(11) EP 2 016 916 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

21.01.2009 Bulletin 2009/04

(51) Int Cl.: **A61B 17/70** (2006.01)

(21) Application number: 07014318.5

(22) Date of filing: 20.07.2007

(84) Designated Contracting States:

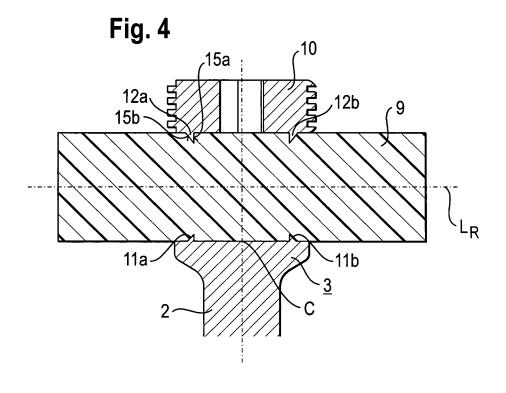
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Designated Extension States:

AL BA HR MK RS

(71) Applicant: **BIEDERMANN MOTECH GmbH 78054 VS-Schwenningen (DE)**

(72) Inventors:


 Biedermann, Lutz 78048 VS-Villingen (DE)

- Matthis, Wilfried 79367 Weisweil (DE)
- Freudiger, Stefan
 3047 Bremgarten (CH)
- (74) Representative: Hofer, Dorothea et al Prüfer & Partner GbR Patentanwälte Sohnckestrasse 12 81479 München (DE)

(54) Bone anchoring device

(57) A bone anchoring device is provided comprising an anchoring element having a shank (2) to be anchored in a bone or a vertebra, a rod (9) for connecting at least two anchoring elements, the rod being made of an elastic material, a receiving part (3) being connected to the shank (2) for receiving the rod, a seat (8) for the rod being provided in the receiving part the seat having a rod con-

tacting surface, a locking device (10) cooperating with the receiving part for fixation of the rod in the seat, the locking device comprising a rod contacting surface, wherein the rod contacting surface of the seat and/or the rod contacting surface of the locking device comprises an engagement structure (11,12) for engaging the rod, the engagement structure having an asymmetric cross section.

Description

[0001] The invention relates to a bone anchoring device for the dynamic stabilization of bones, in particular for the dynamic stabilization of the spine. It comprises a bone anchoring element which can be connected to a flexible rod being made of an elastic material. For fixation of the rod an engagement structure is provided which has such a shape that the pressure distribution on the rod in the fixed state is equalized.

1

[0002] EP 1 759 646 A1 discloses a spinal implant for the dynamic stabilization of the spine which uses a flexible rod made of an elastomer material. The rod is fixed in the receiving part by means of a locking device which clamps the rod by frictional forces with indirect form-fit contribution.

[0003] EP 1 795 134 A1 discloses a polyaxial screw for use with a flexible rod made of an elastomer material. To fix the rod or hold the rod in place an engagement structure is provided in the receiving part receiving the rod and on the locking device locking the rod in the receiving part. The engagement structure comprises ribs or grooves which have a symmetric cross section in each sectional plane. The ribs press onto the elastomer rod causing a depression in the surface of the rod, while leaving the surface structure of the rod intact.

[0004] In some circumstances, in particular if high tensional loads act onto the rod, it is necessary to apply a high clamping force on the rod via the locking device to fix the rod. In such a case, there might be the risk that local pressure peaks could result in a structural damage with increased abrasion of the surface of the rod caused by the engagement structure. To avoid this, the height of the engagement structure could be reduced.

[0005] It is the object of the invention to provide a bone anchoring device which has a bone anchoring element and a rod, the rod being made of an elastic material, which can be used under high load conditions, in particular under high tensional load conditions acting onto the rod, and which nevertheless provides a safe fixation of the rod.

[0006] The object is solved by a bone anchoring device according to claim 1 or 17. Further developments are given in the dependent claims.

[0007] The bone anchoring device has the advantage that the load distribution on the rod caused by the engagement structure is optimized in such a way that pressure peaks acting onto the surface of the rod in certain areas are avoided and the pressure distribution is made more uniform. Therefore, the risk of an abrasion or violation of the surface of the rod which can cause a loosening of the fixation is avoided. With the bone anchoring device according to the invention it is possible to transfer a high axial force from the rod to the bone anchor without rupture of the rod and to generate as little abrasion as possible when repeatedly fixed and loosened, for example during secondary adjustments.

[0008] Further features and advantages of the inven-

tion will be come apparent and will be best understood by reference to the following detailed description of embodiments taken in conjunction with the accompanying drawings.

[0009] Fig. 1 shows an exploded perspective view of a bone anchoring device according to a first embodiment of the invention.

[0010] Fig. 2 shows the bone anchoring device of Fig. 1 in an assembled state.

0 [0011] Fig. 3 shows a perspective view of the locking device of the bone anchoring device according to Fig. 1.

[0012] Fig. 4 shows a sectional view of the bone anchoring device according to Fig. 2 in a plane containing the rod axis.

[0013] Fig. 5 shows a side view of the bone anchoring element of Fig. 1.

[0014] Fig. 6 shows an enlarged portion of containing the engagement structure of the bone anchoring element of Fig. 5.

20 [0015] Fig. 7 shows partially sectional view of the bone anchoring device according to Fig. 4 without the locking element.

[0016] Fig. 8 shows a schematic view of the forces acting onto the rod in the conventional bone anchoring device.

[0017] Fig. 9 shows a schematic sectional view of the forces acting onto the rod and the engagement structure in a bone anchoring device according to the first embodiment invention.

30 [0018] Fig. 10a schematically shows a second embodiment of the invention.

[0019] Fig. 10b shows a schematic view of the pressure distribution acting onto the rod according to the second embodiment.

[0020] Fig. 11 shows a perspective view of the bone anchoring device according to a third embodiment in an assembled state.

[0021] Fig. 12 shows an exploded view of the bone anchoring device according to Fig. 11.

40 **[0022]** Fig. 13 shows a perspective view of the pressure element of the bone anchoring device according to Fig. 12.

[0023] Fig. 14 shows a bottom view of the pressure element of Fig. 13.

45 **[0024]** Fig. 15 shows a top view of the pressure element of Fig. 13.

[0025] Fig. 16 shows a perspective view of a bone anchoring device according to a fourth embodiment in an assembled state.

50 [0026] Fig. 17 shows an exploded view of the bone anchoring device of Fig. 16.

[0027] Fig. 18 shows a perspective view from the lower side of the filling piece of the bone anchoring device according to Fig. 17.

[0028] Fig. 19 shows a sectional view of the filling piece of Fig. 18.

[0029] Fig. 20 shows a side view of the filling piece of Fig. 18.

20

40

50

55

Fig. 21 shows a bottom view of the filling piece according to Fig. 18 and

[0030] Fig. 22 shows a top view of the filling piece according to Fig. 18.

[0031] As shown in Figures 1 to 5 the bone anchoring device according to a first embodiment comprises a bone anchoring element 1 having a shank 2 with a bone thread and a tip at one end and a receiving part 3 at the opposite end. The receiving part 3 is substantially cylindrically-shaped and comprises a substantially U-shaped recess 4 forming two free legs 5, 6. An internal thread 7 is provided on the legs. The bottom of the U-shaped recess forms a seat 8 for receiving a rod 9. The rod 9 is used to connect several bone anchoring elements. To secure the rod 9 in the recess 4 a locking element in the form of an inner screw 10 is provided which can be screwed-in between the legs 5, 6.

[0032] The rod 9 is made of a biocompatible, elastic material, preferably of plastics. In particular, the material is a free-flowing material. For example, the rod 9 is made of an elastomer material basis of polycarbonate-polyurethane or polycarbonate urethane (PCU).

[0033] As can be seen in particular in Figures 1, 4 and 5 rib-like projections 11 are provided on the surface of the seat 8. The rib-like projections 11 extend in a direction perpendicular to the longitudinal axis L of the recess 4. Therefore, they extend perpendicular to the longitudinal axis L_R of the rod 9. The projections 11 have such a length that they form a curvature corresponding to the seat 8. They end at a distance from the internal thread 7. The rib-like projections 11 may run out on one or on either side in groove-like recesses which provide depressions in the surface of the seat 8 (not shown). Alternatively, depressions in the surface of the seat adjoining the projections can be provided to allow a material to flow into these depressions.

[0034] In the embodiment shown two rib-likes projections 11 are provided at a distance of the center of the seat 8 in the direction of the rod axis L_r . Preferably the distance from the outer ends of the seat 8 to the rib-like projection 11 is smaller than the distance between the rib-like projection 11 and the center of the seat 8. That means, the rib-like projections are provided in the outer region of the seat. To achieve secure clamping, two projections on the seat are sufficient.

[0035] The inner screw 10 which is to be screwed in between the legs 5, 6 comprises at its lower side 10a which faces the rod 9 a ring-shaped projection 12 in the form of an annular.rib with a central cavity. When, as shown in Fig. 4, the ring-shaped projection 12 comes into contact with the rod 9, two contact areas 12a, 12b are provided where the ring-shaped projection presses onto the rod. The diameter of the ring-shaped projection 12 is such that the contact areas 12a, 12b are located at the same position but at the opposite side of the surface of the rod 9 where the contact areas 11a and 11b of the rib-like projections of the seat 8 are located.

[0036] As shown in particular in Figures 4 and 6, the rib-like projection 11 and the ring-shaped projection 12 have an asymmetric cross section in a plane containing the longitudinal axis L_R of the rod or in a plane parallel thereto. As shown in Fig. 6, the cross section is substantially triangle-shaped resulting in a first flank 14a and an opposite second flank 14b which have a different inclination. In the embodiment shown the first flank 14a includes an angle α with the normal N to the surface of the seat 8 which is approximately 10° and the second flank 14b includes an angle β with the normal N to the surface of the seat 8 which is approximately 35°. Other angles are also possible, as long as one flank is steeper than the other flank $\alpha < \beta$ for example, $\alpha < 45^{\circ}$ and $\alpha < \beta$. The angle α is preferably between greater than 0° and smaller than approximately 15°. The angle β is preferably between approximately 30° and approximately 45°. As shown in Fig. 6, the edge 14c of the rib is rounded. The second projection on the seat 8 which is shown in Fig. 1 has a similar structure except that the orientations of the first and second flank are mirrored. That means that the steep flanks 14a are oriented towards the center C of the seat, as shown in Fig. 4.

[0037] As shown in Figures 3 and 4 the ring-shaped projection 12 of the locking device also has an asymmetric cross section having a first flank 15a and a second flank 15b with different inclinations. The steep flank 15a is facing the center of the ring and the flank 15b is directed outward. The angles α and β are preferably the same as those of the rib-like projections 11.

[0038] As can be seen in Fig. 4 the orientation of the flanks of the rib-like projection 11 and of the ring-shaped projection 12 are such that the steep flanks are directed towards the center of the seat and of the inner screw, respectively. As a consequence thereof, the outer flanks having the smaller inclination are directed to the outer areas of the anchoring element or the locking element, respectively.

[0039] The bone anchoring element 1 and the inner screw 10 are made of a biocompatible rigid material, preferably of a metal, such as titanium or a titanium alloy.

[0040] In use, first at least two bone anchoring elements are screwed into adjacent vertebrae, for example into the pedicles of the vertebrae. Thereafter, the rod 9 is inserted into the receiving parts 3 until it is seated in the seat 8. Then the rod is locked in its position by screwing-in the inner screw 10. When the inner screw 10 is not yet tightened, the position of the rod can still be adjusted in a stepless manner, since the rod has a smooth surface. After adjusting the position of the rod the inner screw 10 is tightened until the ring-shaped projection 12 comes into contact with the surface of the rod. As can be seen in Fig. 4 the opposite portions 12a and 12b of the ringshaped projection are pressed down into the surface of the rod. Similarly, the rib-like projections 11 are pressing on the surface of the rod from below. The projections do not harm the integrity of the surface of the rod. The rod begins to flow under applied pressure. This material flow

25

30

40

results in an indirect form-fit connection. The combination of direct frictional forces and indirect form-fit forces holds the rod in place.

[0041] Fig. 7 shows a partially sectional view of a part of the receiving part 3 with seat 8 and projection 11 shown in section and the rod 9. A depression 16 is shown which is caused by pressure of the rib-like projection 11 pressing onto the rod 9. When the rod 9 is fixed and a force F acts in the longitudinal direction of the rod 9, the steep flank 14a provides the counterforce against translational movement of the rod 9. The counterforce provided by the steep flank 14a is larger than the counterforce which would be provided by a flank having the same inclination than the flank 14b at the same local pressure.

[0042] As can be seen in Figs. 8 and 9, the normal force F_{normal} of the force F acting in longitudinal direction of the rod is larger in the conventional design of the rib which has symmetric shape (Fig. 8), compared to the normal force F_{normal} for the asymmetric engagement structure (Fig. 9). Hence, to fix the rod with the symmetric rib as shown in Fig. 8, a larger clamping force exerted by the locking device is necessary than in the case of the asymmetric rib as shown in Fig. 9. Therefore, the local pressure applied to the rod via the engagement structure can be reduced with the asymmetric design of the engagement structure.

[0043] Preferably, only two ribs are provided in the seat as shown in Fig. 4, the distance of which corresponds to the diameter of the ring-shaped projection on the lower surface of the locking device. The orientation of the flanks is mirror-symmetrical, so that the effect described above can be obtained for tensional loads acting in one or the opposite longitudinal direction of the rod.

[0044] Fig. 10a shows a schematic view of the receiving part 3 of the bone anchoring device according to a second embodiment seen in the direction of the rod axis. The rib-like projection 11' in this embodiment is non-concentric about the rod axis L_R . The distance from the rod axis varies between a radius R_1 and R_2 , wherein R_2 is greater than R_1 . At the bottom of the seat 8 the height of the rib-like projection 11' is the smallest while the height of the projection 11' is increasing in a direction varying from the center of the seat and thereafter decreasing again when it runs out into the direction of the legs 5,6.

[0045] As can be seen in Fig. 10b this results in a more uniform pressure distribution acting onto the rod 9. Uniform pressure distribution means that there are no local pressure peaks. In this embodiment, the cross section of rib-like projection 11' can be symmetric or asymmetric in a plane containing the longitudinal axis of the rod.

[0046] Figs. 11 to 15 show a third embodiment of the invention in the form of a polyaxial bone anchoring device. The bone anchoring device 1' comprises a bone anchoring element 20 in the form of a polyaxial bone screw having a screw element with a shank 21 with a bone thread, a tip at one end and a spherical head 22 at the opposite end. A recess 23 for engagement with the screwing-in tool is provided at the side of the head 22

which is opposite to the shank.

[0047] The bone anchoring element 20 further comprises a receiving part 25 which has a first end 26 and a second end 27 opposite to the first end and a central axis C intersecting the plane of the first end and the second end. Coaxially with the central axis C a bore 29 is provided which extends from the first end to a distance from the second end. At the second end 27 an opening 30 (shown in dashed line) is provided the diameter of which is smaller than the diameter of the bore 29. The head 22 is pivotably held in the receiving part 25 with the shank extending through the opening 30.

[0048] The receiving part 25 further has a substantially U-shaped recess 31 which starts at the first end 26 and extends in the direction of the second end 27. By means of the U-shaped recess to free legs 32, 33 are formed, which have an internal thread 34.

[0049] A pressure element 35 is provided which has a substantially cylindrical construction with an outer diameter which is only slightly smaller than the inner diameter of the bore 29 to allow the pressure element 35 to be introduced into the bore 29 of the receiving part and to be moved in the axial direction. On its lower side facing towards the second end 27, the pressure element 35 comprises a spherical recess 36 the radius of which corresponds to the radius of the spherical head 22 of the screw element. On the opposite side the pressure element 35 comprises a U-shaped recess 37 extending transversely to the central axis C. The lateral diameter of this recess is selected such that the rod 9 which is to be received in the receiving part 25 can be inserted into the recess 37 and guided laterally therein. The depth of the U-shaped recess 37 is such that in an assembled state when the rod is placed into the U-shaped recess, the pressure element does not project over the upper surface of the rod.

[0050] The bottom of the U-shaped recess of the pressure element 35 forms a seat 38 for the rod 9. Similar to the first embodiment two rib-like projections 39 are provided on the surface of the seat 38. The rib-like projections 39 extend in a direction transversely to the longitudinal axis of the U-shaped recess 37 and, therefore, transversely to the longitudinal axis L_r of the rod 9. As can be seen in particular in Fig. 15, the rib-like projections 39 have an asymmetric shape with a steep flank directed to the center of the pressure element. The pressure element further comprises a coaxial bore 40 to allow access to the recess 23 of the head 22 with a screwing-in tool.

50 [0051] The locking element is the inner screw 10 as in the first embodiment which has the ring-shaped projection 12 on its side 10a facing the rod 9. The dimensions of the ring-shaped projection 12 are such that the projection contacts the surface of the rod at the opposite
 55 side of the rib-like projections 39, respectively.

[0052] In use, the bone anchoring element can be preassembled, i.e. the bone screw is pivotably held in the receiving part and the pressure element is inserted and

slightly held in a position in which its U-shaped recess is aligned with the U-shaped recess of the receiving part. The bone anchoring element is screwed into the bone and the angular position of the receiving part relative to the bone screw is adjusted. The rod 9 is inserted and the inner screw 10 tightened until it clamps the rod. The function of the clamping is the same as in the first embodiment. When the inner screw is tightened, it presses onto the upper surface of the rod and hence presses down the pressure element onto the head 22 to lock the angular position of the head in the receiving part.

[0053] As the locking of the rod is achieved by pressing the projections 39, 12 into the surface of the rod without harming the integral structure of the rod a reversal of the locking and secondary adjustments are possible.

[0054] Figs. 16 to 22 show a fourth embodiment of the bone anchoring device. The bone anchoring device 1" is of the polyaxial type as the third embodiment. Parts which are identical to the third embodiment are indicated with the same reference numerals and the description thereof is not repeated. The fourth embodiment differs from the third embodiment by the locking device. The locking device 100 is a two-part locking device and comprises a filling piece 101 and an inner screw 102. The filling piece is shown in detail in Figs. 18 to 22. The filling piece 101 has a substantially square shaped upper end 105 with a circular opening 106 and a cylindrical recess 107 the radius of which corresponds to the radius of the rod 9. On the surface of the cylindrical recess 107 two rib-like projections 108 are provided which extend in a direction transverse to the cylinder axis. The rib-like projections 108 each are shaped asymmetrically with a first steep flank facing the center of the filling piece and a second flank directed outwardly of the filling piece, respectively. The distance between the rib-like projections corresponds to the distance of the rib-like projections 39 of the pressure element 35. In an assembled state, the riblike projections of the pressure element and the filling piece are located on opposite sides of the surface of the rod, respectively.

[0055] The filling piece further comprises two projections 109 which fit into the space enclosed by the internal thread 34 to slide along the internal thread when the filling piece is inserted.

[0056] The dimension of the filling piece 101 and the pressure element 35 is such that the projections 109 come into contact with the upper end of the pressure element when the filling piece 101 is pressed onto the rod. [0057] The screw 102 comprises a cylindrical projection (not shown) fitting into the opening 106 of the filling piece in such a way that it can still rotate therein.

[0058] In use, the bone anchoring element and the receiving part and a pressure element can be preassembled. The bone anchoring element is screwed into the bone. Then, the rod 9 is inserted and the locking device comprising the filling piece 101 and the inner screw 102 is inserted. The inner screw is tightened thereby pressing the filling piece 101 onto the surface of the rod. Hence,

the rod is clamped between the pressure element and the filling piece and the engagement structure in form of the ribs 39 and the ribs 108 engages the surface of the rod as in the previous embodiments. By pressing down the filling piece, the pressure element is also pressed down and locks the head 22 in its rotational position.

[0059] Modifications of the above described embodiments are possible. Features of one embodiment can be combined with that of another embodiment.

[0060] The number of the rib-like projections can vary. Also, a combination of projections and depressions can be provided. In this case, it is of advantage that also the depressions have an asymmetric cross section. This allows the material which is displaced when the projections press onto the surface of the rod to flow out of the depressions to generate an indirect form-fit connection. The depressions can have a symmetric or asymmetric cross section. If the depressions also have an asymmetric cross section the clamping force of the rod can be reduced further while maintaining the same axial reaction loads.

[0061] The rod needs not to have a circular cross section, it can have an oval, rectangular, square or triangular cross section as well.

[0062] The projections on/or depressions need not to have a rib or groove-like structure, but can have any shape, as long as at least the projections have an asymmetric cross section having at least two flanks, one of which is steeper than the other.

[0063] The receiving part and the pressure element can be modified in many known ways. For example, the receiving part can be designed such that the head 22 of the bone anchoring element can be introduced from the bottom. The pressure element can extend above the surface of the rod when the rod is inserted and the locking device 10 can be a two-part locking device including inner set screw and an outer screw in the known manner. In this case, the inner set screw has the engagement structure. The locking devices also can be an outer nut or can include an outer nut cooperating with the legs of the receiving part.

Claims

40

45

50

Bone anchoring device comprising an anchoring element having a shank (2; 21) to be anchored in a bone or a vertebra; a rod (9) for connecting at least two anchoring elements, the rod being made of an elastic material;

a receiving part (3; 25) being connected to the shank for receiving the rod;

a seat (8; 38) for the rod being provided in the receiving part, the seat having a rod contacting surface;

a locking device (10; 100) cooperating with the receiving part for fixation of the rod in the seat,

25

the locking device comprising a rod contacting surface;

wherein the rod contacting surface of the seat and/or the rod contacting surface of the locking device comprises an engagement structure (11, 12; 39; 108) for engaging the rod, the engagement structure having an asymmetric cross section.

- 2. The bone anchoring device according to claim 1, wherein the asymmetric cross section of the engagement structure lies in a plane parallel to the longitudinal axis (L_R) of the rod.
- 3. The bone anchoring device according to claim 1 or 2, wherein the asymmetric cross section of the engagement structure is triangle-shaped.
- 4. The bone anchoring device according to one of claims 1 to 3, wherein the engagement structure has, when seen in a direction perpendicular to the longitudinal axis of the rod, a first flank (14a) and a second flank (14b) opposite to the first flank, the first and the second flank having a different inclination.
- 5. The bone anchoring device according to one of claims 1 to 4, wherein the engagement structure (11, 12; 39; 108) is a rib-like projection.
- 6. The bone anchoring device according to one of claims 1 to 5, wherein the engagement structure comprises two rib-like projections spaced apart from the center of the rod contacting surface.
- 7. The bone anchoring device according to one of claims 1 to 6, wherein the rod is is held in place by a frictional force exerted by the locking device with an indirect form-fit contribution by means of the engagement structure engaging the rod.
- 8. The bone anchoring device according to one of claims 1 to 7, wherein the receiving part (3) is fixedly connected to the shank (2) so as to provide a monoaxial bone anchoring device.
- 9. The bone anchoring device according to claim 8, wherein the receiving part has a U-shaped recess (4) forming two open legs (5, 6) and wherein the seat (8) is provided at the bottom of the recess (4).
- 10. The bone anchoring device according to one of claims 1 to 7, wherein the receiving part (25) is pivotably connected to the shank (21) so as to provide a polyaxial bone anchoring device.
- 11. The bone anchoring device according to claim 10, wherein the seat (38) is provided in a pressure element which is movable in the receiving part (25) and

which locks the angular position of the bone anchoring element if pressure is exerted on the pressure element.

- 12. The bone anchoring device according to one of claims 1 to 11, wherein the locking device (10) is a one piece locking device which has the engagement structure (12) at its lower side facing the rod.
- 13. The bone anchoring element according to claims 1 to 12, wherein the locking device (100) is a two piece locking device comprising a set screw (102) and a filling piece (101) between the set screw and the rod, the engagement structure (108) being provided at the lower side of the filling piece.
 - 14. The bone anchoring device according to one of claims 1 to 13, wherein the rod (9) is made of a freeflowing material, preferably of an elastomer material.
 - 15. The bone anchoring device according to one of claims 1 to 14, wherein the engagement structure comprises a projection (11') having two ends and an center between the two ends and wherein the the height of the projection varies over the length in such a way that a uniform pressure distribution is obtained when the projection presses against the rod.
 - 16. The bone anchoring device of claim 15, wherein the projection (11') comprises a center between the two ends and a portion including the center and wherein the heigth is decreasing in that portion towards the center.
 - 17. Bone anchoring device comprising an anchoring element having a shank (2; 21) to be anchored in a bone or a vertebra; a rod (9) for connecting at least two anchoring elements, the rod being made of an elastically compressible material;

a receiving part (3; 25) being connected to the shank for receiving the rod;

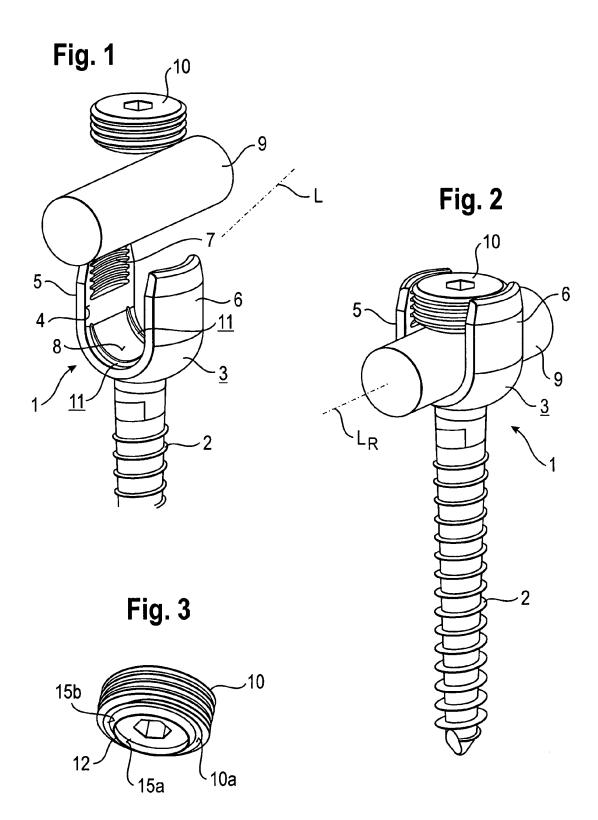
a seat (8; 38) for the rod being provided in the receiving part, the seat having a rod contacting surface;

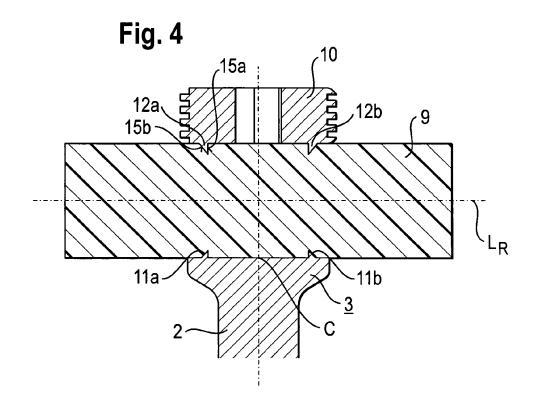
a locking device (10; 100) cooperating with the receiving part for fixation of the rod in the seat, the locking device comprising a rod contacting surface:

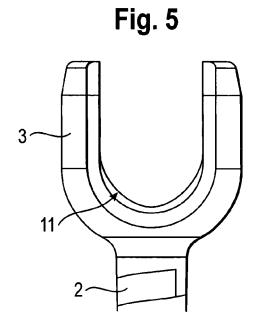
wherein the rod contacting surface of the seat and/or the rod contacting surface of the locking device comprises an engagement structure for engaging the rod, the engagement structure comprising a projection (11') having two ends and extending over a length between the two ends and wherein the the height of the projection varies over the length in such a way that a uniform pressure distribution is obtained

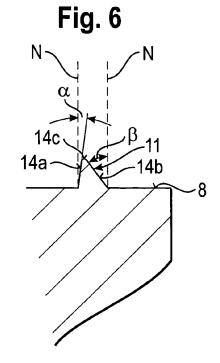
6

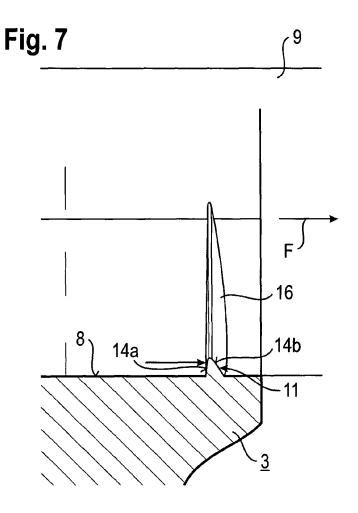
40


45


50


55


when the projection presses against the rod (9).


18. The bone anchoring device of claim 17, wherein the projection (11') comprises a center between the two ends and a portion including the center and wherein the height is decreasing in that portion towards the center.

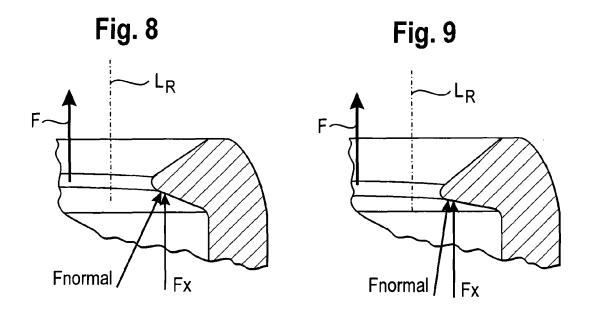


Fig. 10a

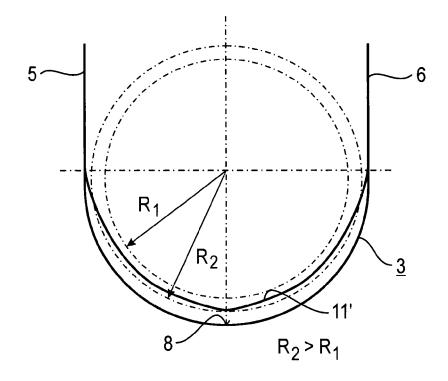
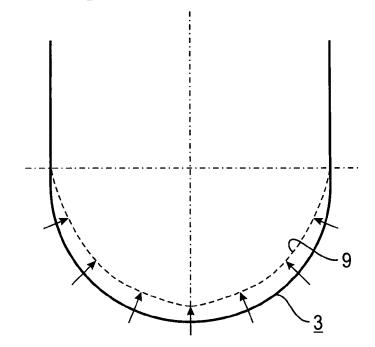



Fig. 10b

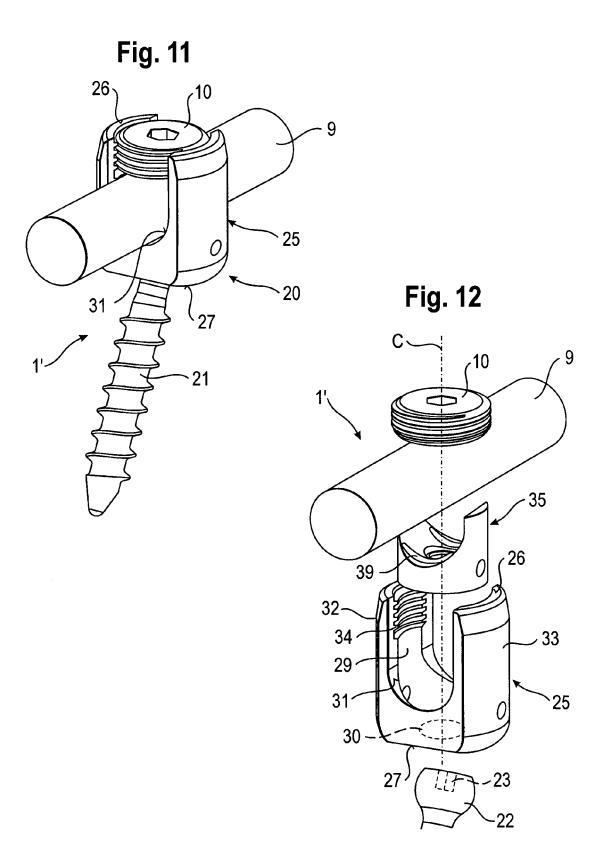


Fig. 13

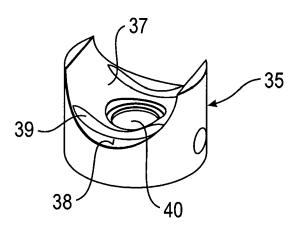
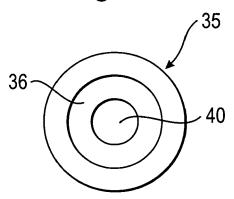
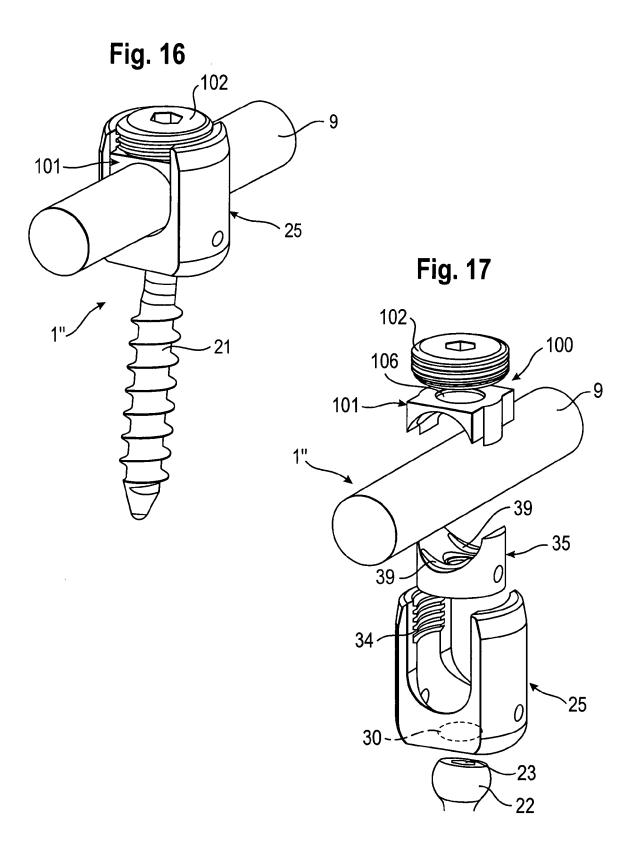
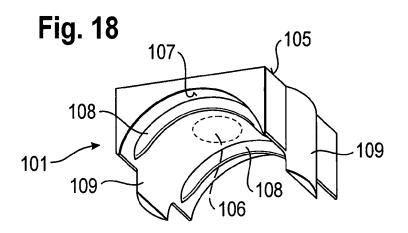
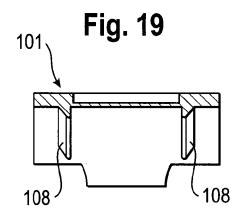
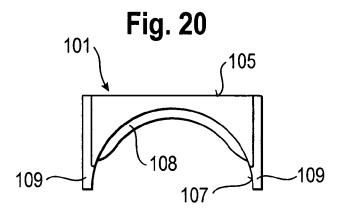
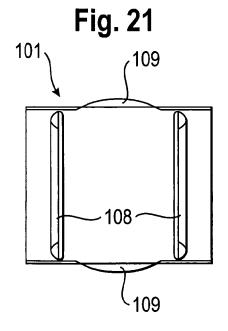


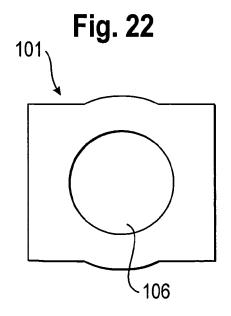
Fig. 14




Fig. 15





EUROPEAN SEARCH REPORT

Application Number EP 07 01 4318

	DOCUMENTS CONSIDI	ERED TO BE RELEVANT	Γ		
Category	Citation of document with in of relevant passa	dication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)	
D,Y	EP 1 795 134 A (BIE [DE]) 13 June 2007 * abstract; figures * paragraphs [0016]	1,3a-4c *	1,3-14	INV. A61B17/70	
X	AL) 8 June 2006 (20 * abstract; figures	DREWRY TROY D [US] ET 06-06-08) 1,16,19,21 * , [0060], [0063] *	1-3,8,9,		
Y	FR 2 829 014 A (STR 7 March 2003 (2003- * abstract; figures * page 8, lines 8-2	03-07) 1-3 *	1,3-14		
A	DE 298 10 798 U1 (S [DE]) 28 October 19 * abstract; figure		1,3,5, 7-9,12		
A	US 2005/187548 A1 (ET AL) 25 August 20 * abstract; figures		1,3,5,7, 9-11,13	TECHNICAL FIELDS SEARCHED (IPC)	
A	WO 95/14176 A (CROS 26 May 1995 (1995-0 * abstract; figures	S MED PROD INC [US]) 5-26) 1,4,6 *	1-5,7-9, 12	A61B	
A	DE 94 03 231 U1 (AE 21 April 1994 (1994 * abstract; figures		1-3,5-9,		
A	DE 198 18 765 A1 (S [DE]) 14 October 19 * abstract; figures * column 3, lines 7	1-3 *	1,17		
		-/			
	The present search report has b	peen drawn up for all claims			
	Place of search	Date of completion of the search		Examiner C+ 5 ph p p p	
	The Hague	9 April 2008	<u> </u>	aire, Stéphane	
CATEGORY OF CITED DOCUMENTS X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background		E : earlier paten after the filing Ier D : document ci L : document cit	T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document oited for other reasons		
O : non-	-written disclosure mediate document		he same patent family		

EUROPEAN SEARCH REPORT

Application Number EP 07 01 4318

ategory	Citation of document with indication of relevant passages	n, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
A	EP 1 527 742 A (SPINELA SPINELAB AG [CH]) 4 May * abstract; figures 1,4 * paragraph [0001] *	2005 (2005-05-04)	17,18	
A	EP 0 346 521 A (ACROMED 20 December 1989 (1989-* abstract; figures 3,4	12-20)	17,18	
				TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has been dr	awn up for all claims		
	Place of search The Hague	Date of completion of the search 9 April 2008	Mac	_{Examiner} aire, Stéphane
X : part Y : part docu	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another iment of the same category nological background	T : theory or principle E : earlier patent doo after the filing date D : document cited in L : document cited fo	underlying the ir ument, but publis the application r other reasons	nvention shed on, or
O:non	-written disclosure rmediate document	& : member of the sa document		

Application Number

EP 07 01 4318

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:
The present supplementary European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims (Rule 164 (1) EPC).

LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 07 01 4318

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. claims: 1-16

Bone anchoring device with an engagement structure having an asymmetric cross section.

2. claims: 17-18

Bone anchoring device with an engagement structure comprising a projection having two ends and extending over a length between the two ends and wherein the height of the projection varies over the length in such a way that a uniform pressure distribution is obtained when the projection presses against the rod.

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 07 01 4318

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

09-04-2008

	Patent document ed in search report		Publication date		Patent family member(s)		Publicatio date
EP	1795134	Α	13-06-2007	CN	1965770	Α	23-05-2
US	2006122599	A1	08-06-2006	EP JP WO US US	1450726 2005507705 03037216 2003083657 2004172025	T A2 A1	01-09-2 24-03-2 08-05-2 01-05-2 02-09-2
FR	2829014	Α	07-03-2003	DE EP WO JP US	60208398 1429673 03024343 2005502422 2005240180	A1 A1 T	03-08-2 23-06-2 27-03-2 27-01-2 27-10-2
DE	29810798	U1	28-10-1999	NONE			
US	2005187548	A1	25-08-2005	AU US WO	2005206822 2008021473 2005070165	A1	04-08-2 24-01-2 04-08-2
WO	9514176	Α	26-05-1995	AU	1290895	Α	06-06-
DE	9403231	U1	21-04-1994	NONE			
DE	19818765	A1	14-10-1999	AT EP ES US	301429 0956828 2246551 6117137	A2 T3	15-08-2 17-11-2 16-02-2 12-09-2
EP	1527742	Α	04-05-2005	AT CA ES JP US	333841 2485157 2269957 2005131394 2005096659	A1 T3 A	15-08-2 30-04-2 01-04-2 26-05-2
EP	0346521	Α	20-12-1989	JP JP JP US	1314564 1839940 5048697 4950269	C B	19-12-1 25-04-1 22-07-1 21-08-1

EP 2 016 916 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 1759646 A1 [0002]

• EP 1795134 A1 [0003]