

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

EP 2 048 427 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
15.04.2009 Bulletin 2009/16

(51) Int Cl.:
F17C 13/08 (2006.01)

(21) Application number: 07118395.8

(22) Date of filing: 12.10.2007

(84) Designated Contracting States:
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE
SI SK TR**
Designated Extension States:
AL BA HR MK RS

(71) Applicant: IVECO MAGIRUS AG
89079 Ulm (DE)

(72) Inventors:
• **Distelrath, Heinz-Peter**
89079 ULM/GOEGGLINGEN (DE)
• **Pohl, Harald**
89155 ERBACH (DE)

(74) Representative: **Borsano, Corrado et al**
Notarbartolo & Gervasi S.p.A.
Corso di Porta Vittoria, 9
20122 Milano (IT)

(54) Compressed air reservoir

(57) The invention concerns a compressed air reservoir in the form of a cylindrical body (12) with an end cap at the end (14). The cylindrical body (12) is an extrusion

which has an attachment strip (22,26,30,40) integrated in the casing, easily accessible from the outside, in at least one surface line.

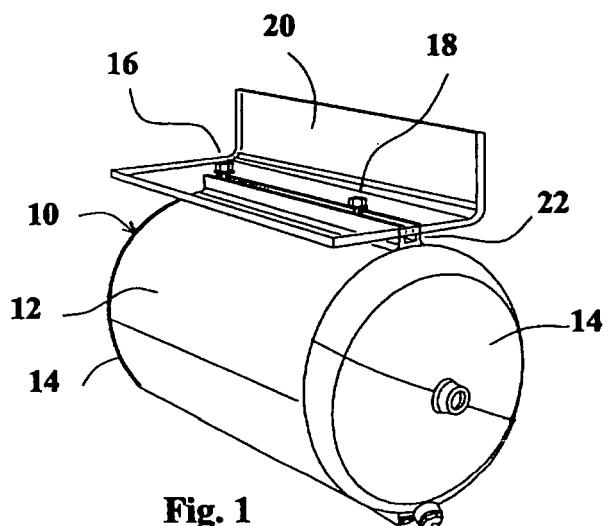


Fig. 1

Description

[0001] The invention concerns a compressed air reservoir in the form of a cylindrical body with end caps at the ends.

[0002] The invention particularly refers to a compressed air reservoir as used for vehicles, especially lorries. Compressed air reservoirs are also used for stationary operation, for example for compressors. In vehicles, numerous functions are operated by compressed air, for example in activating brakes, for a pneumatic suspension or for ancillary consumers, such as the pneumatic suspension of the driver's cabin etc.

[0003] Thus, as a rule, one or more compressed air reservoirs are located on lorries.

[0004] In vehicle manufacturing, a low vehicle weight is generally aimed at, as, above all, fuel consumption is considerably dependent on the vehicle weight. Thus, in many applications, aluminium, for example, is used. Compressed air reservoirs of aluminium or magnesium are known.

[0005] Compressed air reservoirs are mostly attached to the main frame or chassis with the aid of suitable mounting arrangements. Supporting brackets, tightening straps and various mounting and connecting fittings have been used up until now for this purpose.

[0006] The underlying objective of the invention is to construct a compressed air reservoir in such a way as to facilitate both the attachment of supplementary elements to the compressed air reservoir as well as the attachment of the compressed air reservoir to the vehicle.

[0007] To achieve this objective, the compressed air reservoir according to the invention is characterised in that the cylindrical body is an extrusion, which has an attachment strip integrated in the casing, easily accessible from the outside, in at least one surface line, and that the end caps are welded to the body.

[0008] The attachment strip is preferably furnished with a slot, accessible from the outside. In this respect, the attachment strip does not appear as a physically separate part, as it is directly integrated in the extruded wall of the compressed air reservoir.

[0009] The end caps are generally welded to the cylindrical body.

[0010] The slot is preferably an undercut slot, e.g. one with a T-section, dove-tailed-section or any other shape. In this way, it is possible to attach supplementary elements to the compressed air reservoir with the aid of bolts, slide blocks or nuts within the slot, or to attach the compressed air reservoir itself to the vehicle. The cylindrical body is not necessarily a circular cylinder. Depending on the available space within the vehicle, something other than a circular cross-section can be desirable. It is often difficult to accommodate a circular cylindrical compressed air reservoir, especially in passenger cars with pneumatic suspensions, so that, for instance, flat, square-cut shaped compressed air reservoirs are considered in this area.

[0011] The attachment strip according to the invention can also be used to connect together two or more compressed air reservoirs.

[0012] The following explain in more detail, with the aid of the attached drawings, preferred examples of embodiments of the invention.

[0013] Fig. 1 shows the mounting of a compressed air reservoir according to the invention to a bracket;

[0014] Fig. 2 illustrates the mounting of two connected compressed air reservoirs;

[0015] Fig. 3 is a detailed view and illustrates the combination of two attachment strips to connect two reservoirs corresponding to Fig. 2;

[0016] Fig. 4 shows a compressed air reservoir with two attachment strips and correspondingly constructed bracket;

[0017] Fig. 5 corresponds to Fig. 2 and shows the mounting of two compressed air reservoirs with the aid of two attachment strips;

[0018] Fig. 6 is a detailed view to illustrate the type of connection of the compressed air reservoirs corresponding to Figs. 4 and 5.

[0019] In Fig. 1, a compressed air reservoir is denoted in its entirety by 10. It comprises a circular cylindrical body 12 and two end caps 14 which seal the cylinder at the front and rear ends.

[0020] The compressed air reservoir is attached to a horizontal flange of a bracket 20 with L-shaped cross-section with the aid of two bolts 16, 18.

[0021] Both bolts 16 and 18 are able to be slid within a slot, denoted by 22. The bolts are fastened to the aforementioned bracket 20, together with the complete reservoir, by means of nuts. The T-slot 22 forms an attachment strip which is used, according to Fig. 1, to mount the compressed air reservoir 10 to the bracket 20. The T-slot is manufactured, together with the cylindrical body 12, by extrusion, particularly out of aluminium or magnesium or their alloys. In this way, the attachment strip with the T-slot is directly integrated in the wall area of the cylindrical body.

[0022] It is also possible to design the attachment strip not as a slot, but as a raised rail with T-shaped cross-section, as shown in Fig. 3. Fig. 3 belongs to the view in Fig. 2 and shows the assembly of two compressed air reservoirs one above the other. The lower compressed air reservoir 24 basically corresponds to the compressed air reservoir 10 according to Fig. 1. An attachment strip which forms a T-slot 26 runs along the upper surface line. This T-slot 26 is extruded together with the cylindrical body and is therefore completely integrated in it. A raised rail 30 with T-shaped cross-section runs on the underside of the upper compressed air reservoir and can be slid along the T-slot 26 provided on the lower reservoir. This raised T-shaped rail likewise produced by means of extrusion together with the cylindrical casing of the upper compressed air reservoir 28 (not shown).

[0023] This T-shaped rail 30 is flanked on both sides by flanges 32,34 which overlap the T-slot section of the

lower reservoir on both sides and in this way provide for greater stability of the assembly. Depending upon the situation, the aforementioned flanges 32,34 can also be omitted.

[0024] Fig. 2 illustrates the mounting of both compressed air reservoirs 24 and 28 below the bracket 20.

[0025] The rail 30 with T-shaped cross-section together with both the side flanges 32 and 34 form an attachment rail according to the present invention.

[0026] Two parallel attachment strips can be provided for particularly heavy compressed air reservoirs or for other especially heavy loading of the mounting of the compressed air reservoir. This is illustrated in Fig. 4. On a bracket 36 is a compressed air reservoir 38 which has T-slots 40,42 on either side of the surface line and which, in this case, is also manufactured by extrusion together with the cylindrical body of the compressed air reservoir 38. These T-slots allow the attachment of the compressed air reservoir 38 to the horizontal flange of the bracket 36 with the aid of bolts 44,46,48,50.

[0027] How this presents itself in detail, emerges from Fig. 6. Here the T-slots 40,42 of the lower reservoir 52 are again shown, in which the raised T-section rails 54,56, located on the underside of the upper reservoir 52, engage, as already shown in principle in and explained in connection with Fig. 3.

[0028] In each case, both the undercut slots 40,42 as well as the raised T-section rails 54,56 of the upper compressed air reservoir together with its cylindrical casing are manufactured by extrusion. Thus, aluminium and magnesium can above all be considered as raw materials. Both the lower slots 40, 42 as well as the upper projecting rails 54,56 are considered attachment strips according to the present invention.

[0029] The embodiments shown and described here correspond to circular cylindrical compressed air reservoirs. However, it is also possible to manufacture compressed air reservoirs with other cross sections.

[0030] Other attachment strips can be used which are also extruded together with the cylindrical casing of the body, for example those which are raised with respect to the compressed air reservoir.

Claims

1. Compressed air reservoir in the form of a cylindrical body (12) with a end cap at the end (14), **characterised in that** the cylindrical body (12) is an extrusion which has an attachment strip (22,26,30,40) integrated in the casing, easily accessible from the outside, in at least one surface line.
2. Compressed air reservoir according to Claim 1, **characterised in that** the attachment strip has a slotted-section.
3. Compressed air reservoir according to Claim 1,

characterised in that the slot is undercut.

4. Compressed air reservoir according to Claim 1, **characterised in that** the slot has a T-cross-section.
5. Compressed air reservoir according to Claims 1 to 3, **characterised in that** the slot is dove-tailed.
6. Compressed air reservoir according to Claim 1, **characterised in that** the cross-section of the attachment strip has a raised T-section.
7. Compressed air reservoir according to Claim 1, **characterised in that** the cross-section of the attachment strip has a raised dove-tailed-section.
8. Compressed air reservoir according to Claims 1 to 6, **characterised in that** the cylindrical body (12) is made of magnesium.

20

25

30

35

40

50

55

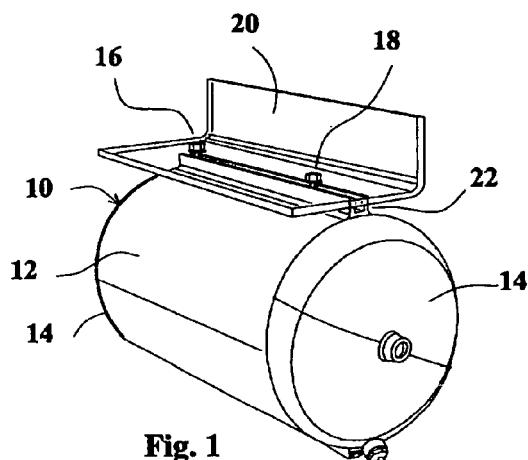


Fig. 1

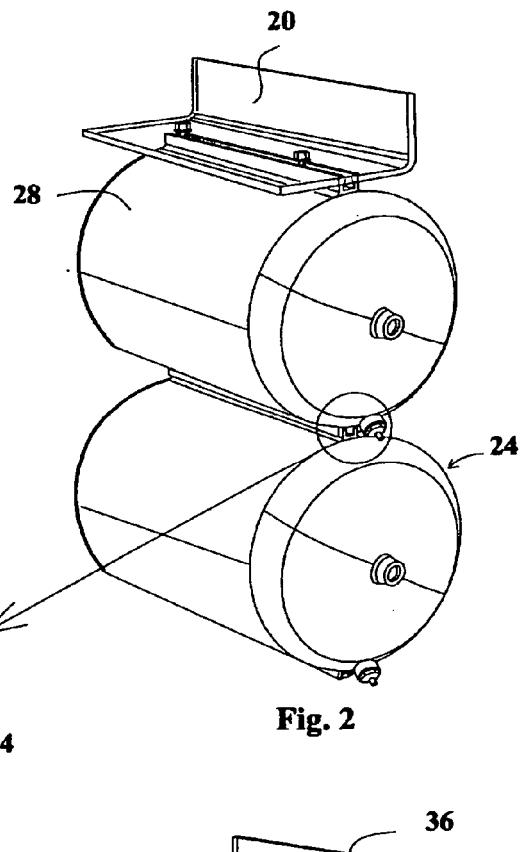


Fig. 2



Fig. 3

Fig. 4

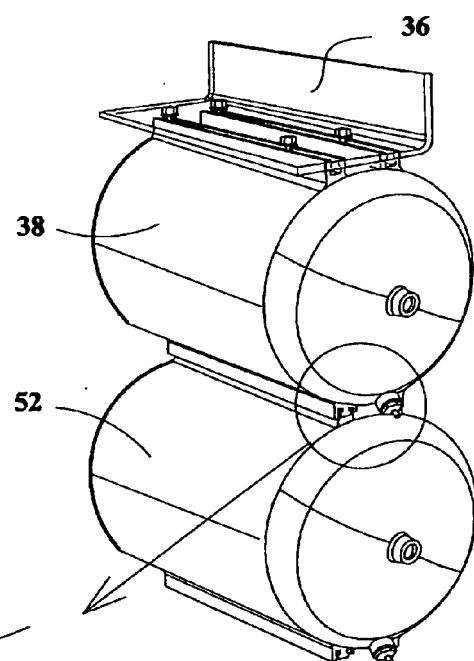


Fig. 5

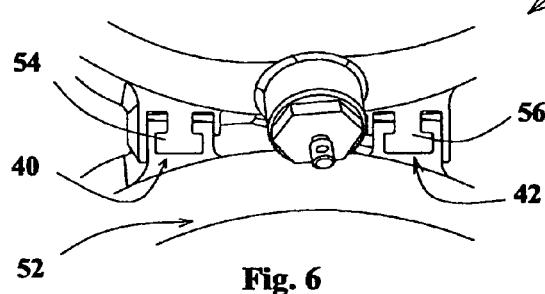


Fig. 6

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	EP 1 679 468 A (AIR LIQUIDE [FR]) 12 July 2006 (2006-07-12) * paragraphs [0008], [0009] * -----	1-8	INV. F17C13/08
A	DE 199 35 517 A1 (BAYERISCHE MOTOREN WERKE AG [DE]) 1 February 2001 (2001-02-01) * column 2, line 68 - column 3, line 8 * -----	1-8	
A	US 4 345 789 A (GARNETT LAWRENCE C) 24 August 1982 (1982-08-24) * column 2, lines 22-25 * -----	1-8	
A	GB 2 089 014 A (OCEAN PHOENIX HOLDINGS NV) 16 June 1982 (1982-06-16) * page 2, lines 119-129 * -----		
A	WO 2007/048953 A (AIR LIQUIDE [FR]; DENIS ARNAUD [FR]; LIGONESCHE RENAUD [FR]; PISOT PHI) 3 May 2007 (2007-05-03) * page 4, paragraph 7 * -----		
A	GB 1 345 794 A (RHEEM AUSTRALIA PTY LTD) 6 February 1974 (1974-02-06) * page 1, line 78 * * page 2, line 3 * -----		TECHNICAL FIELDS SEARCHED (IPC)
			B60K F17C
The present search report has been drawn up for all claims			
3	Place of search	Date of completion of the search	Examiner
	Munich	17 March 2008	Ott, Thomas
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 07 11 8395

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

17-03-2008

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 1679468	A	12-07-2006	FR	2880673 A1	14-07-2006
DE 19935517	A1	01-02-2001	NONE		
US 4345789	A	24-08-1982	CA	1173006 A1	21-08-1984
GB 2089014	A	16-06-1982	ES	265823 Y	01-08-1983
WO 2007048953	A	03-05-2007	FR	2892797 A1	04-05-2007
GB 1345794	A	06-02-1974	MY	30474 A	31-12-1974