
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

03
1

52
0

A
1

��&��
����
����
(11) EP 2 031 520 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
04.03.2009 Bulletin 2009/10

(21) Application number: 07017213.5

(22) Date of filing: 03.09.2007

(51) Int Cl.:
G06F 17/30 (2006.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE
SI SK TR
Designated Extension States:
AL BA HR MK RS

(71) Applicant: SOFTWARE AG
64297 Darmstadt (DE)

(72) Inventors:
• Harbarth, Juliane

64347 Griesheim (DE)
• Fiebig, Thorsten

68259 Mannheim (DE)

• Winkler, Kay
64287 Darmstadt (DE)

(74) Representative: Heselberger, Johannes
Patent- und Rechtsanwälte
Bardehle . Pagenberg . Dost .
Altenburg . Geissler
Postfach 86 06 20
81633 München (DE)

Remarks:
Amended claims in accordance with Rule 137(2)
EPC.

(54) Method and database system for pre-processing an XQuery

(57) The invention relates to a method of pre-
processing an XQuery (10) on a XML data base com-
prising the steps of parsing the XQuery to obtain an ab-
stract syntax tree (20), typing the abstract syntax tree

(20) to provide at least one pointer into a schema (30;
100, 200) for XML documents of the XML data base,
wherein the typing step involves the use of schema (30;
100, 200) and accumulated instance data (40; 300) of
the XML data base.

EP 2 031 520 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

1. Technical field

[0001] The present invention relates to a method and
a database system for pre-processing an XQuery.

2. The prior art

[0002] XML databases are due to their flexibility more
and more important technical tools of a modem informa-
tion society. The efficient retrieval of XML data in re-
sponse to a query is the primary purpose of almost any
database system operating on a XML data base.
[0003] Executing a query upon an XML data base is
performed in multiple steps which are schematically
shown in Fig. 1. At first, the raw query, which is typically
defined in the XML Query Language (XQuery) is parsed,
i.e. the different tokens of the query are recognized and
the query is subsequently represented as a structured
object, which is often referred to as Abstract Syntax Tree
(AST).
[0004] In a next step the query is further processed,
i.e. the AST undergoes certain changes or adornments
that provide hints of how to create the query execution
plan. The execution plan is a sequence of steps to be
performed to obtain the query result. In this context, it is
important to distinguish between compile-time and run-
time steps. Only the query execution occurs at run-time,
i.e. actually accesses the real data. Every other step hap-
pens at compile-time and can be considered to represent
pre-processing steps. The overall purpose of any com-
pile-time query action is to keep the actual run-time ac-
cess short.
[0005] In the prior art as shown in Fig. 1, it is known to
use schema data, for the typing of the query, which is
part of the query pre-processing (cf. the document
"XQuery 1.0 and XPath 2.0 Formal Semantics", available
at http://www.w3.org/TR/xquery-semantics/). Typing
tries to attach a type to every expression being part of
the query. This requires an underlying type system de-
fining which types exist. In case of queries upon an XML
data base, a possible type system is provided by the W3C
XML Schema. Typing a query has two main purposes.
Firstly, some type errors can be detected (and better
pointed at) already at compile time. The second and more
important advantage is that type information provides
hints for query optimization and/or execution, especially
with respect to index usage. This is illustrated based on
the following exemplary query:

for $book in input()//book
where $book/author/last ="Suciu"
return $book/title

[0006] This query returns all titles of books in the cur-
rent collection that have an author with last name ’Suciu’.
Using an index upon "author/last" the execution of the

above query uses less processing time and efforts, be-
cause the index lists all documents that actually contain
"Suciu" as a book’s author. Looking at every document
individually is therefore not needed. Only title elements
of these books have to be extracted.
[0007] The query pre-processing shown in Fig. 1 finds
out that an index is applicable by evaluating the schema
data to make sure that the path expression that denotes
the value for which the indicated condition holds, only
points to a certain field. Further, the XML database must
have an index defined upon that field.
[0008] However, in some situations, the use of the
schema data alone for successfully pre-processing an
XQuery is not sufficient, in particular if the search condi-
tion is not as simple as in the above example. As a result,
in spite of the typing step in Fig. 1, substantial time and
processing power will still be needed for the major parts
of queries that are executed on the XML data base.
[0009] It is therefore the technical problem underlying
the present invention to improve the pre-processing of
an XQuery on a XML database so that the execution of
a correspondingly pre-processed XQuery can be better
optimized and less processing time and efforts of the
hardware of the database system is eventually needed
during runtime.

3. Summary of the invention

[0010] In one aspect of the invention, this problem is
solved by a method of pre-processing an XQuery on a
XML data base comprising the steps of parsing the
XQuery to obtain an abstract syntax tree, typing the ab-
stract syntax tree to provide at least one pointer into a
schema for XML documents of the XML data base,
wherein the typing step involves the use of schema and
accumulated instance data of the XML data base.
[0011] According to the present invention, typing infor-
mation is added during XQuery pre-processing to at least
some of the expressions in the XQuery AST. The typing
information is a set of pointers into element or attribute
descriptions in the schema underlying the XML docu-
ments of the XML data base. Using accumulated in-
stance data in addition to schema data allows to reduce
the set of pointers to a smaller set, which in turn will re-
duce the number of documents to be looked at, when the
query is finally executed.
[0012] In one embodiment, the accumulated instance
data comprises a list of paths representing elements
and/or attributes occurring in XML documents of the XML
data base. Such a list facilitates the optimal use of one
or more indexes on the XML documents of the XML data
base.
[0013] More generally speaking, the XQuery prefera-
bly comprises an XPath expression and the last method
step comprises preferably a step of identifying a set of
pointers onto the schema in accordance with the XPath
expression and a step of excluding pointers, which ac-
cording to the accumulated instance data do not occur

1 2

EP 2 031 520 A1

3

5

10

15

20

25

30

35

40

45

50

55

in the XML data base. The XPath expression may be
examined from the left to the right and may include a
location step along a child or attribute axis. If so, the cor-
responding step of identifying a set of pointers onto the
schema is preferably performed before the step of ex-
cluding pointers, which according to the accumulated in-
stance data do not occur in the XML data base.
[0014] When the XPath expression is examined from
the left to the right and includes a location step along a
descendant or descendant-or-self axis, the correspond-
ing step of identifying a set of pointers onto the schema
is preferably performed after the step of excluding point-
ers, which according to the accumulated instance data
do not occur in the XML data base.
[0015] Combining the two sources of information,
namely the schema data and the instance data, in a man-
ner, which depends on the specific location step of the
XPath expression of the query, facilitates the later opti-
mization of the query. After pre-processing and optimi-
zation, the query can be executed and the results thereof
displayed to a user or stored on a storage medium.
[0016] According to a further aspect of the present in-
vention, the second of the above indicated method steps
may further comprise the calculation of the expected
numbers of documents of the XML data base, which must
be searched for executing the pre-processed XQuery
during runtime. The expected number may be indicated
as an interval between a minimum and a maximum
number. Providing such a number can be valuable, since
it allows to estimate the amount of time, which is - for a
given hardware and software combination of a database
system - needed to actually execute the query.
[0017] Additional modifications or amendments of the
described method are defined in further dependent
claims.
[0018] Further, the present invention concerns a com-
puter program comprising instructions adapted to per-
form any of the above described methods. Such a soft-
ware may be installed on any kind of hardware involved
with the processing of database queries such as a main-
frame, a server or client of a client-server architecture or
any other kind of processing system.
[0019] Finally, the present invention relates to a data-
base system for an XML data base comprising a search
engine for XQueries, the search engine being adapted
to perform any of the above described methods.

4. Short description of the drawings

[0020] In the following detailed description, presently
preferred embodiments of the invention are further de-
scribed with reference to the following figures:

Fig. 1: A schematic flow chart of query processing in
accordance with the prior art;

Fig. 2: An exemplary schema for the XML documents
of an exemplary XML data base;

Fig. 3: An additional definition for the schema of Fig. 2;

Fig. 4: An example of accumulated instance informa-
tion;

Fig. 5: A schematic flow chart illustrating query
processing in accordance with an embodiment
of the present invention.

5. Detailed description of preferred embodiments

[0021] In the following, preferred embodiments of the
invention are described. At first, a substantially simplified
example for the combination of schema based informa-
tion with information based on accumulated user data is
presented. In a second part, the general concept and its
various alternatives are generally discussed.
[0022] Fig. 2 presents an example of a XML schema
100, which defines the structure of XML documents of a
XML data base. The XML schema of Fig. 2 is strictly
adhering to the respective W3C recommendation, which
can for example be found at http://www.w3.org/TR/xmls-
chema-0/. As an amendment to the schema of Fig. 2,
there might be a proprietary notation to state that a certain
field described in the XML schema is defined as an index.
This amendment might look as shown under the refer-
ence numeral 200 in Fig. 3.
[0023] In case of a simple query as mentioned above
in the introductory part, the XML schema 100 of Fig. 2
and, more specifically, the amendment 200 of Fig. 3 allow
to detect during query pre-processing that the index de-
fined in the amendment 200 can be used for efficiently
executing such a query. In this case, the information pro-
vided with the path in the query is fully sufficient to point
to the corresponding entry in the schema and to thereby
successfully pre-process the whole query without the use
of any instance data.
[0024] There are however situations where looking at
the path information provided with the query and the
schema does not suffice, as in the following exemplary
query:

for $book in input()//book
where $book//last ="Suciu"
return $book/title

[0025] Here, the index defined in the amendment 200
upon "author/last" can not be used, since the path state-
ment "$book//last" also points to the element "editor/last"
of the XML schema.
[0026] In such a situation accumulated instance infor-
mation can additionally be used for query pre-processing.
For example, the information that no editor’s last name
is provided throughout all of the XML documents of the
database would re-allow to use the index defined upon
"author/last".
[0027] Generally, the term "accumulated instance in-
formation" can refer to any kind of information which el-

3 4

EP 2 031 520 A1

4

5

10

15

20

25

30

35

40

45

50

55

ements or attributes that are described in the XML sche-
ma of the XML data base actually occur in instances, or
how often they occur, or even which values are realized.
In the simplified example of Fig. 4, it is assumed that the
accumulated instance information is a list or table 300 of
paths representing all elements, which are possible in
XML documents according to the schema of Fig. 2 (ex-
cept for the document element that necessarily occurs
in every document). Each such path gets paired with a
list of document ids pointing to those documents in which
that element occurs.
[0028] Returning to the above exemplary query based
on a path "book//last", it might be best to design the query
execution in two phases. The one document containing
an editor/last element can be dealt with individually and
for the rest of the data, using the index defined upon
author/last is still appropriate.
[0029] The efficiency gain obtained by applying the
present invention is substantial: Rather than disregarding
the index defined upon "author/last" and searching
through all of the XML documents in the data base, the
accumulated instance data allow to retain the use of the
index and to directly investigate only a single additional
document of the XML data base.
[0030] Explaining embodiments of the invention now
in more general terms, typing during XQuery pre-
processing comprises the addition of type information
preferably to each expression in the XQuery AST. The
type information that is added to an expression denoting
a sequence of nodes from the XML data base comprises
preferably the following items:

- A set of pointers into the schema;
- For each set schema pointers, a set of documents,

in which the current nodes adhering to this schema
pointer are to be found;

[0031] The resulting type information is obtained by
following both sources of typing information and by com-
bining the retrieved information. Examining expressions
thus leads to a navigation through both information sourc-
es. This is schematically shown in Fig. 4. Similar to Fig.
1, there is at first a parsing step for the XQuery 10 leading
to the AST 20. However, in contrast to the flow chart of
Fig. 1, the AST 20 is further pre-processed based on
both, schema data 30 and instance data 40, which to-
gether lead to the typed query 50. Further optional opti-
mization steps eventually provide the executable code
60 for the XQuery.
[0032] In the following, an overview is provided of pos-
sible expressions in an XQuery, and how to pre-process
them based on a combination of schema and accumu-
lated instance information. The expressions comprise
among others of the following groups:

- XPath Expressions
- XPath Expressions with filter conditions
- Joins

- Sequence Operations

[0033] With respect to XPath expressions, we assume
that every XPath expression starts with an expression
collecting documents and continues with traversing
along the following axes:

- attribute
- child
- descendant
- descendant-or-self
- parent

[0034] A location step following an axis of the XPath
expression might not provide an exact name to be re-
trieved but also one of the following three wildcard op-
tions:

- *:name

- name:

- *

[0035] Location steps, axes and wildcards of XPath
expressions are described in more detail in the W3C’s
XPath 1.0 Recommendation (cf. for example http:
//www.w3.org/TR/xpath).
[0036] Inspecting path expressions for typing purpos-
es means examining the expression stepwise from left
to right and for each location step considering what was
obtained by the previous location step and which axis is
used in the current location step.
[0037] With respect to an attribute or child axis, the
schema is at first consulted for the next location step.
Assumed the path expression up to that step could be
represented by a set of schema pointers, this should hold
for the expression including the current step also. The
set can become bigger when wildcards are used in the
next step, since one schema element pointer can lead
to multiple subelement pointers, if the pattern happens
to cover more than one of the element’s sub-elements.
The set can become smaller, if a name (or pattern) does
not fit any of the element’s sub-elements. After having
computed the result by looking at the schema, the in-
stance information is used to get rid of those result ele-
ments that do not occur.
[0038] When following the descendant (or descend-
ant-or-self) axis, it is recommended to refer to the in-
stance information first, since asking the schema to pro-
vide all possible descendants often results in very big
element sets. The result must be computed back to point-
ers into the schema.
[0039] Following the parent axis is performed as fol-
lows: In the schema, the respective parent elements from
the set of current pointers is retrieved. The set of schema
pointers becomes smaller, if the previous set contained
pointers to elements having the same parent.

5 6

EP 2 031 520 A1

5

5

10

15

20

25

30

35

40

45

50

55

[0040] In the instance information, each schema point-
er is assigned the union of the document pointers that
belonged to one of the schema pointers that was the
predecessor to this schema pointer. That means that the
total set of document pointers remains unchanged. For
example in case of the following expression:

Input()//book/author[last="Suciu"]/..

[0041] typing the part preceding the parent step yields
a schema pointer to "book/author" and a set of docu-
ments that contain the path "book/author/last". Now fol-
lowing the parent axis, the schema pointer is switched
to the book element, but the documents that need to be
scanned are still those containing book/author/last since
only those documents could be found following the com-
plete path.
[0042] Filters and where expressions are the same
thing spelled differently. A filter condition can be formu-
lated as a where clause by representing the current node
by a variable: node[value = ’const’] <-> where $a/value
= ’const’.
[0043] When filters are included in path expressions,
it has to be inspected whether these can be used to di-
minish the set of schema pointers and/or to be more re-
strictive with respect to the number of results to be ex-
pected. If filters contain path expressions, these are eval-
uated. If the filter expression can be proven to be always
false due to paths leading to empty results, the whole
path’s type is empty and typing can be dropped.
[0044] Filter can be logical expressions. If a part of an
or-expression is pertaining to an empty typed expression,
this part can be dropped. If a part of an and-expression
is typed empty, the whole expression is dropped.
[0045] Document pointers can be used as follows: If a
sub-expression in a filter yields some results (i.e. docu-
ment pointers), but those pointers do not intersect with
the document pointers obtained with the filtered result,
the whole expression is typed empty. This is illustrated
by the following example:

collection("bookshop")/bib/book[tf:containsText(ti-
tle,"Web")and author]

[0046] Typing this expression with respect to schema
pointers yields all results that pertain to the schema entry
’book’. Having calculated the set of all documents con-
taining books in the previous step, the filter allows to ex-
cluding those documents which do not contain both a
"book/title" path and a "book/author" path.
[0047] Typing a join means typing the return clause.
As most join return clauses are generated elements
which contain path expressions, typing the join means
typing these path expressions. They are typed consider-
ing the additional filter criterion specified by the join cri-
terion. This means that only those documents are re-
tained which have an entry defined for the fields occurring
in a join criterion.

for $b in collection("bib")/bib/book
for $p in collection("bookshop")/price
where $b/@isbn = $p/@isbn
return <book>{$b/title}{$p}</book>
[0048] Both the first and the second ’for’ expressions
are typed with respect to the schema pointers and the
documents to be scanned. The expressions to be typed
now are $b/title and $p. The document set is the set of
book occurrences that also contain an isbn attribute,
since instances of book without an isbn attribute are not
taking part in the join. The $p schema pointers are the
same as those for collection("bookshop")/price. The doc-
ument set is the set of collection("bookshop")/price minus
those documents that do not contain an isbn attribute.
[0049] Sequence operations on typed path expres-
sions can be unions, intersections, and differences. Typ-
ing a union of two typed expressions means that the
pointers into the schema are a union of the separate
schema pointer sets. For each schema pointer, the set
of the document pointers is the union of the document
pointers that belong to this schema pointer in one or both
of the subsets.
[0050] For typing an intersection, the pointers into the
schema as well as the document sets are intersected.
Typing a difference, finally, retains the type of the first
expression.

Claims

1. A method of pre-processing an XQuery (10) on a
XML data base comprising the following steps:

a. parsing the XQuery (10) to obtain an abstract
syntax tree (20);
b. typing the abstract syntax tree (20) to provide
at least one pointer into a schema (100, 200) for
XML documents of the XML data base, charac-
terized in that
c. step b. involves the use of schema data (30;
100, 200) and accumulated instance data (40;
300) of the XML data base.

2. The method of claim 1, wherein step b. further pro-
vides for the at least one pointer a set of XML doc-
uments of the XML data base having at least one
node adhering to the at least one pointer.

3. Method according to any of the preceding claims,
wherein the accumulated instance data (300) com-
prises a list of paths representing elements and/or
attributes occurring in XML documents of the XML
data base.

4. Method of any of the preceding claims, wherein the
XQuery (10) comprises an XPath expression and
wherein step c. comprises a step of identifying a set
of pointers onto the schema (30) in accordance with

7 8

EP 2 031 520 A1

6

5

10

15

20

25

30

35

40

45

50

55

the XPath expression and a step of excluding point-
ers, which do according to the accumulated instance
data (40) not occur in the XML data base.

5. Method according to claim 4, wherein the XPath ex-
pression is examined from the left to the right and
includes a location step along a child or attribute axis
and wherein the step of identifying a set of pointers
onto the schema is performed before the step of ex-
cluding pointers, which according to the accumulat-
ed instance data do not occur in the XML data base.

6. Method according to claim 3 or 4, wherein the XPath
expression is examined from the left to the right and
includes a location step along a descendant or de-
scendant-or-self axis and wherein the step of iden-
tifying a set of pointers onto the schema is performed
after the step of excluding pointers, which according
to the accumulated instance data do not occur in the
XML data base.

7. Method according to any of the preceding claims 4
- 6, wherein the XPath expression comprises a filter
expression.

8. Method according to any of the preceding claims,
wherein step b. further comprises the calculation of
the expected numbers of documents of the XML data
base, which must be searched for executing the pre-
processed XQuery during runtime.

9. Method according to claim 8, wherein the expected
number is indicated as an interval between a mini-
mum and a maximum number.

10. Method according to any of the preceding claims fur-
ther comprising the step of executing the pre-proc-
essed XQuery on the XML data base.

11. Computer program comprising instructions adapted
to perform a method according to any of the preced-
ing method claims 1 - 10.

12. Database system for an XML data base comprising
a search engine for XQueries, the search engine be-
ing adapted to perform a method of any of the pre-
ceding method claims 1- 10.

Amended claims in accordance with Rule 137(2)
EPC.

1. A method of pre-processing an XQuery (10) on a
XML data base comprising the following steps:

a. parsing the XQuery (10) to obtain an abstract
syntax tree (20);
b. typing the abstract syntax tree (20) to provide

at least one pointer into a schema (100, 200) for
XML documents of the XML data base, wherein
c. step b. involves the use of schema data (30;
100, 200) and accumulated instance data (40;
300) of the XML data base,
characterized in that:
d. the accumulated instance data (300) compris-
es a list of paths representing elements and/or
attributes occurring in XML documents of the
XML data base.

2. The method of claim 1, wherein step b. further
provides for the at least one pointer a set of XML
documents of the XML data base having at least one
node adhering to the at least one pointer.

3. Method of any of the preceding claims, wherein
the XQuery (10) comprises an XPath expression and
wherein step c. comprises a step of identifying a set
of pointers onto the schema (30) in accordance with
the XPath expression and a step of excluding point-
ers, which do according to the accumulated instance
data (40) not occur in the XML data base.

4. Method according to claim 3, wherein the XPath
expression is examined from the left to the right and
includes a location step along a child or attribute axis
and wherein the step of identifying a set of pointers
onto the schema is performed before the step of ex-
cluding pointers, which according to the accumulat-
ed instance data do not occur in the XML data base.

5. Method according to claim 1 or 3, wherein the
XPath expression is examined from the left to the
right and includes a location step along a descendant
or descendant-or-self axis and wherein the step of
identifying a set of pointers onto the schema is per-
formed after the step of excluding pointers, which
according to the accumulated instance data do not
occur in the XML data base.

6. Method according to any of the preceding claims
3 - 5, wherein the XPath expression comprises a
filter expression.

7. Method according to any of the preceding claims,
wherein step b. further comprises the calculation of
the expected numbers of documents of the XML data
base, which must be searched for executing the pre-
processed XQuery during runtime.

8. Method according to claim 7, wherein the expect-
ed number is indicated as an interval between a min-
imum and a maximum number.

9. Method according to any of the preceding claims
further comprising the step of executing the pre-proc-
essed XQuery on the XML data base.

9 10

EP 2 031 520 A1

7

5

10

15

20

25

30

35

40

45

50

55

10. Computer program comprising instructions
adapted to perform a method according to any of the
preceding method claims 1 - 9.

11. Database system for an XML data base com-
prising a search engine for XQueries, the search en-
gine being adapted to perform a method of any of
the preceding method claims 1 - 9.

11 12

EP 2 031 520 A1

8

EP 2 031 520 A1

9

EP 2 031 520 A1

10

EP 2 031 520 A1

11

EP 2 031 520 A1

12

EP 2 031 520 A1

13

	bibliography
	description
	claims
	drawings
	search report

