Technical Field
[0001] The present invention relates to an exhaust gas cleaning catalyst and a process for
producing the same and more particularly to a catalyst for cleaning nitrogen oxides
in exhaust gases.
Background Art
[0002] Exhaust gas cleaning catalysts whose catalytic component is supported on a honeycomb
structure or a filter have been widely used for cleaning the exhaust gases from diesel
engines or gasoline engines. For example, in the case that an exhaust gas contains
nitrogen oxides, an exhaust gas cleaning catalyst is used which oxidizes nitrogen
monoxide in nitrogen oxides to nitrogen dioxide. And it has been known that such nitrogen
dioxide assumes the role of oxidizing the soot etc. in the exhaust gas when reduced
to nitrogen. A precious metal such as platinum, palladium or rhodium, or the oxide
thereof can be used as a catalytic component for such an exhaust gas cleaning catalyst
and platinum has been particularly often used.
[0003] Exhaust gas cleaning catalysts whose catalytic component is platinum can be produced
by a process in which a solution containing a platinum compound is brought into contact
with a carrier. Specifically, platinum can be supported on a carrier by a process
in which a solution containing excess platinum is brought into contact with a carrier,
dried, followed by baking to force platinum to deposit on the carrier, or by a process
in which a carrier is impregnated with a solution that contains platinum in an amount
equal to or more than the amount of saturated adsorption of the carrier to allow the
carrier to adsorb platinum until equilibrium is established.
[0004] Patent Document 1 discloses an exhaust gas cleaning catalyst which is used for the
cleaning of nitrogen oxides and whose catalytic component is platinum and carrier
is γ-alumina. In this exhaust gas cleaning catalyst, platinum is supported on γ-alumina
by impregnating γ-alumina with an aqueous solution of chloroplatinic acid, drying
at 100°C for 12 hours, followed by baking at 500°C (Patent Document 1, Preparation
Example 1).
[0005] Patent Document 1: Specification of Japanese Patent No.
3791968
Disclosure of the Invention
Problems to be Solved by the Invention
[0006] Recent increased public concern about environmental problems has led to high hopes
for improvement in catalytic activity of exhaust gas cleaning catalysts. Thus, the
catalytic activity of conventional exhaust gas cleaning catalysts has been improved
by heat-treating the catalysts right after platinum supporting at high temperatures
or by increasing the amount of the catalytic component to be supported. However, even
in cases where such treatment was done, there was a limit to the improvement in catalytic
activity.
[0007] Accordingly, the present invention relates to an exhaust gas cleaning catalyst. And
it is the object of the present invention to provide a catalyst that has higher catalytic
activity than that of conventional catalysts and, in particular, a strong ability
to oxidize nitrogen monoxide.
Means for Solving the Problems
[0008] To overcome the above described problem, the present inventors directed tremendous
research effort toward improving the catalytic activity of exhaust gas cleaning catalysts.
A method in which the particle size of a catalytic component is decreased is commonly
known as a method of increasing the specific surface area of a catalytic component
and ensuring a large reaction area of a catalyst. However, the present inventors have
discovered that to ensure a sufficient amount of catalytic activity of an exhaust
gas cleaning catalyst, the catalytic component needs to have an average particle size
of 80 nm or more. They have further discovered that if the catalytic component has
an average particle size of 120 nm or less, the least necessary contact area of the
catalytic component and an exhaust gas can be ensured. Further, they have discovered
that in catalysts, the narrower variation in particle size distribution becomes, the
stronger their ability of oxidizing nitrogen monoxide becomes.
[0009] Specifically, the present invention relates to an exhaust gas cleaning catalyst whose
catalytic component is supported on a carrier, characterized in that the catalytic
component is platinum colloid which has an average particle size of 80 nm to 120 nm,
a particle size D
20, a 20% cumulative particle size distribution from smaller particle size side, of
50 nm or more, and a particle size D
90, a 90% cumulative particle size distribution from smaller particle size side, of
200 nm or less. Preferably, the average particle size of the catalytic component is
90 to 110 nm, D
20 is 60 nm or more, and D
90 is 140 nm or less.
[0010] In conventional exhaust gas cleaning catalysts, it is difficult to allow the catalytic
component to have a large average particle size, and besides, variations in particle
size distribution are more likely to occur. For example, in a catalyst which is prepared
by impregnating a carrier with a platinum-containing solution and allowing the carrier
to adsorb platinum until equilibrium is established, variations in particle size distribution
of catalyst particles are relatively small, but the average particle size is as small
as about 1 to 5 nm. The average particle size of this catalyst is about 40 nm even
in the case that the catalyst particles are grown by high-temperature baking at 800°C
or more. In a catalyst which is prepared by forcing platinum to deposit on a carrier
using a solution that contains excess platinum, though the average particle size is
as relatively large as several tens nm to several hundreds nm, there are great variations
in particle size distribution.
[0011] In contrast, in the exhaust gas cleaning catalyst of the present invention in which
platinum colloid having an average particle size of 80 nm to 120 nm, D
20 of 50 nm or more, and D
90 of 200 nm or less is supported on a carrier, the particle size is larger and variations
in particle size distribution are smaller, compared with those of conventional catalysts.
It has also been found that the exhaust gas cleaning catalyst of the present invention
exhibits a higher catalytic activity, particularly in terms of the ability to oxidize
nitrogen monoxide, compared with conventional exhaust gas cleaning catalysts. D
20 and D
90 in the present invention express cumulative particle size distribution, on a particle
number basis, from smaller particle size side.
[0012] The amount of the above catalytic component supported is preferably 0.5 to 5 g/L
by mass of Pt per carrier volume. If the amount is within this range, an exhaust gas
cleaning catalyst having a sufficiently high catalytic activity can be obtained.
[0013] For the carrier used in the present invention, at least part of its surface which
comes in contact with the catalytic component is preferably an oxide. This ensures
a sufficient surface area for bringing the catalytic component into contact with exhaust
gases. Specifically, a ceramic honeycomb or metal honeycomb structure or a filter
can be used as a carrier. Ceramic honeycomb structures usable in the present invention
include those prepared using cordierite or silicon carbide (SiC).
[0014] A structure or a filter prepared by wash-coating at least part of the above described
structure or filter can also be used as a carrier. "Wash coat" means "to coat an oxide
ceramic having a large surface area". Alumina, silica, titania or zirconia, which
is an oxide ceramic, can be used for wash coating. If a carrier undergoes wash coating,
the surface area of the carrier can be sufficiently increased, and the catalytic component
and exhaust gases can be brought into sufficient contact with each other. Preferably,
wash coating is performed using an oxide ceramic in an amount of 1 g/L to 200 g/L
per structure or filter. If wash coating is performed using an oxide ceramic in an
amount within this range, a sufficient surface area can be ensured without excess
pressure drop in the using an oxide ceramic.
[0015] The exhaust gas cleaning catalyst of the present invention described so far can be
produced by a process, comprising: a step of reducing a solution of a platinum salt
with a reducing agent to form a nuclear colloid; a step of growing the nuclear colloid
with a reducing agent to form platinum colloid, and a step of bringing the platinum
colloid into contact with a carrier, wherein the reduction in the step of forming
a nuclear colloid is performed at pH 1 to 7.
[0016] In the production process of the present invention, reduction for forming platinum
colloid is performed in a stepwise manner in the following two steps: a step of forming
a nuclear colloid; and a step of growing the nuclear colloid, whereby platinum colloid
having a large average particle size and small variations in particle size distribution
can be formed. A catalyst having an improved catalytic performance of cleaning exhaust
gases can be obtained by bringing platinum colloid having a controlled particle size
and particle size distribution into contact with a carrier. The reduction in the step
of forming a nuclear colloid is performed at pH 1 to 7, preferably at pH 3 or more,
and more preferably at pH 3 to 4. If pH is too low, the platinum colloid is less likely
to take the form of particles, whereas if pH is too high, platinum is more likely
to agglomerate and sometimes precipitates.
[0017] Examples of platinum salts usable in the formation of platinum colloid include: platinous
chloride, platinic chloride, dinitroammine platinum, platinum oxide, ethanolamine
platinum, acetylacetonato platinum, hexaammine platinum chloride, and tetraammine
platinum chloride. Examples of reducing agents usable in the step of forming a nuclear
colloid or in the step of growing the nuclear colloid include: sodium boron hydride,
ammonium and hydrazine compounds, and besides, alcohols, hydrogen gas or carbon monoxide
gas, saccharides or fats, and reducing ability of ultrasonics. Using sodium boron
hydride is particularly preferable. In the step of forming a nuclear colloid, preferably
a surfactant is added as a protecting agent. Examples of surfactants usable in the
above step include: poly(vinylpyrrolidone) (PVP), poly(acrylic acid) (PAA), polyethylene
imine (PEI), and polyethylene glycol (PEG). The molecular weight of the surfactant
used is preferably 300 to 50000 and more preferably 1000 to 30000.
Brief Description of the Drawings
[0018]
Fig. 1 is an SEM micrograph of an exhaust gas cleaning catalyst of Example 1;
Fig. 2 is an SEM micrograph of an exhaust gas cleaning catalyst of Comparative Example
2;
Fig. 3 is a TEM micrograph of an exhaust gas cleaning catalyst of Comparative Example
3;
Fig. 4 is an SEM micrograph of an exhaust gas cleaning catalyst of Comparative Example
4; and
Fig. 5 is a graph illustrating the rate of the oxidation conversion of nitrogen oxides
using exhaust gas cleaning catalysts of Examples and Comparative Examples.
Best Mode for Carrying Out the Invention
[0019] In the following the best mode for carrying out the present invention will be described.
Example 1
[0020] To 77.2 g of an aqueous solution of dinitroammine Pt having a Pt content of 8 wt%,
500 g of water and 13 g of polyethylene glycol having a molecular weight of 1000 were
added and stirred. Then, reduction treatment was performed by adding 4 g of a 98%
aqueous solution of hydrazine monohydrate, as a reducing agent, to the mixed solution
to form a nuclear colloid. To this nuclear colloid, 250 ml of a 2% aqueous solution
of hydrazine monohydrate, as a reducing agent, was added at a rate of 5 ml/min, and
the nuclear colloid was allowed to grow at room temperature for 4 hours, while being
stirred, to form a colloidal solution of platinum.
[0021] Used as a carrier was a honeycomb having γ-alumina deposited on its surface in an
amount of 100 g/L, which was prepared by wash-coating γ-alumina on a cordierite (ceramic)
honeycomb 7.5 inch in diameter, 8 inch in length and 5.79 L in volume, drying the
same at 120°C overnight, followed by baking at 500°C for 2 hours. The carrier was
impregnated with the colloidal solution of platinum obtained by the above process,
dried at 120°C overnight, followed by baking at 500°C for 2 hours to produce an exhaust
gas cleaning catalyst (A-1) in which the amount of the catalytic component supported
was 1 g/L in terms of the mass of Pt per carrier volume.
Example 2
[0022] An exhaust gas cleaning catalyst (A-2) in which the amount of the catalytic component
supported was 1 g/L in terms of the mass of Pt per carrier volume was produced by
the same process as that of Example 1, except that the colloidal solution of platinum
was prepared using 3.5 g of polyethylene glycol having a molecular weight of 4000
and that a honeycomb having γ-alumina deposited on its surface in an amount of 10
g/L was used as the carrier.
Comparative Example 1
[0023] The same carrier as that of Example 1 was impregnated with a platinum solution prepared
by adding 500 g of water to 38.6 g of an aqueous solution of platinum chloride having
a Pt content of 15 wt%, dried at 120°C overnight, followed by baking at 500°C for
2 hours to produce an exhaust gas cleaning catalyst (B-1) in which the amount of the
catalytic component supported was 1 g/L in terms of the mass of Pt per carrier volume.
Comparative Example 2
[0024] The catalyst obtained in Comparative Example 1 was further baked at 900°C for 2 hours
to produce an exhaust gas cleaning catalyst (B-2) in which the amount of the catalytic
component supported was 1 g/L in terms of the mass of Pt per carrier volume.
Comparative Example 3
[0025] The same carrier as that of Example 1 was impregnated with a solution of: 77.2 g
of an aqueous solution of dinitroammine platinum having a platinum content of 8 wt%;
and 20 kg of water, and stirred at 250 rpm for 10 hours to allow γ-alumina to adsorb
platinum ions. Then the carrier was dried at 120°C overnight, followed by baking at
500°C for 2 hours to produce an exhaust gas cleaning catalyst (C-1) in which the amount
of the catalytic component supported was 1 g/L in terms of the mass of Pt per carrier
volume.
Comparative Example 4
[0026] The catalyst obtained in Comparative Example 1 was further baked at 900°C for 2 hours
to produce an exhaust gas cleaning catalyst (C-2) in which the amount of the catalytic
component supported was 1 g/L in terms of the mass of Pt per carrier volume.
[Measurement of Particle Size]
[0027] Each of the exhaust gas cleaning catalysts of Examples and Comparative Examples was
observed using SEM micrographs, and particle size distribution of about 500 platinum
particles was measured on a particle number basis. The exhaust gas cleaning catalyst
of Comparative Example 3 was observed using a TEM micrograph. Fig. 1 to Fig. 4 show
the SEM micrographs or TEM micrograph. Table 1 shows the average particle size D
20, D
90 calculated from each particle size distribution.
[Oxidation Conversion of Nitrogen Oxides]
[0028] The rate of the oxidation conversion of nitrogen monoxide in an exhaust gas to nitrogen
dioxide of the catalysts of Examples and Comparative Examples was measured with a
bench test instrument of diesel engine. The gas composition at the time of measurement
was: 1000 ppm NO, 10 vol% O
2, 6 vol% H
2O and the remainder N
2. The space velocity was 35000h
-1. The measurement of conversion was made at reaction temperatures of 150, 200, 250,
300, 350, 400 and 450°C. Fig. 5 shows the results.
[Table 1]
|
Average particle size (mm) |
D20 (mm) |
D90 (mm) |
Example 1 |
93 |
63 |
119 |
Example 2 |
105 |
76 |
135 |
Comparative Example 2 |
271 |
80 |
555 |
Comparative Example 4 |
17 |
8 |
24 |
[0029] Table 1 shows that in the exhaust gas cleaning catalysts of Examples 1 and 2, the
average particle size of their platinum particles was within the range of 80 nm to
120 nm, D
20 was 50 nm or more, and D
90 was 200 nm or smaller. In contrast, in the exhaust gas cleaning catalyst of Comparative
Example 2, though the average particle size was large, the difference between D
20 and D
90 was large and there was a variation in the particle size distribution. In the exhaust
gas cleaning catalyst of Comparative Example 4, the average particle size was as small
as less than 80 nm.
[0030] It is apparent from Fig. 5, in Example 1 (A-1) and Example 2 (A-2) in which platinum
colloid was supported on a carrier, the conversion rate was higher, at any temperature,
than that of Comparative Examples 1 to 4 and the conversion rate at a catalyst temperature
of 300°C was nearly 80%. In contrast, in Comparative Example 1 (B-1) and Comparative
Example 3 (C-1), the rate of the oxidation conversion of nitrogen monoxide was lower
compared with that of Examples 1 (A-1) and 2 (A-2) and even in Comparative Example
2 (B-2) and Comparative Example 4 (C-2) which underwent baking at a high temperature,
the conversion rate at a catalyst temperature of 300°C was as low as less than 60%.
Industrial Applicability
[0031] As described so far, the exhaust gas cleaning catalyst of the present invention has
a high catalytic activity for cleaning exhaust gases and, in particularly, a strong
ability to oxidize nitrogen monoxide.
1. An exhaust gas cleaning catalyst whose catalytic component is supported on a carrier,
characterized in that the catalytic component is platinum colloid which has an average particle size of
80 nm to 120 nm, a particle size D20, a 20% cumulative particle size distribution from smaller particle size side, of
50 nm or more, and a particle size D90, a 90% cumulative particle size distribution from smaller particle size side, of
200 nm or less.
2. The exhaust gas cleaning catalyst according to claim 1, wherein the amount of the
catalytic component supported on a carrier is 0.5 to 5 g/L in terms of the mass of
Pt per carrier volume.
3. The exhaust gas cleaning catalyst according to claim 1 or 2, wherein at least part
of the carrier surface which the catalytic component comes into contact with is an
oxide.
4. The exhaust gas cleaning catalyst according to any one of claims 1 to 3, wherein the
carrier is a ceramic honeycomb or metal honeycomb structure, or a filter, or the structure
or filter at least part of which has been wash-coated.
5. A process for producing an exhaust gas cleaning catalyst according to any one of claims
1 to 4, comprising:
a step of reducing a solution of a platinum salt with a reducing agent to form a nuclear
colloid;
a step of growing the nuclear colloid with a reducing agent to form platinum colloid;
and
a step of bringing the platinum colloid into contact with a carrier,
wherein in the step of forming a nuclear colloid, the solution of a platinum salt
is reduced at pH 1 to 7.