Field of technology
[0001] The object of this invention is a filtering choke arrangement of a DC intermediate
circuit used in power transformers, especially frequency converters, provided with
a DC intermediate circuit, which filtering choke arrangement is used to limit the
harmonics of the network current taken by an appliance.
Prior art
[0002] The amount of current harmonics produced in the supply network of power electronics
devices, such as frequency converters, must be limited owing to distortion. Numerous
international official regulations and standards, such as e.g. IEC61300-3-12, relate
to the matter.
[0003] In solutions of the PWM frequency converter type, in which the supply voltage is
rectified and filtered into the DC voltage of the intermediate circuit, it is general
to use a DC choke disposed between the rectifier bridge and the DC filter capacitor
to limit the harmonics of the network current. The choke can be disposed in accordance
with the embodiment of Fig. 1 either on the + or on the - busbar of the DC circuit
or on both.
[0004] The limitation requirements for the harmonics of the current generally result in
the inductance value of the choke having to be very big. Since it must simultaneously
withstand the stresses of the full network current, the dimensioning generally results
in a very large and heavy component. In order to limit the size of the choke, it is
advantageous to use a core material that has great flux density tolerance, such as
e.g. a stack assembled from transformer plates.
[0005] In a DC choke application, in which the current flows in only one direction, the
core of the choke magnetizes in only one direction. It is prior art to use a permanent
magnet as a part of the core structure in order to utilize the other half of the magnetizing
area, and via that to put into use the full capacity of the core, e.g. according to
patent publication
US 6,753,751.
[0006] To minimize the size of the choke core the magnetic flux created by the permanent
magnet is the opposite with respect to the magnet flux formed by the external current;
the purpose of the dimensioning can be e.g. that the density of the magnetic flux
with 0-current is a negative 70% of the saturation limit and with full current the
same magnitude but positive.
[0007] Owing to the opposite flux caused by the external current, a demagnetization risk
is attached to DC choke solutions utilizing a permanent magnet. The flux density,
with which the permanent magnet demagnetizes, depends on the material used and the
temperature, typically being 1.0...1.4 T (tesla). In chokes the saturation flux density
of the transformer plate generally used is in the range of 1.4...1.6 T. That being
the case, if the current of the choke substantially exceeds the dimensioned level,
the external flux can exceed the demagnetizing limit of the permanent magnet, in which
case it loses its original magnetic properties and can even magnetize in the wrong
direction. This kind of situation is possible with unpredictable large overcurrents,
such as those which can occur in frequency converters e.g. in conjunction with a mains
outage if the voltage of the DC capacitor of the intermediate circuit has dropped
very low when the mains voltage returns. After this kind of situation the DC choke
has permanently lost some of its network current filtering properties.
Summary of the invention
[0008] The object of this invention is a DC filter choke solution, used in the DC circuit
of power transformers and provided with a permanent magnet, in which solution there
is no danger of demagnetization of the permanent magnet.
[0009] In the solution according to the invention the cross-sectional areas of the pillar
parts and of the yoke parts of the magnetic core are preferably of different magnitudes
and the permanent magnet is disposed either in one or in several corners of the core
structure transversely at an angle. The layout makes it possible according to the
invention for the cross-sectional area of the permanent magnet to be appreciably larger
than the cross-sectional area of the pillar of the thinnest section of the core structure.
[0010] Since the same flux penetrates both the core structure and the permanent magnet,
the flux density in the permanent magnet remains lower than in the core of the choke.
The choke according to the invention is dimensioned such that when the thinnest section
of the core structure saturates, the flux density at the point of the permanent magnet
remains below its demagnetization limit. Since the flux density of the core does not
significantly change after the saturation limit even if the current of the choke were
to grow, the demagnetization limit of the permanent magnet is thus not exceeded in
any practical conditions.
Short description of the drawings
[0011] In the following, the invention will be described in more detail by the aid some
embodiments with reference to the attached drawings, wherein
Fig. 1 presents the main circuit of a frequency converter,
Fig. 2 presents a conventional two-pillar DC choke solution,
Fig. 3 presents a magnetization curve of the core material of the choke,
Fig. 4 presents a prior-art solution for disposing a permanent magnet in the core
of the choke,
Fig. 5 presents a solution according to the invention for disposing a permanent magnet
in the core of the choke, and
Fig. 6 presents the magnetization of parts of the choke with the solution according
to the invention.
Prior art and detailed description of the invention
[0012] Fig. 1 presents the main circuit of a normal PWM frequency converter, in which is
a network bridge 10 comprised of diodes for rectifying the three-phase alternating
voltage of the supply network into the DC voltage of the DC intermediate circuit,
a filtering capacitor C
DC, a load bridge 11 comprised of three phase switches implemented with power semiconductors,
which forms the three-phase output voltage U, V, W from the DC voltage of the intermediate
circuit, and a control unit 12. The figure also presents the two-part DC choke solution
Ldc+, Ldc- generally used to filter the harmonics of the network current. The winding
direction of the windings of the choke is marked with small dots next to the choke.
A general DC choke solution is also one in which only a single branch-specific choke
(either Ldc+ or Ldc-) is used.
[0013] Fig. 2 presents an example of the construction of a typical conventional choke. The
magnetic core of the choke comprises two pillars 1a, 1b and yokes 2a, 2b connecting
the pillars. The magnetic circuit also normally comprises an air gap 3a, 3b, with
which the desired inductance value, and the current limit at which the magnetic core
starts to saturate, is set. The windings Ldc+ and Ldc-, or only one winding, e.g.
Ldc+, are wound in the same direction around the pillars. With both the single-branch
(Ldc+ or Ldc-) and the double-branch (Ldc+ and Ldc-) solution, it is known that the
same filtering effect of the harmonics of the network current is achieved. The double-branch
solution is indeed used mainly to limit current in a line-to-earth short-circuit situation
of the motor circuit, because in this kind of situation the current typically flows
only via one of the branches.
[0014] Fig. 3 presents a prior-art characteristic magnetization curve of the magnetic core
material. The dimension H depicts the strength of the magnetic field, which is directly
comparable to the current of the winding wound around the core, and the dimension
B depicts the density of the magnetic flux in the core material. The limit values
Bsat+ and Bsat- depict the saturation limits of the flux density, significantly greater
than which the density of the magnetic flux does not grow irrespective of the strength
of the magnetic field.
[0015] In a DC choke solution the magnetic circuit is generally dimensioned such that saturation
still does not significantly reduce the inductance value of the choke at the nominal
current. The saturation limit is not, e.g. with the transformer plate generally used
as the core material of a choke, very abrupt, so it is normal to use approx. 70% of
the saturation limit of the flux density as the dimensioning criterion of the nominal
current, which is approx. 1.4...1.6 T.
[0016] Fig. 4 presents a prior-art method for disposing a permanent magnet in the core of
the choke. In it the pillar situated inside the winding is divided into two parts,
between which a permanent magnet 41 is disposed. In one half or preferably in both
halves of the magnet are air gaps 4a, 4b, which are important not only as a part of
the magnetic circuit but also as a mechanical protector of the permanent magnet, the
material of which is often very hard and brittle.
[0017] In this prior-art layout the flux density penetrating the permanent magnet is roughly
the same as the flux density in the pillar on both sides of it. That being the case,
when the saturation limit of the flux density in the pillar material is higher than
the demagnetization limit of the permanent magnet, it is possible that in special
situations the permanent magnet demagnetizes. After even one such situation, the magnetic
properties of the magnet are permanently changed, which is very detrimental from the
viewpoint of the original intended application of the choke.
[0018] Fig. 5 presents a new method according to the invention for disposing a permanent
magnet in the core of the choke. The magnet 51 according to the invention is positioned
transversely at an angle (in the figure, at an angle of 45° with respect to the yoke
and correspondingly to the longitudinal axis of the pillar) in the corner of the choke
core such that it fills the entire aperture in the core material. There can be many
magnets (51, 52), each in its own corner. Air gaps 5a, 5b can be arranged on both
sides of the permanent magnet. In addition it is also preferable that the cross-sectional
areas of the pillar parts and the yoke parts 1a', 1b', 2a' and 2b' of the core are
of different magnitudes preferably such that the cross-sectional area (X) of the pillar
is smaller than that of the yoke (Y). Owing to its angular positioning, the surface
area
AM of the permanent magnet is greater than the cross-sectional area
AX of the part of the thinner core material. With the markings according to the figure,
the ratio of the surface areas is:

[0019] Fig. 6 presents the characteristic waveforms associated with the choke according
to the invention as a function of the current i
DC. In the figure H is the strength of the magnetic field, B
X the density of the magnetic flux in the pillar, B
M is the density of the magnetic flux at the location of the permanent magnet and B
LIM is the demagnetization limit of the permanent magnet. Owing to the permanent magnet,
the curves start from negative values and grow to become positive along with the external
current. I
DCN describes the measuring point of the nominal current. Since the same magnetic flux
travels through both the pillar and the magnet, the density of the magnetic flux in
these parts is inversely proportional to their cross-sectional areas. The magnetic
circuit according to the invention is dimensioned such that at the strength of the
magnetic field at which the flux density of the core material in the pillar rises
to the saturation limit, the flux density at the location of the permanent magnet
is lower than the demagnetization limit of the material used. In this way the flux
density of the permanent magnet can never grow too large, which prevents the permanent
changing of the properties of the DC choke in special situations.
[0020] It is obvious to the person skilled in the art that the different embodiments of
the invention are not limited solely to the example described above, but that they
may be varied within the scope of the claims presented below. The permanent magnet
can be disposed in a similar manner in an inclined attitude also elsewhere than in
the corners, e.g. in an inclined attitude at the center of a pillar with respect to
its longitudinal direction.
1. DC choke arrangement of a power transformer, especially of a frequency converter,
provided with a DC intermediate circuit and connected to an AC electricity network,
for limiting the harmonics of the network current taken from the AC electricity network
by an appliance.
in which DC choke arrangement is at least one choke (Ldc+, Ldc-), which is arranged
in the magnetic core, which contains pillar parts and yoke parts (1a', 1b', 2a', 2b'),
in which one or more permanent magnets (51) are arranged in the magnetic core of the
choke,
characterized in that the permanent magnet is positioned at an angle with respect to the longitudinal direction
of the part or parts of the magnetic core such that the cross-sectional area of the
permanent magnet is greater than the cross-sectional area of the part of the magnetic
core in question or the parts of the magnetic core in question.
2. Choke arrangement according to claim 1,
characterized in that an air gap is arranged in one half or in both halves of the permanent magnet.
3. Choke arrangement according to claims 1-2,
characterized in that the cross-sectional areas of the pillar parts and of the yoke parts of the magnetic
core are of different magnitudes.
4. Choke arrangement according to claims 1-3,
characterized in that there are 2 units of permanent magnets, disposed in opposite corners of the magnetic
core.
5. Choke arrangement according to claims 1-3,
characterized in that there are 4 units of permanent magnets, disposed in all the corners of the magnetic
core.
6. Choke arrangement according to any of claims 1-5 above,
characterized in that in the magnetic circuit the cross-sectional areas of the permanent magnet and of
the magnetic core are fitted such that the density of the magnetic flux at the point
of the permanent magnet when the thinnest section of the magnetic core saturates is
lower than the magnetic flux with which the permanent magnet demagnetizes.
7. Choke arrangement according to any of claims 1-6 above,
characterized in that the permanent magnet is arranged at an angle of 30-60°, preferably 45°, with respect
to the longitudinal axis of the yoke and/or of the pillar.
8. Choke arrangement according to any of claims 1-7 above,
characterized in that the permanent magnet is disposed at an angle in the corner of the magnetic core such
that the cross-sectional area of the permanent magnet is greater than the cross-sectional
area of the other parts of the magnetic core.