

- dass die Vermessung des Einsatzes (2) bezüglich einer am jeweiligen Einsatz (2) vorhandenen oder angebrachten Markierung (8) durchgeführt wird,

- dass der jeweilige Einsatz (2) bezüglich seiner Markierung (8) mit einer vorbestimmten Relativlage in das Gehäuse (4) eingesetzt wird, so dass die Verformung des Gehäuses (4) bezüglich der Markierung (8) des jeweiligen Einsatzes (2) erfolgt.


 
7. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass der in Umfangsrichtung und/oder in Axialrichtung vorbestimmte Spaltverlauf so gewählt ist, dass sich in Umfangsrichtung und/oder in Axialrichtung ein im wesentlichen konstantes Spaltmaß (13) einstellt.
 
8. Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass der in Umfangsrichtung und/oder in Axialrichtung vorbestimmte Spaltverlauf so gewählt ist, dass die beim Verformen des Gehäuses (4) auftretende radiale Druckbelastung des wenigstens einen Einsatzes (2) in Abhängigkeit einer mit der Drehlage und/oder Axiallage variierenden Druckbelastbarkeit des wenigstens einen Einsatzes (2) erfolgt.
 
9. Verfahren nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,

- dass eine durch das Verformen des Gehäuses (4) gebildet Ist-Geometrie des Gehäuses (4) und/oder des Spalts (10) vermessen und mit einer in Abhängigkeit der gemessenen Geometrie des wenigstens einen Einsatzes (2) ermittelten Soll-Geometrie verglichen wird,

- dass eine das Verformen des Gehäuses (4) durchführende Umformvorrichtung in Abhängigkeit des Soll-Ist-Vergleichs automatisch adaptiert wird.


 
10. Abgasbehandlungseinrichtung, insbesondere für eine Abgasanlage einer Brennkraftmaschine, mit einem rohrförmigen Gehäuse (4), in das zumindest ein Abgasbehandlungseinsatz (2) eingesetzt ist,
dadurch gekennzeichnet,

- dass der jeweilige Einsatz (2) einen bezüglich Drehungen um seine Längsmittelachse (14) asymmetrischen Querschnitt aufweist,

- dass das Gehäuse (4) in einem dem jeweiligen Einsatz (2) zugeordneten Axialabschnitt einen an den asymmetrischen Querschnitt des jeweiligen Einsatzes (2) angepassten Querschnitt aufweist.


 
11. Abgasbehandlungseinrichtung, insbesondere für eine Abgasanlage einer Brennkraftmaschine, mit einem rohrförmigen Gehäuse (4), in das zumindest ein Abgasbehandlungseinsatz (2) eingesetzt ist, wobei radial zwischen dem Gehäuse (4) und dem jeweiligen Einsatz (2) ein eine Lagermatte (3) enthaltender Spalt (10) ausgebildet ist, dessen radiale Spaltgeometrie (13) eine radiale Verpressung der Lagermatte (3) bestimmt,
dadurch gekennzeichnet,
dass das Gehäuse (4) in einem dem jeweiligen Einsatz (2) zugeordneten Axialabschnitt so geformt ist, dass sich in Umfangsrichtung ein Verlauf für die radiale Spaltgeometrie einstellt, der einen von der radialen, mit der Drehlage variierenden Druckbelastbarkeit des jeweiligen Einsatzes abhängigen Verlauf der radialen Verpressung der Lagermatte (3) in Umfangsrichtung berücksichtigt.
 
12. Abgasbehandlungseinrichtung nach Anspruch 11,
dadurch gekennzeichnet,

- dass der wenigstens eine Einsatz (2) wenigstens einen keramischen Monolithen (15) aufweist, dessen Zellmatrix (16) ein Gitter zueinander senkrecht verlaufender Stege (17) aufweist,

- dass die radiale Verpressung der Lagermatte (3) in einem Umfangssegment (19), in dessen Mitte die Stege (17) senkrecht zum Gehäuse (4) orientiert sind, größer ist als in einem anderen Umfangssegment (20), in dessen Mitte die Stege (17) um etwa 45° gegenüber dem Gehäuse (4) geneigt sind.


 




Zeichnung

















Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente