(11) EP 2 043 089 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

01.04.2009 Bulletin 2009/14

(51) Int Cl.:

G10H 1/42 (2006.01)

G10H 1/00 (2006.01)

(21) Application number: 07117541.8

(22) Date of filing: 28.09.2007

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Designated Extension States:

AL BA HR MK RS

(71) Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. 80539 München (DE)

(72) Inventors:

 Hennig, Holger 37073 Göttingen (DE) Fleischmann, Ragnar 37081 Göttingen (DE)

Theis, Fabian
 93073 Neutraubling (DE)

 Geisel, Theo 37075 Göttingen (DE)

(74) Representative: Bach, Alexander et al Mitscherlich & Partner Patent- und Rechtsanwälte Sonnenstraße 33 80331 München (DE)

Remarks:

Amended claims in accordance with Rule 137(2) EPC.

- (54) Method and device for humanizing music sequences
- (57) A method for humanizing a music sequence (S), the music sequence (S) comprising a multitude of sounds $(s_1, ..., s_n)$ occurring on times $(t_1, ..., t_n)$, comprises the steps
- generating, for each time (t_i) a random offset (o_i),
- adding the random offset (o_i) to the time (t_i) in order to obtain a modified time $(t_i + o_i)$; and
- outputting a humanized music sequence (S') wherein each sound (s_i) occurs on the modified time $(t_i + o_i)$.

According to the invention, the power spectral density of the random offsets has the form

$$\frac{1}{f^{\alpha}}$$
.

wherein $0 < \alpha < 2$.

Fig. 1

25

40

Description

[0001] The present invention relates to a method and a device for humanizing music sequences. In particular, it relates to humanizing drum sequences.

1

TECHNICAL BACKGROUND AND PRIOR ART

[0002] Large parts of existing music are characterized by a sequence of stressed and unstressed beats (often called "strong" and "weak"). Beats divide the time axis of a piece of music or a musical sequence by impulses or pulses. The beat is intimately tied to the meter (metre) of the music as it designates that level of the meter (metre) that is particularly important, e.g. for the perceived tempo of the music.

[0003] A well-known instrument for determining the beat of a musical sequence is a metronome. A metronome is any device that produces a regulated audible and/or visual pulse, usually used to establish a steady beat, or tempo, measured in beats-per-minute (BPM) for the performance of musical compositions. Ideally, the pulses are equidistant.

[0004] However, humans performing music will never exactly match the beat given by a metronome. Instead, music performed by humans will always exhibit a certain amount of fluctuations compared with the steady beat of a metronome. Machine-generated music on the other hand, such as an artificial drum sequence, has no difficulty in always keeping the exact beat, as synthesizers and computers are equipped with ultra precise clocking mechanisms.

[0005] But machine-generated music, an artificial drum sequence in particular, is often recognizable just for this perfection and frequently devalued by audiences due to a perceived lack of human touch. The same holds true for music performed by humans which is recorded and then undergoes some kind of analogue or digital editing. Post-processing is a standard procedure in contemporary music production, e.g. for the purpose of enhancing human performed music having shortcomings due to a lack of performing skills or inadequate instruments, etc. Here also, even music originally performed by humans may acquire an undesired artificial touch.

[0006] Therefore, there exists a desire to generate or modify music on a machine that sounds more natural.

SUMMARY OF THE INVENTION

[0007] It is therefore an object of the present invention to provide a method and a device for generating or modifying music sequences having a more human touch.

[0008] This object is achieved according to the invention of by a method and a device according to the independent claims. Advantageous embodiments are defined in the dependent claims.

[0009] The term sound to which the claims refer is defined herein as a subsequence of a music sequence. In some embodiments, a sound may correspond to a note or a beat played by an instrument. Each sound has a temporal occurrence *t* within the music sequence.

[0010] Preliminary results of empirical experiments carried out by the inventors strongly indicate that a rhythm comprising a natural random fluctuation as generated according to the invention sounds much better or more natural to people than the same rhythm comprising a fluctuation due to Gaussian or uniformly distributed white noise with the same standard deviation, even when using Gaussian instead of uniform white noise.

BRIEF DESCRIPTION OF THE FIGURES

[0011] These and further aspect and advantages of the present invention will become more apparent when studying the following detailed description of the invention, in connection with the attached drawing in which

- 20 Fig. 1 shows a plot of a natural drum signal or beat compared with a metronome signal;
 - Fig. 2 shows the spectrum of pink noise graphed double logarithmically;
 - shows a flowchart of a method according to an Fig. 3 embodiment of the invention;
 - shows a block diagram of a device for human-Fig. 4 izing music sequences according to an embodiment of the invention; and
 - shows another block diagram of a device for Fig. 5 humanizing music sequences according to another embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0012] Figure 1 shows a plot of a natural drum signal or beat compared with a metronome signal. Compared to a real audio signal, the plot is stylized for the purpose of describing the present invention, which only pertains to the temporal occurrence patterns of sounds. The skilled person will immediately recognize that in reality, each beat or note played is composed of an onset, an attack and a decay phase from which the present description abstracts.

[0013] The beats of the metronome occur on times t_1 , t_2 and t_3 and constitute a regular sequence of the form

$$t_n = t_0 + nT, \qquad (1)$$

wherein t_n is the temporal occurrence or time of the n-th beat, t_0 is the time of the initial beat and T denotes the time between metronome clicks.

[0014] The human drummer's beats occur on times t_1 , t_2' and t_3 and constitute an irregular sequence. The offsets o_i between the beats may be calculated as

$$o_n = t_n - t'_n. (2)$$

[0015] Alternatively, the above definitions may also be generalized in order to track deviations of a sequence from a given metric pattern instead from a metronome. In other words, instead of taking regular distances T for the metronome clicks, a more complex metronome signal can be generated wherein distances between clicks are not equal but are distributed according to a more complex pattern. In particular, the pattern may correspond to a particular rhythm.

[0016] Now, according to empirical investigations of the inventors, the offsets of human drum sequences may be described by Gaussian distributed $1/f^{\alpha}$ noise, where f is a frequency and α is a shape parameter of the spectrum.

[0017] Figure 2 shows an example of a random signal whose power spectral density is equal to $1/f^{\alpha}$, wherein α = 1, graphed double logarithmically. Within the scientific literature, this kind of noise is also referred to as 'pink noise'. The parameter α is then equivalent to the absolute value of the slope of the graph.

[0018] With regard to the invention, in particular with respect to human drumming, the parameter α may be estimated empirically by comparing the beat sequence generated by a human drum player (or several of them) with a metronome. More particularly, the temporal differences between the human and the artificial beats correspond to the off sets o_i of figure 1 and the estimation of α may be carried out by performing a linear regression on the offsets' power spectral frequency plot, wherein the frequency axis has been transformed by two logarithmic transformations for linearization.

[0019] Experiments carried out by the inventors using own recordings of the inventors as well as recordings of drummers provided by professional recording studios revealed that the exponent α appears to be widely independent of the drummer. The parameter α also clearly appears to be greater than zero (0). Also, it appears to be smaller than 2.0 in general. For drumming, it has been determined as being smaller than 1.5 in general. However, the offsets of different human drummers may differ in standard deviation and mean.

[0020] For the empirical analysis, drums have been chosen because in the analysis, the distinction between accentuation and errors is easiest when analyzing sequences that contain time-periodic structures, such as drum sequences. However, in principle, the methods according to the invention may also be applied to other instruments played by humans. For example, for a piano player playing a song on the piano, it is expectable that after removal of accentuation, the relevant noise obeys the same 1/f^c-law as discussed above with respect to drums.

[0021] Based on these empirically determined facts

and figures, a method and a device for humanizing music, in particular drum sequences may now be described as follows.

[0022] Figure 3 shows a flowchart of a method for humanizing music sequences according to a first embodiment of the invention. The music sequence is assumed to comprise a series of sounds, which may be notes, played by an instrument such as a drum, each occurring on a distinct time *t*. When humanizing real audio signals, the time *t* may be taken as the onset of the note, which may automatically be detected by a method in the prior art (cf. e.g. Bello et al., A Tutorial on Onset Detection In Music Signals, IEEE Transactions on Speech and Audio Processing, Vol. 13, No. 5, September 2005).

[0023] In step 310, the method is initialized. In particular, the algorithm may be set to the first time to (i = 0). **[0024]** In step 320, a random offset o_i is generated for the present sound or note at time t_i .

[0025] In step 330, the random offset o_i is added to the time t_i in order to obtain a modified time t_i . Hereby, it is understood that the offset o_i may also be negative.

[0026] In step 340, the present sound s_i is output at the modified time t_i . The outputting step may comprise playing the sound in an audio device. It may also comprise storing the sound on a medium, at the modified time t_i for later playing.

[0027] In step 350, the procedure loops back to step 320 in order to repeat the procedure for the remaining sounds.

[0028] According to the invention, the random offsets are generated such that their power spectral density obeys the law

$$\frac{1}{f^{\alpha}}$$

wherein $\alpha > 0$.

35

40

[0029] The parameter α may be set according to the empirical estimates obtained as described in relation to figure 2.

[0030] Figure 4 shows a block diagram of a device 400 for humanizing a music sequence according to an embodiment of the invention.

[0031] Again, it is assumed that the music sequence (S) comprises a multitude of sounds $(s_1...s_n)$ occurring on times $(t_1, ..., t_n)$. According to one embodiment of the invention, the device may comprise means 410 for generating, for each time (t_i) a random offset (o_i) .

[0032] The device may further comprise means 420 for adding the random offset (o_i) to the time (t_i) in order to obtain a modified time $(t_i + o_i)$.

[0033] Finally, the device may also comprise means 430 for outputting a humanized music sequence (S') wherein each sound (s_i) occurs on the modified time $(t_i + o_i)$.

5

 $\frac{1}{f^{\alpha}}$

wherein $0 < \alpha < 2$. Generators for $1/2^{\alpha_{-}}$ or 'pink' noise are commercially available.

[0035] Figure 5 shows another block diagram of a device for humanizing music sequences according to another embodiment of the invention. The device comprises a metronome 510, a noise generator 520, a module 530 for adding the random offsets to obtain a modified time sequence, a module 540 for outputting the sounds at the modified times, a module 550 for receiving an input sequence and a module 560 for analyzing the input sequence in order to automatically identify the relevant sounds.

SUMMARY

[0036] The deviation of human drum sequences from a given metronome may be well described by Gaussian distributed 1/f α noise, wherein the exponent α is distinct from 0. In principle, the results do also apply to other instruments played by humans. In conclusion, the method and device for humanizing musical sequence may very well be applied in the field of electronic music as well as for post processing real recordings. In other words, $1/f\alpha$ -noise is the natural choice for humanizing a given music sequence.

Claims

- Method for humanizing a music sequence (S), the music sequence (S) comprising a multitude of sounds (s₁, ..., s_n) occurring on times (t₁, ...,t_n), comprising the steps
 - generating, for each time (t_i) a random offset (o_i) .
 - adding the random offset (o_i) to the time (t_i) in order to obtain a modified time $(t_i + o_i)$; and
 - outputting a humanized music sequence (S') wherein each sound (s_i) occurs on the modified time (t_i + o_i),

characterised in that the power spectral density of the random offsets has the form

$$\frac{1}{f^{\alpha}}$$

wherein $0 < \alpha < 2$.

5

10

15

20

30

40

45

50

55

- **2.** Method according to claim 1, wherein the sounds correspond to drum beats.
- **3.** Method according to claim 1, wherein the sounds correspond to notes played by a piano.
- 4. Method according to claim 1, wherein the music sequence (S) is obtained from editing a human-generated music sequence.
- **5.** Method according to claim 1, wherein the mean and/or the standard deviation of the offsets (o_i) is set according to empirical estimates.
- 6. Music sequence (S), comprising a multitude of sounds (s₁, ..., s_n) occurring on times (t'₁, ...,t'_n), wherein the times are offset with offsets (o₁, ...,o_n) against the clicks (c₁,...,c_n) of a metronome, wherein the power spectral density of the offsets (o₁, ...,o_n) has the form

$$\frac{1}{f^{\alpha}}$$
.

wherein $0 < \alpha < 2$.

- Machine readable medium, comprising a humanized music sequence according to claim 5.
- 35 **8.** Device for humanizing a music sequence (S), the music sequence (S) comprising a multitude of sounds $(s_1, ..., s_n)$ occurring on times $(t_1, ..., t_n)$, comprising:
 - means for generating, for each time (t_i) a random offset (o_i) ,
 - means for adding the random offset (o_i) to the time (t_i) in order to obtain a modified time $(t_i + o_i)$; and
 - means for outputting a humanized music sequence (S') wherein each sound (s_i) occurs on the modified time $(t_i + o_i)$,

characterised in that the power spectral density of the random offsets has the form

$$\frac{1}{f^{\alpha}}$$
.

wherein $0 < \alpha < 2$.

10

15

20

25

35

40

45

50

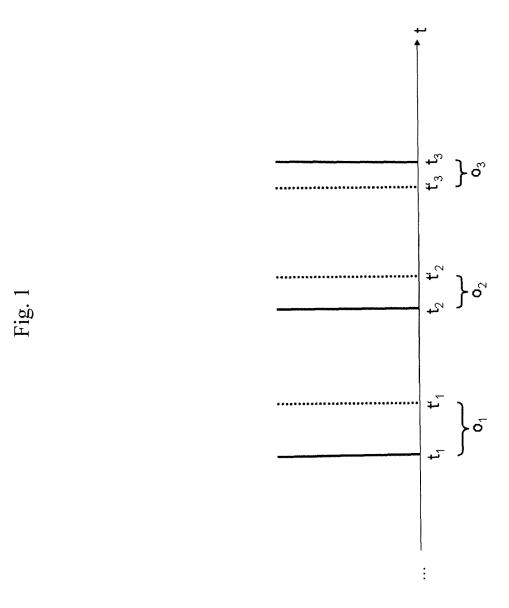
Amended claims in accordance with Rule 137(2) EPC.

- **1.** Method for humanizing a music sequence (S), the music sequence (S) comprising a multitude of sounds $(s_1, ..., s_n)$ occurring on times $(t_1, ..., t_n)$, comprising the steps
 - generating, for each time (t_i) a random offset (o_i) ,
 - adding the random offset (o_i) to the time (t_i) in order to obtain a modified time $(t_i + o_i)$; and
 - outputting a humanized music sequence (S') wherein each sound (s_i) occurs on the modified time $(t_i + o_i)$,

characterised in that the power spectral density of the random offsets has the form

$$\frac{1}{f^{\alpha}}$$
.

wherein $0 < \alpha < 2$.


- **2.** Method according to claim 1, wherein the sounds correspond to drum beats.
- **3.** Method according to claim 1, wherein the sounds correspond to notes played by a piano.
- **4.** Method according to claim 1, wherein the music sequence (S) is obtained from editing a human-generated music sequence.
- **5.** Method according to claim 1, wherein the mean and/or the standard deviation of the offsets (o_i) is set according to empirical estimates.
- **6.** Music sequence (S), generated by a method according to claim 1.
- **7.** Machine readable medium, comprising a humanized music sequence according to claim 6.
- **8.** Device for humanizing a music sequence (S), the music sequence (S) comprising a multitude of sounds $(s_1, ..., s_n)$ occurring on times $(t_1, ..., t_n)$, comprising:
 - means for generating, for each time (t_i) a random offset (o_i) .
 - means for adding the random offset (o_i) to the time (t_i) in order to obtain a modified time $(t_i + o_i)$; and
 - means for outputting a humanized music sequence (S') wherein each sound (s_i) occurs on

the modified time $(t_i + o_i)$,

characterised in that the power spectral density of the random offsets has the form

$$\frac{1}{f^{\alpha}}$$
.

wherein $0 < \alpha < 2$.

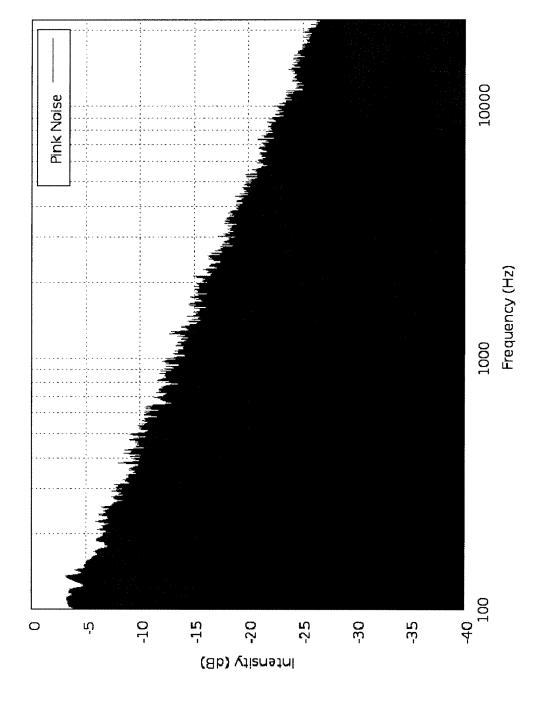
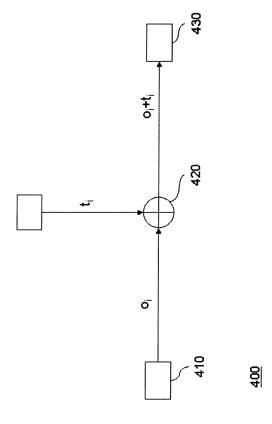



Fig. 2

310 320 340

Fig. 3

Fig. 4

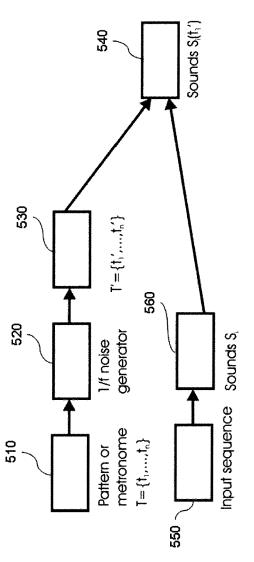


Fig. 5

EUROPEAN SEARCH REPORT

Application Number EP 07 11 7541

Category	Citation of document with indication of relevant passages	, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
А	US 3 974 729 A (KOIKE MA 17 August 1976 (1976-08- * abstract; figures 1-3 * column 1, lines 30-58	·17)	1,6-8	INV. G10H1/42 G10H1/00
A	US 6 066 793 A (OGAI YOI 23 May 2000 (2000-05-23) * abstract; figure 2 * * column 3, line 25 - cc		1,6-8	
A	US 6 506 969 B1 (BARON F 14 January 2003 (2003-01 * abstract; figures 1-4 * column 9, line 44 - co * column 14, lines 7-36	1-14) * Dlumn 12, line 19 *	1,6-8	
				TECHNICAL FIELDS
				SEARCHED (IPC)
				G04F
	The present search report has been dra	wn up for all claims		
	Place of search	Date of completion of the search		Examiner
	Munich	8 January 2008	Lec	ointe, Michael
X : part Y : part docu	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category nological background	T : theory or principle u E : earlier patent docum after the filling date D : document cited in th L : document cited for o	nent, but publis ne application other reasons	

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 07 11 7541

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-01-2008

JP 10288985 A 27-1		d		Patent family member(s)		Publication date		Patent document ed in search report	
JP 10288985 A 27-1					NONE	17-08-1976	Α	3974729	US
UC (500000 P1 14 01 0002 17 042275 7 15 0	'-06-20 '-10-19					23-05-2000	Α	6066793	US
AU 757577 B2 27-0 AU 5632199 A 10-0 BR 9914057 A 19-0 CA 2345316 A1 30-0 CN 1328679 A 26-1 DE 69909107 D1 31-0 DE 69909107 T2 29-0 EP 1116213 A1 18-0 W0 0017850 A1 30-0 FR 2785438 A1 05-0 JP 2002525688 T 13-0	5-07-20 7-02-20 9-04-20 9-06-20 9-03-20 6-12-20 9-04-20 9-04-20 9-03-20 9-05-20 9-05-20	27-0 10-0 19-0 30-0 26-1 31-0 29-0 18-0 30-0 05-0	B2 A A1 A D1 T2 A1 A1 A1	5632199 9914057 2345316 1328679 69909107 69909107 1116213 0017850 2785438	AU BR CA CN DE DE EP WO FR	14-01-2003	В1	6506969	US

© For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 2 043 089 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

• **BELLO et al.** A Tutorial on Onset Detection In Music Signals. *IEEE Transactions on Speech and Audio Processing*, September 2005, vol. 13 (5 **[0022]**