FILED OF THE PATENT APPLICATION
[0001] The present patent application relates to a condenser assembly.
BACKGROUND
[0002] Conventional condenser assembly of an air conditioning system for automobiles or
commercial/residential use contains tubes that are bent into U-shape or serpentine
shape, and have parts that are connected together by welding. Due to long exposure
to poor operating environment such as vibration, refrigerants inside these tubes may
leak easily and are difficult to re-collect for reuse purposes. Refrigerant such as
R134a is widely used. This kind of refrigerant has a global warming potential (GWP)
of up to 3100 that can worsen global warming, and will release chemical substances
that are hazardous to human health.
[0003] For refrigerant such as carbon dioxide, its operating pressure is quite high. Therefore,
for the sake of safety, tubes of a condenser using carbon dioxide as refrigerant usually
have wall that is quite thick. However, tubes with thick wall can reduce the functionality
of the condenser.
[0004] The inner diameter of the tubes also has great influence on the heat transfer capacity
of a condenser. If the diameter of the tubes decreases, the flow rate of the refrigerant
and the convective heat transfer increases. On the other hand, if the diameter of
the tubes increases, the wall thickness needs to be increased in order to withstand
the high pressure inside the tubes. This results in an increase in the weight of the
condenser and an increase in the power of the compressor, and therefore is a waste
of energy.
[0005] The above description of the background is provided to aid in understanding of a
condenser, but is not admitted to describe or constitute pertinent prior art to the
condenser assembly disclosed in the present patent application.
SUMMARY
[0006] A condenser assembly is provided. In one aspect, the condenser includes a first tube-and-fin
module having a first flat tube with a first group of microchannels formed parallelly
therethrough. The condenser also includes a second tube-and-fin module arranged next
to the first tube-and-fin module. The second tube-and-fin module includes a second
flat tube with a second group of microchannels formed parallelly therethrough.
[0007] The condenser further includes a bottom panel having a bottom group of microchannels.
The bottom panel is sealingly coupled to the first and second flat tubes at one common
end thereof. The bottom group of microchannels extends between and communicates with
the first and second groups of microchannels defining a plurality of continuous passages.
[0008] The condenser may also include a top panel sealingly coupled to the first and second
flat tubes at the other common end thereof. The top panel includes an inlet through-hole
which is in communication with inlets of the plurality of continuous passages. The
top panel further includes an outlet through-hole which is in communication with outlets
of the plurality of continuous passages.
[0009] The condenser may further include a third tube-and-fin module arranged next to the
second tube-and-fin module. The third tube-and-fin module includes a third flat tube
with a third group of microchannels formed parallelly therethrough. The top panel
includes a top group of microchannels and is sealingly coupled to the third flat tube.
The top group of microchannels extends between and communicates with the second and
third microchannels defining a plurality of extensions of the continuous passages.
[0010] The condenser may include a plurality of heat-dissipating fins thermally connected
to each of the flat tubes. The heat-dissipating fins are vertical or parallel to the
microchannels. The length, width and height of the heat-dissipating fins are varied
with requirements on heat transfer capacity.
[0011] The condenser may include an inlet nozzle sealingly coupled to the top panel at the
inlet through-hole and an outlet nozzle sealingly coupled to the top panel at the
outlet through-hole.
[0012] The condenser may include a plurality of tube-and-fin modules arranged side-by-side
and next to the third tube-and-fin module forming a plurality of continuous serpentine
passages.
[0013] The condenser may include two side panels covering two opposite sides of the assembly,
respectively.
[0014] In one embodiment, the microchannels have a circular cross section and a diameter
of about 0.7 mm to about 1.0 mm.
[0015] In one embodiment, the flat tubes are straight seamless tubes formed by extrusion.
[0016] In one embodiment, the flat tubes are made of aluminum.
[0017] In one embodiment, the bottom and top groups of microchannels are integrally formed
in the bottom and top panels, respectively.
[0018] In one embodiment, the bottom and top panels are sealingly coupled to the flat tubes.
[0019] In one embodiment, the bottom and top groups of microchannels are V-shaped.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020] Specific embodiments of the condenser assembly disclosed in the present patent application
will now be described by way of example with reference to the accompanying drawings
wherein:
FIG. 1 is a perspective view of a condenser assembly according to an embodiment disclosed
in the present patent application;
FIG. 2 is an exploded view of the condenser assembly of FIG. 1;
FIG. 3(a) and 3(b) are perspective views of two different tube-and-fin modules of
the condenser assembly;
FIG. 4(a) and 4(b) are corresponding side views of the tube-and-fin modules of FIG.
3(a) and 3(b);
FIG. 5 is a perspective of a top panel of the condenser assembly;
FIG. 6 is a cross sectional view of the top panel of FIG. 5;
FIG. 7 is a perspective of a bottom panel of the condenser assembly;
FIG. 8 is a cross sectional view of the bottom panel of FIG. 7; and
FIG. 9 is a cross sectional view of the condenser assembly.
DETAILED DESCRIPTION
[0021] It should be understood that the condenser assembly disclosed in the present patent
application is not limited to the precise embodiments described below and that various
changes and modifications thereof may be effected by one skilled in the art without
departing from the spirit or scope of the appended claims. For example, elements and/or
features of different illustrative embodiments may be combined with each other and/or
substituted for each other within the scope of this disclosure and appended claims.
[0022] For illustration purposes, the terms "upper", "lower", "left", "right", "vertical",
"horizontal", "top", or "bottom" appeared hereinafter relate to the embodiment as
it is oriented in the drawings. It is understood that the condenser assembly may assume
various positions, except where expressly specified to the contrary. Furthermore,
it is understood that the specific devices shown in the drawings, and described in
the following description, are simply exemplary embodiments of the invention. Hence,
specific dimensions and other physical characteristics related to the embodiments
disclosed hereinafter are not to be considered as limiting.
[0023] It should be noted that throughout the specification and claims herein, when one
element is said to be "coupled" to another, this does not necessarily mean that one
element is fastened, secured, or otherwise attached to another element. Instead, the
term "coupled" means that one element is either connected directly or indirectly to
another element or is in mechanical or electrical communication with another element.
[0024] FIG. 1 is a perspective view of the condenser assembly according to an embodiment
disclosed in the present patent application. The condenser assembly includes a plurality
of tube-and-fin modules 5, a top panel 1, a bottom panel 2, and two side panels 6.
[0025] The plurality of tube-and-fin modules 5 may be disposed vertically and arranged side-by-side
to form a condensation core with a plurality of serpentine condensation passages.
The condensation core may be covered by the top panel 1, the bottom panel 2, and the
two side panels 6.
[0026] The condenser assembly may be provided with an inlet nozzle 3 and an outlet nozzle
4. Evaporated refrigerant can enter the condenser assembly through the inlet nozzle
3, passes through the tube-and-fin modules 5 where it condenses, and then the condensate
can exit through the outlet nozzle 4.
[0027] FIG. 2 is an exploded view of the condenser assembly of FIG. 1. It is appreciated
that the number and length of the tube-and-fin modules can be altered to satisfy different
requirements on heat exchange capacity. There should be at least two tube-and-fin
modules 5 in a condenser assembly. According to the illustrated embodiment, there
are fourteen tube-and-fin modules 5, and each tube-and-fin module 5 has fourteen microchannels
52.
[0028] The inlet and outlet nozzles 3, 4 can be sealingly coupled to the top panel 1 by
means of two sealing gaskets 7 respectively. The two sealing gaskets 7 may be made
of rubber or any other suitable material.
[0029] Similarly, the top and bottom panels 1, 2 can be sealingly coupled to the tube-and-fin
modules 5 by means of a set of sealing gaskets 8. The set of sealing gaskets 8 may
be made of silicone or any other suitable material.
[0030] Screws 9 or any suitable fasteners of different sizes may be employed to fasten the
inlet and outlet nozzles 3, 4 to the top panel 1, and to fasten the top, bottom and
side panels 1, 2, 6 to the tube-and-fin modules 5. It can be seen that the assembling
of the condenser assembly disclosed in the present patent application does not require
any welding process.
[0031] FIG. 3 is a perspective view of the tube-and-fin module 5 of the condenser assembly.
Each tube-and-fin module 5 may include a plurality of heat-dissipating fins 51 and
a flat tube having a plurality of microchannels 52 extending parallelly therethrough.
The heat-dissipating fins 51 are vertical or parallel to the microchannels 52. The
fins 51 are also vertical or inclined to flat tube. The length, width and height of
the fins are varied with requirements on heat transfer capacity.
[0032] The flat tubes may be straight seamless flat tubes formed by extrusion. The flat
tubes may be made of aluminum, or aluminum alloy, or any other suitable material.
Each microchannel 52 may have a circular cross section and a diameter of about 0.7
mm to 1.0 mm. It is understood that the microchannels 52 may have other cross sections.
[0033] The heat-dissipating fins 51 may be disposed one on top of the other to form a stack
of heat-dissipating fins 51. Each heat-dissipating fin 51 can be provided with an
opening through which the flat tube can pass. The plurality of straight microchannels
52 may run parallel to one another on a common plane.
[0034] FIG. 4 is a side view of the tube-and-fin module 5 of FIG. 3. It can be seen that
the heat-dissipating fins 51 may be symmetrically and evenly distributed about the
common plane on which the plurality of straight microchannels 52 runs.
[0035] FIG. 5 is a perspective of the top panel 1 of the condenser assembly. FIG. 6 is a
cross sectional view of the top panel 1 of FIG. 5.
[0036] The top panel 1 is provided with a plurality of integrally formed microchannels 21.
The microchannels 21 can be of any appropriate shape. According to the illustrated
embodiment, each microchannel 21 is V-shaped and has two straight microchannel sections.
Each V-shaped microchannel 21 has an inlet and an outlet.
[0037] The top panel 1 may be sealingly coupled to an upper common end of the tubes of the
tube-and-fin modules 5 such that each V-shaped microchannel 21 extends between and
communicates with two adjacent straight microchannels 52. It is contemplated that
the inlet of each V-shaped microchannel 21 is in communication with an outlet of a
straight microchannel 52, and the outlet of each V-shaped microchannel 21 is in communication
with an inlet of an adjacent straight microchannel 52 to define a continuous passage.
[0038] The far left side of the top panel 1 may be provided with an inlet through-hole 12,
and the far right side of the top panel 1 may be provided with an outlet through-hole
13. The inlet through-hole 12 is in communication with the inlets of the continuous
passages of the condenser assembly, and outlet through-hole 13 is in communication
with the outlets of the continuous passages of the condenser assembly.
[0039] The inlet nozzle 3 may be mounted over the inlet through-hole 12 of the top panel
1, and the outlet nozzle 4 may be mounted over the outlet through-hole 13 of the top
panel 1.
[0040] FIG. 7 is a perspective of the bottom panel 2 of the condenser assembly. FIG. 8 is
a cross sectional view of the bottom panel 2 of FIG. 7.
[0041] Similar to the top panel 1, the bottom panel 2 is provided with a plurality of integrally
formed microchannels 21. According to the illustrated embodiment, each microchannel
21 is also V-shaped. Each V-shaped microchannel 21 has an inlet and an outlet.
[0042] The bottom panel 2 may be sealingly coupled to a lower common end of the tubes of
the tube-and-fin modules 5 such that each V-shaped microchannel 21 extends between
and communicates with two adjacent straight microchannels 52. It is contemplated that
the inlet of each V-shaped microchannel 21 is in communication with an outlet of a
straight microchannel 52, and the outlet of each V-shaped microchannel 21 is in communication
with an inlet of an adjacent straight microchannel 52.
[0043] The V-shaped microchannels 21 are integrally formed on the top and bottom panels
1, 2 and may have a circular cross section and a diameter of about 0.9 mm to 1.0 mm.
It is understood that the V-shaped microchannels 21 may have other cross sections.
[0044] FIG. 9 is a cross sectional view of the condenser assembly of FIG. 1.
[0045] Evaporated refrigerant enters the continuous passages of the condenser assembly through
the inlet nozzle 3, passes through the inlet through-hole 12, down the straight microchannels
52 at the far left, through the V-shaped microchannels 21 at the bottom panel 2, up
the adjacent straight microchannels 52, through the V-shaped microchannels 21 at the
top panel 1, and down again until it finally condenses as a condensate, and passes
up the straight microchannels 52 at the far right, through the outlet through-hole
13, and exits from the outlet nozzle 4. It is appreciated that the flow along the
continuous passages is uni-directional.
[0046] The condenser disclosed in the present patent application utilizes seamless microchannel
technology that combines the advantages of seamless tube, thin wall and small microchannel
tube diameter. Also, in view of the fact that the hydraulic radius of a seamless microchannel
is very small, its fluid flow condition is quite different from that of a conventional
flow channel. The fluid inside a seamless microchannel can enter a flowing condition
at a low Reynolds number. This can substantially increase the heat exchange efficiency.
Also, seamless microchannels provide a greater contact area, improve the heat transfer
capacity, and reduce the size and weight of a condenser assembly.
[0047] The condenser assembly disclosed in the present patent application is configured
to be simply assembled by screws without the necessity of welding. Furthermore, bending
of tubes is not required. These can minimize the possibility of refrigerant leakage.
[0048] Also, the use of aluminum and aluminum alloy can lower the manufacturing cost as
aluminum is 1/3 cheaper than copper.
[0049] The above characteristics result in a condenser assembly that is small in size, light
in weight, low in manufacturing cost, high in heat transfer coefficient, high pressure
endurable, and environmental-friendly.
[0050] While the condenser assembly disclosed in the present patent application has been
shown and described with particular references to a number of embodiments thereof,
it should be noted that various other changes or modifications may be made without
departing from the scope of the appended claims.
1. A condenser assembly comprising:
a first tube-and-fin module comprising a first flat tube with a first group of microchannels
formed parallelly therethrough;
a second tube-and-fin module arranged next to the first tube-and-fin module, the second
tube-and-fin module comprising a second flat tube with a second group of microchannels
formed parallelly therethrough;
a bottom panel comprising a bottom group of microchannels, the bottom panel being
sealingly coupled to the first and second flat tubes at one common end thereof, the
bottom group of microchannels extending between and communicating with the first and
second groups of microchannels defining a plurality of continuous passages;
a top panel sealingly coupled to the first and second flat tubes at the other common
end thereof, the top panel comprising an inlet through-hole which is in communication
with inlets of the plurality of continuous passages, the top panel further comprising
an outlet through-hole which is in communication with outlets of the plurality of
continuous passages; and
a third tube-and-fin module arranged next to the second tube-and-fin module, the third
tube-and-fin module comprising a third flat tube with a third group of microchannels
formed parallelly therethrough, wherein the top panel comprises a top group of microchannels
and is sealingly coupled to the third flat tube, the top group of microchannels extends
between and communicates with the second and third microchannels defining a plurality
of extensions of the continuous passages, the top and
bottom groups of microchannels are integrally formed on the first and second panels
respectively, and the top and bottom groups of microchannels are V-shaped.
2. The assembly as claimed in claim 1, further comprising a plurality of tube-and-fin
modules arranged side-by-side and next to the third tube-and-fin module forming a
plurality of continuous serpentine passages.
3. A condenser assembly comprising:
a first tube-and-fin module comprising a first flat tube with a first group of microchannels
formed parallelly therethrough;
a second tube-and-fin module arranged next to the first tube-and-fin module, the second
tube-and-fin module comprising a second flat tube with a second group of microchannels
formed parallelly therethrough;
a bottom panel comprising a bottom group of microchannels, the bottom panel being
sealingly coupled to the first and second flat tubes at one common end thereof, the
bottom group of microchannels extending between and communicating with the first and
second groups of microchannels defining a plurality of continuous passages;
a top panel sealingly coupled to the first and second flat tubes at the other common
end thereof, the top panel comprising an inlet through-hole which is in communication
with inlets of the plurality of continuous passages, the top panel further comprising
an outlet through-hole which is in communication with outlets of the plurality of
continuous passages;
a third tube-and-fin module arranged next to the second tube-and-fin module, the third
tube-and-fin module comprising a third flat tube with a third group of microchannels
formed parallelly therethrough, wherein the top panel comprises a top group of microchannels
and is sealingly coupled to the third flat tube, the top group of microchannels extends
between and communicates with the second and third microchannels defining a plurality
of extensions of the continuous passages, the bottom and top groups of microchannels
are integrally formed on the bottom and top panels; and
a plurality of heat-dissipating fins thermally connected to each of the first, second
and
third flat tubes.
4. The assembly as claimed in claim 3, wherein the bottom and top groups of microchannels
are V-shaped.
5. The assembly as claimed in claim 3, further comprising a plurality of tube-and-fin
modules arranged side-by-side and next to the third tube-and-fin module forming a
plurality of continuous serpentine passages.
6. A condenser assembly comprising:
a first tube-and-fin module comprising a first flat tube with a first group of microchannels
formed parallelly therethrough;
a second tube-and-fin module arranged next to the first tube-and-fin module, the second
tube-and-fin module comprising a second flat tube with a second group of microchannels
formed parallelly therethrough; and
a bottom panel comprising a bottom group of microchannels, the bottom panel being
sealingly coupled to the first and second flat tubes at one common end thereof, the
bottom group of microchannels extending between and communicating with the first and
second groups of microchannels defining a plurality of continuous passages.
7. The assembly as claimed in claim 6, further comprising a top panel sealingly coupled
to the first and second flat tubes at the other common end thereof, the top panel
comprising an inlet through-hole which is in communication with inlets of the plurality
of continuous passages, the top panel further comprising an outlet through-hole which
is in communication with outlets of the plurality of continuous passages.
8. The assembly as claimed in claim 7, further comprising a third tube-and-fin module
arranged next to the second tube-and-fin module, the third tube-and-fin module comprising
a third flat tube with a third group of microchannels formed parallelly therethrough,
wherein the top panel comprises a top group of microchannels and is sealingly coupled
to the third flat tube, the top group of microchannels extends between and communicates
with the second and third microchannels defining a plurality of extensions of the
continuous passages.
9. The assembly as claimed in claim 8, further comprising a plurality of tube-and-fin
modules arranged side-by-side and next to the third tube-and-fin module forming a
plurality of continuous serpentine passages.
10. The assembly as claimed in claim 8, wherein the first, second, third, bottom and top
groups of microchannels comprise a circular cross section and a diameter of about
0.7 mm to about 1.0 mm.
11. The assembly as claimed in claim 8, wherein the first, second and third flat tubes
comprise straight seamless tubes formed by extrusion.
12. The assembly as claimed in claim 8, further comprising a plurality of heat-dissipating
fins thermally connected to each of the first, second and third flat tubes, wherein
the heat-dissipating fins are vertical or parallel to the microchannels.
13. The assembly as claimed in claim 8, further comprising:
an inlet nozzle sealingly coupled to the top panel at the inlet through-hole; and
an outlet nozzle sealingly coupled to the top panel at the outlet through-hole.
14. The assembly as claimed in claim 8, wherein the bottom and top panels are sealingly
coupled to the first, second and third flat tubes.
15. The assembly as claimed in claim 8, wherein the bottom and top groups of microchannels
are V-shaped.