

(19)

(11)

EP 2 050 753 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
22.04.2009 Bulletin 2009/17

(51) Int Cl.:
C07F 7/08 (2006.01)
C07F 7/21 (2006.01)
C07F 7/20 (2006.01)
C08K 5/05 (2006.01)

(21) Application number: **08017679.5**

(22) Date of filing: **08.10.2008**

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT
RO SE SI SK TR
Designated Extension States:
AL BA MK RS

(30) Priority: **15.10.2007 US 872221**

(71) Applicant: **Air Products and Chemicals, Inc.**
Allentown, PA 18195-1501 (US)

(72) Inventors:
• **Mayorga, Steven Gerard**
Oceanside, CA 92056 (US)

• **Xiao, Manchao**
San Diego, CA 92130 (US)
• **Gaffney, Thomas Richard**
Carlsbad, CA 92009 (US)
• **Syvret, Robert George**
Allentown, PA 18103-5451 (US)

(74) Representative: **Kador, Ulrich**
Kador & Partner
Corneliusstrasse 15
80469 München (DE)

(54) **Stabilizers to inhibit the polymerization of substituted cyclotetrasiloxane**

(57) The present invention is; (a) a process for stabilizing a cyclotetrasiloxane, such as 1,3,5,7-tetramethylcyclotetrasiloxane, against polymerization used in a chemical vapor deposition process for silicon oxides in electronic material fabrication comprising providing an effective amount of an antioxidant polymerization inhibitor to such cyclotetrasiloxane; and (b) a composition of

a cyclotetrasiloxane, such as 1,3,5,7-tetramethylcyclotetrasiloxane, stabilized against polymerization used in a chemical vapor deposition process as a precursor for silicon oxides in electronic material fabrication, comprising; such cyclotetrasiloxane and an antioxidant.

Description**CROSS-REFERENCE TO RELATED APPLICATIONS**

5 [0001] This application is a continuation-in-part of U.S. patent application Serial No. 11/484,094, filed on July 11, 2006, which, in turn, is a continuation of U.S. patent application Serial No. 10/602,279, filed on June 23, 2003, now U.S. Pat. No. 7,101,948, which, in turn, is a continuation-in-part of U.S. patent application Serial No. 10/029,892, filed on December 21, 2001, now U.S. Patent No. 6,858,697, the disclosures of which are incorporated herein by reference.

10 BACKGROUND OF THE INVENTION

15 [0002] Silicon dioxide films have been used for some time in the fabrication of integrated circuits (IC) for semiconductor device manufacturing. There are many examples of the preparation of such thin films of SiO_2 in the open and patent literature. See, for example, the publications of the Schumacher Group, Air Products and Chemicals, Inc., e.g. User's Guide For: Glass Deposition with TEOS, and Extrema® TEOS (Tetraethyl Orthosilicate) Product Data Sheet. See also, Modeling of Low-Pressure Deposition of SiO_2 by Decomposition of TEOS, and The Deposition of Silicon Dioxide Films at Reduced Pressure. There are numerous journal articles that review various CVD techniques for the deposition of SiO_2 and the properties of thin films deposited using such techniques.

20 [0003] Early SiO_2 films were deposited by CVD oxidation of silane (SiH_4). New source materials were needed in order to maintain good step coverage as submicron patterned electronic devices were developed. Films deposited from tetraethylorthosilicate (TEOS) show superior step coverage properties compared to SiH_4 . TEOS is considered an industry standard source for the CVD preparation of SiO_2 . TEOS is a volatile liquid, providing for efficient vapor delivery and general ease of handling. It is nonpyrophoric, and therefore, provides a significant safety advantage over silane. It produces dielectric films with excellent electrical and mechanical properties suitable for many device manufacturing applications.

25 [0004] The chemical 1,3,5,7-Tetramethylcyclotetrasiloxane (such as TOMCATS® siloxane available from Schumacher of Carlsbad, CA) is under development as a new source material for the CVD preparation of SiO_2 glass. TOMCATS type siloxane is a high purity volatile liquid precursor chemical that is specifically designed to satisfy the critical demands of the semiconductor device manufacturing industry. Like TEOS, TOMCATS type siloxane can be used for the chemical vapor deposition of glasses and doped glasses for various dielectric film applications such as trench fill, interlevel dielectric, gate and thick oxide. It provides similar safety advantages because of its non-pyrophoric and noncorrosive nature. The normal boiling points of TOMCATS type siloxane and TEOS are 135°C and 168°C, respectively. The higher volatility of TOMCATS type siloxane allows it to be delivered at lower temperature or with higher efficiency at comparable temperature. Its deposition rate is 10 times that of TEOS at 600°C, with a deposition efficiency 3 times that of TEOS. It is superior to silane and similar to TEOS in the conformality and step coverage of the resulting films.

30 [0005] In general, SiO_2 films deposited from TOMCATS type siloxane exhibit excellent mechanical and electrical properties. The films are dense with low carbon content and refractive index values comparable to thermal oxide. TOMCATS type siloxane is effective for low-pressure chemical vapor deposition (LPCVD) and as a liquid injection source for plasma enhanced chemical vapor deposition (PECVD). The later method utilizes plasmas rather than thermal energy 35 to promote chemical reactions. TOMCATS type siloxane PECVD is typically run at lower temperature than LPCVD (400°C vs. 500-600°C).

40 [0006] Despite these advantages, TOMCATS type siloxane has experienced limited acceptance as a CVD source for the manufacturing of semiconductor devices. One disadvantage of TOMCATS type siloxane is its instability with respect to polymerization when exposed to certain chemicals or process conditions. This results in a lower volatility liquid or gel 45 that creates CVD process handling issues. TOMCATS type siloxane polymerization is catalyzed by acid, base or free radicals.

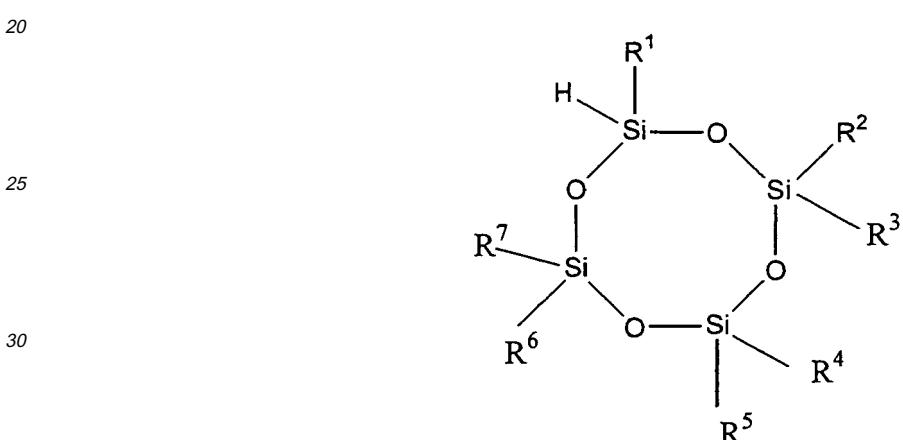
45 [0007] Prolonged heating of TOMCATS type siloxane (Example 1) has also been shown experimentally in the present invention to promote polymerization. The degree of polymerization can be very minor, accounting for only several tenths of a percent. Under more severe conditions of prolonged exposure to elevated temperature or to certain acids or bases, 50 substantial polymerization will occur, resulting in a highly viscous liquid or gel containing over 10% by weight of oligomeric or polymeric material.

55 [0008] Several references in the prior art relate to the stabilization of siloxane. Hirabayashi et al. teach the use of a triazine or sulfide "control agent" to stabilize a mixture comprising an aliphatic unsaturated group, containing an organopolysiloxane compound, such as TOMCATS type siloxane, and a platinum group catalyst. Those inventors teach the use of the triazine or sulfide agent to give a mixture that is stable and resistant to premature gelation at room temperature and thus providing extended storage stability.

[0009] Lutz et al. disclose the use of di- and trihydrocarbylphosphines which act as curing inhibitors for compositions comprising: (1) alkenyl radicals; (2) compounds containing silicon-bonded hydrogen atoms (e.g., TOMCATS type si-

loxane); and (3) a platinum group metal catalyst. Lutz et al. claim that the inhibitor functions by complexing with the platinum catalyst rendering it inactive for subsequent curing.

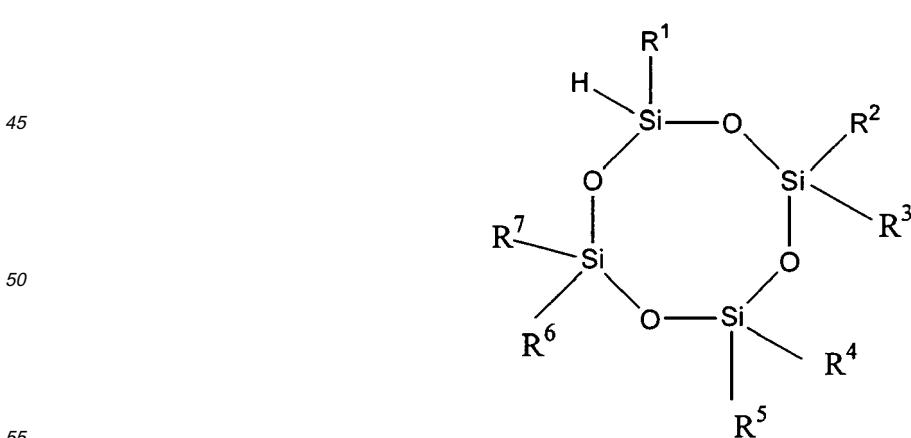
[0010] In a similar patent, Chalk teaches the use of acrylonitrile type compounds that reduce the activity of the platinum catalyst deterring the copolymerization of various mixtures of polysiloxanes.


5 [0011] Berger et al. propose the use of an ethylenically unsaturated isocyanurate which functions in a like manner to deactivate the Pt catalyst rendering a curable organopolysiloxane composition stable to premature gelation.

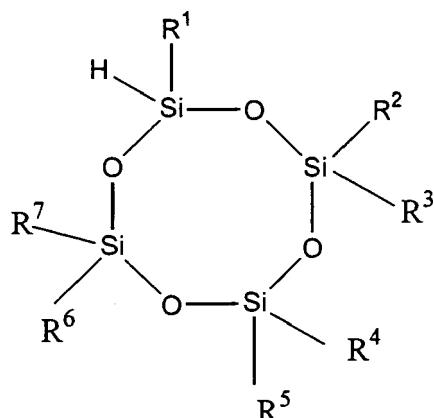
[0012] Endo et al. teach the stabilization of cyclosiloxanes, such as TOMCATS type siloxane through the use of 1 to 20 weight % of polymethylpolysiloxanes, such as 1,1,1,3,5,5-heptamethyltrisiloxane.

10 [0013] The patent references cited all teach the use of various agents that in one manner or another inhibit the polymerization or co-polymerization of polysiloxanes for various applications in the silicon rubber industry. None of them specify or suggest applications as polymerization inhibitors for CVD sources in the semiconductor device manufacturing industry.

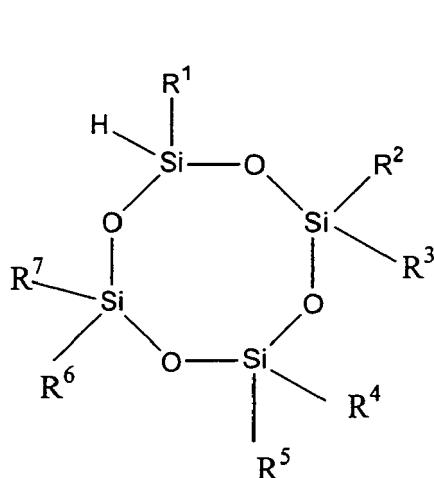
BRIEF SUMMARY OF THE INVENTION


15 [0014] In one embodiment of the invention, there is disclosed a process for stabilizing a substituted cyclotetrasiloxane against polymerization used in a chemical vapor deposition process for silicon oxides in electronic material fabrication comprising providing an effective amount of an antioxidant to a cyclotetrasiloxane having the following formula:

where R¹⁻⁷ are individually selected from the group consisting of hydrogen, a normal, branched or cyclic C₁₋₁₀ alkyl group, and a C₁₋₄ alkoxy group.


[0015] In another embodiment, there is disclosed a composition of cyclotetrasiloxane stabilized against polymerization used in a chemical vapor deposition process as a precursor for silicon oxides in electronic material fabrication, comprising;

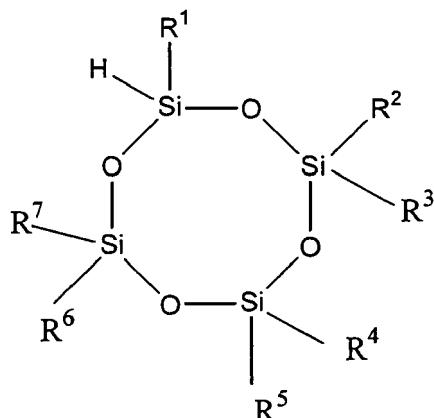
40 (a) the cyclotetrasiloxane having the following formula:


where R¹⁻⁷ are individually selected from the group consisting of hydrogen, a normal, branched or cyclic C₁₋₁₀ alkyl group, and a C₁₋₄ alkoxy group, and (b) an antioxidant.

[0016] In a further embodiment, there is disclosed a composition of cyclotetrasiloxane stabilized against polymerization and used in a chemical vapor deposition comprising; a cyclotetrasiloxane having the following formula:

20 where R¹⁻⁷ are individually selected from the group consisting of hydrogen, a normal, branched or cyclic C₁₋₁₀ alkyl group, and a C₁₋₄ alkoxy group, and from 10 to 10,000 ppm by weight of an antioxidant.

[0017] In yet another embodiment, there is disclosed a process for stabilizing a cyclotetrasiloxane for extended periods of heating wherein the cyclotetrasiloxane is used as a precursor in a chemical vapor deposition process comprising the steps of: providing the cyclotetrasiloxane having the following formula:


45 where R¹⁻⁷ are individually selected from the group consisting of hydrogen, a normal, branched or cyclic C₁₋₁₀ alkyl group, and a C₁₋₄ alkoxy group; and adding from 10 to 10,000 ppm by weight of an antioxidant to the cyclotetrasiloxane.

DETAILED DESCRIPTION OF THE INVENTION

[0018] The chemical 1,3,5,7-tetramethylcyclotetrasiloxane (such as TOMCATS® siloxane available from Schumacher of Carlsbad, CA) is used as a precursor for the chemical vapor deposition (CVD) of SiO₂ for semiconductor device manufacturing. TOMCATS type siloxane is currently under evaluation by semiconductor device manufacturers for use as a CVD precursor for SiO₂ because of its ability to form high quality films with excellent electronic and mechanical properties. TOMCATS type siloxane is known to polymerize when subjected to extended periods of heating or upon exposure to certain chemicals. In this invention we disclose the use of various free radical scavengers that inhibit the polymerization of TOMCATS type siloxane. The low concentration of the additive does not significantly impact the overall product purity, nor is it anticipated to have a negative impact on the critical properties of the resulting films produced by CVD.

[0019] Therefore, an object of the present invention is to eliminate or inhibit the polymerization of TOMCATS type siloxane under typical CVD process conditions. These TOMCATS type siloxanes include substituted cyclotetrasiloxanes

of the formula:

20 where R¹⁻⁷ are individually selected from the group consisting of hydrogen, a normal, branched or cyclic C₁₋₁₀ alkyl group, and a C₁₋₄ alkoxy group.

25 [0020] This is done through the use of additives that inhibit the polymerization of TOMCATS type siloxane under conditions that would normally favor polymerization. The present invention demonstrates that certain additives are effective at inhibiting polymerization, such as antioxidants, e.g., free radical scavengers. TOMCATS type siloxanes are sensitive to oxygen, carbon dioxide and nitrogen trifluoride (NF₃) at elevated temperatures. TOMCATS type siloxanes react with oxygen forming oligomeric and polymeric species at temperatures equal to or greater than 60°C. This is significant because oxygen, carbon dioxide and nitrogen trifluoride are commonly used in the manufacture of semiconductor devices, such as the oxidizing gas in plasma enhanced chemical vapor deposition (PECVD) processes for the deposition of SiO₂ films from TOMCATS type siloxane. In certain embodiments, these antioxidants or scavengers work by deterring chemical reactions that proceed by a free-radical reaction pathway. Examples of antioxidants or free radical scavengers contemplated for the composition or process disclosed herein as O₂-, CO₂- and/or NF₃- stabilizers include, but are not limited to, 2,6-di-tert-butyl-4-methyl phenol (or BHT for butylhydroxytoluene), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), 2-tert-butyl-4-hydroxyanisole, 3-tert-butyl-4-hydroxyanisole, propyl ester 3,4,5-trihydroxy-benzoic acid, 2-(1,1-dimethylethyl)-1,4-benzenediol, diphenylpicrylhydrazyl, 4-tert-butylcatechol, N-methylaniline, p-methoxy-diphenylamine, diphenylamine, N,N'-diphenyl-p-phenylenediamine, p-hydroxydiphenylamine, phenol, octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, tetrakis (methylene (3,5-di-tert-butyl)-4-hydroxy-hydrocinnamate) methane, phenothiazines, alkylamidonoisoureas, thiadiethylene bis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamate, 1,2-bis (3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl) hydrazine, tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, cyclic neopentane-tetrayl bis (octadecyl phosphite), 4,4'-thiobis (6-tert-butyl-m-cresol), 2,2'-methylenebis (6-tert-butyl-p-cresol), 2,6-di-tert-butyl-p-cresol, methyl-2,4,6-tris(3'5'-di-tert-butyl-4-hydroxybenzyl)benzene, oxalyl bis (benzylidenehydrazide) and naturally occurring antioxidants such as raw seed oils, wheat germ oil, tocopherols and gums. Further examples of antioxidants that may work as free radical scavengers or via other mechanisms include, but are not limited to, aromatic amines (e.g., N,N-phenyl-N'-(1,3-dimethylbutyl)-p-phenyldimamine, N',N'-di-sec-butyl-p-phenylenediamine, dihydroquinoline, 2,2,4-trimethyl-1,2-dihydroquinoline, and 4,4'-Bis(α,α-dimethylbenzyl)diphenylamine), hindered amines (e.g., 2,2,6,6-tetramethylpiperidine), hydroxylamines, benzofuranes, divalent sulfur derivatives, trivalent phosphorous compounds, metal deactivators, (e.g., aeroxalyl bis(benzylidene)hydrazide, N,N'-bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine, 2,2'-oxamidobis-ethyl(3,5-di-tert-butyl-4-hydroxyhydrocinnamate, N,N'-(disalicylidene)-1,2-propanediamine, ethylenediaminetetra-acetic acid and its salts and citric acid), and combinations thereof. Still further examples of antioxidants are found, for example, in the chapter entitled "Antioxidants" in the Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 3, pages 102-134. In certain embodiments, phenolic compounds, or compounds containing at least one phenyl group, such as, but not limited to, 2,6-di-tert-butyl-4-methyl phenol, may be used.

50 [0021] The one or more antioxidants used herein may be added alone based upon its method of inhibiting polymerization (e.g., free radical inhibitors) or alternatively in a mixture of antioxidants that inhibit polymerization using different methodologies (e.g., free radical inhibitor + hydroperoxide decomposers).

55 [0022] In certain embodiments, it may be preferable that the antioxidant added be soluble in the cyclotetrasiloxane. In this and other embodiments, it may be preferable that the one or more antioxidants added volatilize at temperatures at or below the processing temperature of the cyclotetrasiloxane to minimize the accumulation of antioxidant and/or its transformation products in the processing equipment or the deposited film. Further, in certain embodiments it may be preferable that the amount of antioxidant and/or its transformation products be present in the as-deposited film in an

amount of 1% or less.

[0023] In certain embodiments, the antioxidant is provided in an amount of 10-1000 ppm (wt.); more preferably an amount of 50-500 ppm (wt.); most preferably, an amount of 50-250 ppm (wt.); optimally, an amount of 100-200 ppm (wt.).

[0024] In other embodiments, such as those where the substituted cyclotetrasiloxane may be exposed, for example, to higher temperatures (e.g., 90°C or greater or 105°C or greater or 120°C or greater); longer shelf life; greater exposure to O₂-, CO₂- NF₃- , and/or other atmospheric gases; or at least one or all of the foregoing, higher amounts of antioxidant may be added. In these embodiments, the antioxidant is provided in an amount ranging from 10 to 10,000 ppm (wt.) or an amount ranging from 50-5,000 ppm (wt.) or an amount ranging from 50-2,000 ppm (wt.). For example, in embodiments wherein the cyclotetrasiloxane is TOMCATS and the antioxidant is BHT, it has been observed that TOMCATS may become more resistant to oxygen-promoted polymerization as the amount of antioxidant increased. In this regard, under oxygen exposure levels consisting of a molar ratio of O₂ to TOMCATS of 1:1 for a 24 hour period, higher amounts of BHT, e.g., 150 ppm, 500 ppm, and 5,000 ppm, was needed to stabilize TOMCATS at higher temperatures, e.g., 90°C, 105°C, and 120°C respectively.

[0025] To attain the object of the present invention, to eliminate or inhibit the polymerization of TOMCATS type siloxane under typical CVD process conditions, a standard laboratory test was established with the intent of accelerating the normal polymerization process. The accelerated aging test is meant to simulate the normal course of gradual polymerization that would typically occur over a more protracted period of time. This test, which consists of exposing a sealed quartz ampoule of TOMCATS type siloxane to elevated temperature for 24 hours, is referred to in the present document as the "accelerated aging test". These conditions are understood to be considerably more severe than TOMCATS type siloxane would be subjected to in a typical CVD process. In a typical accelerated aging test, the ampoule is loaded with approximately 1.3 to 5.0 ml of TOMCATS type siloxane and, except for "control experiments", an antioxidant such as a free radical scavenger to inhibit polymerization. The TOMCATS type siloxane/additive mixture is cooled in a liquid nitrogen bath. Then, the atmosphere above the TOMCATS type siloxane is evacuated for 5 minutes. If this test is to be done in the absence of additional gases, the neck of the quartz ampoule is sealed using a hydrogen/oxygen torch. If this test is to be done in the presence of O₂ or CO₂, the ampoule is isolated from vacuum and the appropriate amount of O₂ or CO₂ is added, after which the ampoule is sealed as previously described. The sealed ampoule is placed in an oven and held at one or more temperatures ranging from 90 to 120°C for a time ranging from 1 to 5 days. The ampoule is removed and allowed to cool to room temperature. Its contents are analyzed by gas chromatograph (GC) to measure the degree of polymerization.

[0026] The degree of polymerization is measured quantitatively by GC. This technique is very sensitive to detecting the onset of polymerization as evidenced by the formation of higher molecular weight species with longer retention times than the parent TOMCATS type siloxane peak. TOMCATS type siloxane samples that are determined to be of "high viscosity" by visual inspection are not routinely run on the GC. The oligomeric or polymeric siloxanes tend to irreversibly contaminate the stationary phase of the GC column due to their low solubility and low volatility. Such samples are qualitatively described in the present invention to have greater than 10 wt.% polymer, consistent with previous observations.

[0027] It is believed that the polymerization of cyclical polysiloxanes may be catalyzed by free radicals. However, other mechanisms for polymerization of cyclical polysiloxanes are also within the scope of the composition and process described herein. In this regard, one or more antioxidants may be added that inhibit polymerization in a manner other than free radical inhibition. Laboratory observations suggest that the polymerization of TOMCATS type siloxane is particularly sensitive to exposure to oxygen or nitrogen trifluoride, both of which the siloxane is exposed to in use in semiconductor manufacture. The additives described in this invention form solutions with TOMCATS type siloxane at the tested concentrations. In addition, these additives are not anticipated to have a detrimental impact on the overall CVD process by virtue of their concentration and their chemical and physical characteristics.

[0028] In-house experiments have established that TOMCATS type siloxane is sensitive to oxygen and/or nitrogen trifluoride at elevated temperatures. TOMCATS type siloxane reacts with oxygen and/or nitrogen trifluoride forming oligomeric and polymeric species at temperatures equal to or greater than 60°C. This is particularly important since oxygen and/or nitrogen trifluoride is commonly used as the oxidizing gas in PECVD processes for the deposition of SiO₂ films from TOMCATS type siloxane or as a cleaning gas between production runs. Data collected for the stability of TOMCATS type siloxanes in the presence of oxygen, carbon dioxide and nitrogen trifluoride are shown in Table1.

[0029] To address this reactivity TOMCATS type siloxane was spiked with low levels of chemicals which function as free radical scavengers, i.e., antioxidants. These antioxidants or scavengers may work by deterring chemical reactions that proceed by a free-radical reaction pathway. The antioxidant or free radical scavenger investigated as O₂-, CO₂ and/or nitrogen trifluoride- stabilizers was 2,6-di-tert-butyl-4-methyl phenol (or BHT for butylhydroxytoluene). TOMCATS type siloxane was substantially more resistant toward O₂, CO₂ and/or nitrogen trifluoride when spiked with BHT. The addition of 150 ppm by weight of BHT greatly reduced the sensitivity of TOMCATS type siloxane toward O₂, CO₂ and/or nitrogen trifluoride at elevated temperature as shown by the series of tests run at 90°C (Table 1). Another benefit is that BHT is free of atomic nitrogen which reportedly gives rise to undesirable basic film properties. TEMPO is also expected

to be an effective O₂, CO₂ and/or nitrogen trifluoride-stabilizer.

[0030] These tests clearly established the benefit of the use of relatively low levels of antioxidants or free radical scavengers to greatly reduce or eliminate the sensitivity of TOMCATS type siloxane to O₂, CO₂ and/or nitrogen trifluoride, thereby, reducing the likelihood of plugging problems occurring by the O₂, CO₂ and/or nitrogen trifluoride promoted polymerization of TOMCATS type siloxane. The scavengers/antioxidants contemplated for this utility include: 2,6-di-tert-butyl-4-methyl phenol, 2,2,6,6-tetramethyl-1-piperidinyloxy, 2-tert-butyl-4-hydroxyanisole, 3-tert-butyl-4-hydroxyanisole, propyl ester 3,4,5-trihydroxy-benzoic acid, 2-(1,1-dimethylethyl)-1,4-benzenediol, diphenylpicrylhydrazyl, 4-tert-butylcatechol, N-methylaniline, p-methoxydiphenylamine, diphenylamine, N,N'-diphenyl-p-phenylenediamine, p-hydroxydiphenylamine, phenol, octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, tetrakis (methylene (3,5-di-tert-butyl)-4-hydroxy-hydrocinnamate) methane, phenothiazines, alkylamidonoisoureas, thiodiethylene bis (3,5,-di-tert-butyl-4-hydroxyhydrocinnamate, 1,2,-bis (3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl) hydrazine, tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, cyclic neopantanetetrayl bis (octadecyl phosphite), 4,4'-thiobis (6-tert-butyl-m-cresol), 2,2'-methylenebis (6-tert-butyl-p-cresol), oxalyl bis (benzylidenehydrazide) and mixtures thereof. Naturally occurring antioxidants can also be used such as raw seed oils, wheat germ oils tocopherols and gums.

[0031] It is believed that the polymerization of TOMCATS type siloxanes may be catalyzed by free radicals. The composition and method described herein demonstrates that certain antioxidants or free radical scavengers are effective additives for inhibiting the polymerization of TOMCATS type siloxanes, such as 2,6-di-tert-butyl-4-methyl phenol, also known as butylhydroxytoluene (BHT). However, other mechanisms for polymerization of cyclical polysiloxanes are also within the scope of the composition and process described herein. In this regard, one or more antioxidants may be added that inhibit polymerization in a manner other than free radical inhibition. These later one or more antioxidants may be used by themselves or in combination with antioxidants that inhibit free radicals.

[0032] To attain the object of the present invention, to eliminate or inhibit the polymerization of TOMCATS type siloxane under typical CVD process conditions, laboratory experiments were run with the intent of simulating conditions that TOMCATS type siloxane would be subject to in a typical CVD process. The effectiveness of these inhibitors was gauged by comparing the stability of neat TOMCATS type siloxane (i.e., no polymerization inhibitor) with that of TOMCATS type siloxane stabilized with antioxidants such as BHT. These stability tests were carried out at 90°C in the absence of contaminants (under vacuum), and in presence of contaminants, in which TOMCATS type siloxane was intentionally exposed to controlled amounts of selected gases such as O₂, CO₂ and nitrogen trifluoride. All three of these gases are typically used at some point in the processing or maintenance for the chemical vapor deposition of SiO₂ from TOMCATS type siloxane precursor. Oxygen and NF₃ are known sources of free radicals. TOMCATS type siloxane is often diluted with O₂ and/or CO₂ during a typical PECVD process. Nitrogen trifluoride is commonly used in the chamber-cleaning step of such processes.

Example 1: Polymerization under vacuum conditions.

35 Stability of TOMCATS type siloxane, with and without BHT

[0033] Six quartz ampoules with a nominal volume of 80-90 ml were used for this test. These ampoules will be referred to in the present example as 1A, 1B, 1C, 1D, 1E and 1F. These ampoules were prepared by rinsing twice with distilled water, twice with reagent grade acetone, then placed into a drying oven at 175°C for 16-18 hours. The dry ampoules were removed from the oven and used while still warm. Approximately 5.0 ml of additive free TOMCATS type siloxane was loaded into ampoules 1A, 1B, 1C and 1D. A similar amount of TOMCATS type siloxane containing 150 ppm (by weight) BHT was loaded into ampoules 1E and 1F. Teflon valves were attached to the open end of the ampoules. The end of ampoule 1A was immersed in a liquid nitrogen bath to cause any vaporized TOMCATS type siloxane to condense. The air was evacuated from the headspace of the ampoule by subjecting it to vacuum for 5 minutes. The ampoule was sealed at the neck using a hydrogen/oxygen torch. The remaining 5 ampoules (1 B-1 F) were sealed in a similar fashion. Sealed ampoules 1C, 1D, 1E and 1F were placed in a nitrogen-purged oven, and subsequently held at a constant temperature of 90°C for 24 hours. Ampoules 1A and 1B were kept at room temperature and served as control samples. After 24 hours the heated ampoules were removed from the oven and allowed to cool to room temperature.

[0034] GC analysis showed no significant polymerization for the control samples (1A, 1B) relative to the lot material. The heated samples with no additive (1C, 1 D) showed an average polymerization of 0.136%. The heated samples with 150 ppm BHT had an average polymerization of 0.079%. Results are summarized in Table 1.

Example 2: Sensitivity to carbon dioxide.

55 Exposure of TOMCATS type siloxane to 0.50 weight % carbon dioxide

[0035] Four quartz ampoules (2A, 2B, 2C and 2D) were cleaned and dried as described in Example 1. Approximately

5.0 g of TOMCATS type siloxane containing no additive was loaded into ampoules 2A and 2B. A similar amount of TOMCATS type siloxane spiked with 150 ppm by weight of BHT was loaded into ampoules 2C and 2D. Each of the 4 ampoules was equipped with a quartz side-arm extension, capped with a septum. Ampoule 2A was cooled to liquid nitrogen temperature and evacuated to remove the air in the headspace. The ampoule was isolated from the vacuum and 19 sccm of gaseous carbon dioxide was injected via a syringe through the septum cap on the side arm. The ampoule, still under sub-ambient pressure, was sealed using a torch as described in Example 1. The remaining 3 ampoules (2B, 2C and 2D) were prepared and sealed in the same manner. All four sealed ampoules were heated for 24 hours at 90°C as described in Example 1. TOMCATS type siloxane without additive showed an average polymerization of 0.216%. The same chemical with 150 ppm of BHT additive showed an average polymerization of 0.028%. Results are summarized in Table 1.

Example 3: Sensitivity to oxygen.

15 Exposure of TOMCATS type siloxane to 0.50 weight % oxygen

[0036] Four quartz ampoules (3A, 3B, 3C and 3D) were cleaned and dried as described in Example 1. Approximately 5.0 g of TOMCATS type siloxane containing no additive was loaded into ampoules 3A and 3B. A similar amount of TOMCATS type siloxane spiked with 150 ppm by weight of BHT was loaded into ampoules 3C and 3D. Each of the 4 ampoules was equipped with a quartz side-arm extension, capped with a septum. Ampoule 3A was cooled to liquid nitrogen temperature and evacuated to remove the air in the headspace. The ampoule was isolated from the vacuum and 19 sccm of oxygen was injected via a syringe through the septum cap on the side arm. The ampoule, still under sub-ambient pressure, was sealed using a torch as described in Example 1. The remaining 3 ampoules (3B, 3C and 3D) were prepared and sealed in the same manner. All four sealed ampoules were heated for 24 hours at 90°C as described in Example 1. TOMCATS type siloxane without additive showed an average polymerization of 6.462%. The same chemical with 150 ppm of BHT additive showed an average polymerization of 0.031%. Results are summarized in Table 1.

Example 4: Sensitivity to nitrogen trifluoride.

30 Exposure of TOMCATS type siloxane without BHT to nitrogen trifluoride

[0037] Compatibility tests were carried to evaluate the effectiveness of free radical scavengers, such as BHT, to inhibit the nitrogen trifluoride promoted polymerization of TOMCATS type siloxane. Because of the potential reactivity of NF₃ and the corrosive nature of possibly byproducts, these compatibility tests were carried out in a 300cc stainless steel Parr Reactor.

[0038] 49.956 g of TOMCATS type siloxane was loaded into the 300 cc reactor. This sample of TOMCATS type siloxane did not have BHT, but did have 125 ppm by weight 2,4-pentanedione. The 2,4-pentanedione was developed as an earlier additive to stabilize TOMCATS type siloxane. The gas in the reactor headspace was evacuated. NF₃ was expanded into the headspace such that its final concentration was 636 ppm by weight (0.0636 weight %). The reactor temperature was raised to 100°C and held for 24 hours. After the specified time, the NF₃ was removed by pumping out the reactor. The reactor was opened. The TOMCATS type siloxane had completely gelled. There was no residual liquid in the reactor.

[0039] Samples that are very viscous or gelled, such as the one described in the present example, are indicative of a high degree of polymerization for TOMCATS type siloxane. These samples are not amenable to analysis by GC due to their insolubility in common organic solvents. Such samples are assigned a degree of polymerization of ">10 weight %" for the purpose of this document.

Example 5: Sensitivity to nitrogen trifluoride.

50 Exposure of TOMCATS type siloxane with 150 ppm BHT to nitrogen trifluoride

[0040] 49.863 g of TOMCATS type siloxane was loaded into the 300 cc reactor. This sample of TOMCATS type siloxane had been previously spiked with 150 ppm by weight of BHT. The gas in the reactor headspace was evacuated. NF₃ was expanded into the headspace such that its final concentration was 631 ppm by weight (0.0631 weight %). The reactor temperature was raised to 100°C and held for 24 hours. After the specified time, the NF₃ was removed by pumping out the reactor. The reactor was opened and 45.631 g of clear colorless liquid was recovered. The loss in weight was probably due to pumping on the reactor at the end of the experiment to remove the NF₃. The liquid was transferred to a polyethylene bottle. A sample was analyzed by GC, establishing that the purity of TOMCATS type

siloxane stayed the same at 99.95% before and after analysis. No polymerization was detected.

Table 1

The stability of TOMCATS type siloxane with and without BHT inhibitor in the presence of various chemical sources of free radicals.						
Example No.	Gas in Headspace*	% Purity of TOMCATS type siloxanes (before testing)	Spiked with 150 ppm BHT?	Time @ 90°C (hrs)	Extent of Polymerization after testing (%)	Average % Polymerization of duplicate samples (after testing)
1A	None	99.962	No	0	< 0.005	< 0.005
1B	None	99.962	No	0	< 0.005	
1C	None	99.962	No	24	0.113	0.136
1D	None	99.962	No	24	0.159	
1E	None	99.962	Yes	24	0.084	0.079
1F	None	99.962	Yes	24	0.075	
2A	CO ₂	99.962	No	24	0.242	0.216
2B	CO ₂	99.962	No	24	0.190	
2C	CO ₂	99.962	Yes	24	0.028	0.028
2D	CO ₂	99.962	Yes	24	0.027	
3A	O ₂	99.962	No	24	6.482	6.462
3B	O ₂	99.962	No	24	6.442	
3C	O ₂	99.962	Yes	24	0.006	0.031
3D	O ₂	99.962	Yes	24	0.057	
4	NF ₃	99.93	No	24 ‡	> 10.0 ‡	> 10.0
5	NF ₃	99.95	Yes	24 ‡	< 0.01	< 0.01

* All contaminant gases were spiked at 0.50 weight percent, with the exception of NF₃ in Examples #4, and #5, that was present at 0.0636 wt.% and 0.0631 wt.%, respectively.

‡ Testing temperature was 100°C.

† No GC was run since this sample had fully gelled. This is indicative of > 10% polymerization.

Example 6: Stability of TOMCATS type siloxane containing 150 ppm of the antioxidant BHT subjected to an equivalent molar amount of O₂ at 90°, 105°C, and 120°C for 24 hours

[0041] Three clean 85 ml quartz ampoules were placed in a drying oven at 175°C to remove surface moisture. The clean, dry ampoules were immediately transferred into a nitrogen dry box. Within the dry box 1.3 grams of TOMCATS containing 150 ppm of BHT was added to each of 3 ampoules using glass pipettes to minimize the amount of TOMCATS on the neck of the vessel. One of the three ampoules was fitted with a Teflon valve assembly, equipped with a side-arm and a septum cap. The main valve was closed and the ampoule assembly was removed from the dry box and connected to the glass vacuum line. The base of the ampoule was cooled in liquid nitrogen for 5 minutes while keeping its contents isolated from vacuum. The ampoule was then opened to vacuum to evacuate the nitrogen from the headspace. The evacuated ampoule was again isolated from dynamic vacuum and 130 sccm of oxygen was injected into the ampoule through the septum cap. The base of the ampoule was kept in the liquid nitrogen bath for 5 more minutes to condense the oxygen from the headspace. At this time, the neck of the ampoule was flame-sealed using a hydrogen-oxygen torch. The ampoule thus prepared was placed in a laboratory oven at 90°C. This procedure was repeated to prepare two more ampoules such that the test was done in triplicate. After 24 hours, the ampoules were removed from the oven, allowed to cool, and transferred into the dry box. The ampoules were broken open and samples of the liquid were set aside for GC analysis. The GC analysis of the liquid showed an average degradation of 0.12 % relative to the initial amount of

TOMCATS.

[0042] The above tests were repeated in triplicate at 105°C and 120°C. At 105°C approximately 30% of the liquid TOMCATS had gelled indicating substantial polymerization had occurred. At 120°C all of the TOMCATS had gelled. The results are summarized in Table 2.

5

Example 7: Stability of TOMCATS type siloxane containing 500 ppm of the antioxidant BHT subjected to an equivalent molar amount of O₂ at 90°, 105°C, and 120°C for 24 hours

10

[0043] Three clean 85 ml quartz ampoules were placed in a drying oven at 175°C to remove surface moisture. The clean, dry ampoules were immediately transferred into a nitrogen dry box. Within the dry box 1.3 grams of TOMCATS containing 500 ppm of BHT was added to each of 3 ampoules using glass pipettes to minimize the amount of TOMCATS on the neck of the vessel. One of the three ampoules was fitted with a Teflon valve assembly, equipped with a side-arm and a septum cap. The main valve was closed and the ampoule assembly was removed from the dry box and connected to the glass vacuum line. The base of the ampoule was cooled in liquid nitrogen for 5 minutes while keeping its contents isolated from vacuum. The ampoule was then opened to vacuum to evacuate the nitrogen from the headspace. The evacuated ampoule was again isolated from dynamic vacuum and 130 sccm of oxygen was injected into the ampoule through the septum cap. The base of the ampoule was kept in the liquid nitrogen bath for 5 more minutes to condense the oxygen from the headspace. At this time, the neck of the ampoule was flame-sealed using a hydrogen-oxygen torch. The ampoule thus prepared was placed in a laboratory oven at 90°C. This procedure was repeated to prepare two more ampoules such that the test was done in triplicate. After 24 hours, the ampoules were removed from the oven, allowed to cool, and transferred into the dry box. The ampoules were broken open and samples of the liquid were set aside for GC analysis. The GC analysis of the liquid showed less than 0.20% degradation relative to the initial amount of TOMCATS.

[0044] The above tests were repeated in triplicate at 105°C and 120°C. At 105°C less than 0.20% degradation was observed. At 120°C approximately 50% TOMCATS had gelled. The results are summarized in Table 2.

25

Example 8: Stability of TOMCATS type siloxane containing 2,000 ppm of the antioxidant BHT subjected to an equivalent molar amount of O₂ at 90°, 105°C, and 120°C for 24 hours

30

[0045] Three clean 85 ml quartz ampoules were placed in a drying oven at 175°C to remove surface moisture. The clean, dry ampoules were immediately transferred into a nitrogen dry box. Within the dry box 1.3 grams of TOMCATS containing 2,000 ppm of BHT was added to each of 3 ampoules using glass pipettes to minimize the amount of TOMCATS on the neck of the vessel. One of the three ampoules was fitted with a Teflon valve assembly, equipped with a side-arm and a septum cap. The main valve was closed and the ampoule assembly was removed from the dry box and connected to the glass vacuum line. The base of the ampoule was cooled in liquid nitrogen for 5 minutes while keeping its contents isolated from vacuum. The ampoule was then opened to vacuum to evacuate the nitrogen from the headspace. The evacuated ampoule was again isolated from dynamic vacuum and 130 sccm of oxygen was injected into the ampoule through the septum cap. The base of the ampoule was kept in the liquid nitrogen bath for 5 more minutes to condense the oxygen from the headspace. At this time the neck of the ampoule was flame-sealed using a hydrogen-oxygen torch. The ampoule thus prepared was placed in a laboratory oven at 90°C. This procedure was repeated to prepare two more ampoules such that the test was done in triplicate. After 24 hours, the ampoules were removed from the oven, allowed to cool, and transferred into the dry box. The ampoules were broken open and samples of the liquid were set aside for GC analysis. The GC analysis of the liquid showed less than 0.20% degradation relative to the initial amount of TOMCATS.

[0046] The above tests were repeated in triplicate at 105°C and 120°C. At 105°C less than 0.20% degradation was observed. At 120°C approximately 10% TOMCATS had gelled. The results are summarized in Table 2.

45

Example 9: Stability of TOMCATS type siloxane containing 5,000 ppm of the antioxidant BHT subjected to an equivalent molar amount of O₂ at 90°, 105°C, and 120°C for 24 hours

50

[0047] Three clean 85 ml quartz ampoules were placed in a drying oven at 175°C to remove surface moisture. The clean, dry ampoules were immediately transferred into a nitrogen dry box. Within the dry box 1.3 grams of TOMCATS containing 5,000 ppm of BHT was added to each of 3 ampoules using glass pipettes to minimize the amount of TOMCATS on the neck of the vessel. One of the three ampoules was fitted with a Teflon valve assembly, equipped with a side-arm and a septum cap. The main valve was closed and the ampoule assembly was removed from the dry box and connected to the glass vacuum line. The base of the ampoule was cooled in liquid nitrogen for 5 minutes while keeping its contents isolated from vacuum. The ampoule was then opened to vacuum to evacuate the nitrogen from the headspace. The evacuated ampoule was again isolated from dynamic vacuum and 130 sccm of oxygen was injected into the ampoule through the septum cap. The base of the ampoule was kept in the liquid nitrogen bath for 5 more minutes to condense the oxygen from the headspace. At this time, the neck of the ampoule was flame-sealed using a hydrogen-oxygen torch.

The ampoule thus prepared was placed in a laboratory oven at 90°C. This procedure was repeated to prepare two more ampoules such that the test was done in triplicate. After 24 hours, the ampoules were removed from the oven, allowed to cool, and transferred into the dry box. The ampoules were broken open and samples of the liquid were set aside for GC analysis. The GC analysis of the liquid showed an average degradation of 0.20 % relative to the initial amount of TOMCATS.

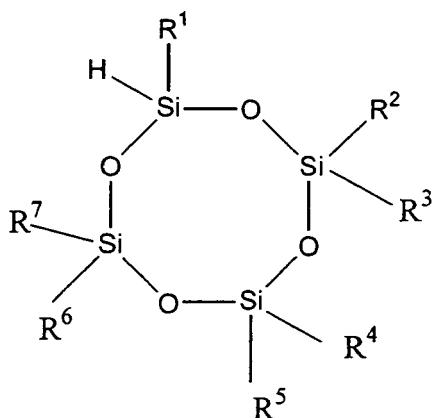
[0048] The above tests were repeated in triplicate at 105°C and 120°C. At both 105°C and at 120°C less than 0.20% degradation was observed. The results are summarized in Table 2.

Example 10: Stability of TOMCATS type siloxane containing 10,000 ppm of the antioxidant BHT subjected to an equivalent molar amount of O₂ at 90°, 105°C, and 120°C for 24 hours

[0049] Three clean 85 ml quartz ampoules were placed in a drying oven at 175°C to remove surface moisture. The clean, dry ampoules were immediately transferred into a nitrogen dry box. Within the dry box 1.3 grams of TOMCATS containing 10,000 ppm of BHT was added to each of 3 ampoules using glass pipettes to minimize the amount of TOMCATS on the neck of the vessel. One of the three ampoules was fitted with a Teflon valve assembly, equipped with a side-arm and a septum cap. The main valve was closed and the ampoule assembly was removed from the dry box and connected to the glass vacuum line. The base of the ampoule was cooled in liquid nitrogen for 5 minutes while keeping its contents isolated from vacuum. The ampoule was then opened to vacuum to evacuate the nitrogen from the headspace. The evacuated ampoule was again isolated from dynamic vacuum and 130 sccm of oxygen was injected into the ampoule through the septum cap. The base of the ampoule was kept in the liquid nitrogen bath for 5 more minutes to condense the oxygen from the headspace. At this time, the neck of the ampoule was flame-sealed using a hydrogen-oxygen torch. The ampoule thus prepared was placed in a laboratory oven at 90°C. This procedure was repeated to prepare two more ampoules such that the test was done in triplicate. After 24 hours, the ampoules were removed from the oven, allowed to cool, and transferred into the dry box. The ampoules were broken open and samples of the liquid were set aside for GC analysis. The GC analysis of the liquid showed an average degradation of 0.20 % relative to the initial amount of TOMCATS.

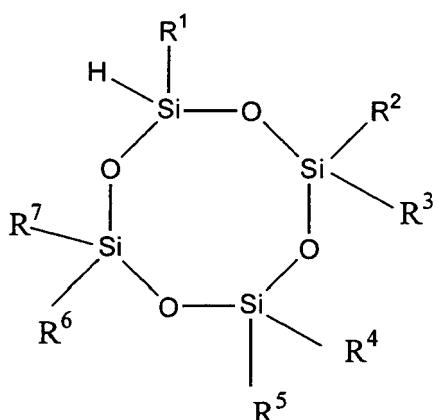
[0050] The above tests were repeated in triplicate at 105°C and 120°C. At both 105°C and at 120°C less than 0.20% degradation was observed. The results are summarized in Table 2.

Table 2


Oxygen exposure tests for TOMCATS containing variable levels of BHT. All tests were done for 24 hours using an O ₂ to TOMCATS molar ratio of 1:1.					
Temperature (°C)	BHT Concentration				
	150 ppm	500 ppm	2,000 ppm	5,000 ppm	10,000 ppm
90	stable*	stable	stable	stable	stable
105	30% polymer	stable	stable	stable	stable
120	100% polymer	50% polymer	10% polymer	stable	stable

* "Stable" indicates that less than 0.20 % degradation was measured after testing

[0051] The present invention has been set forth with regard to several preferred embodiments, but the full scope of the present invention should be ascertained from the claims which follow.


Claims

1. A process for stabilizing a cyclotetrasiloxane against polymerization used in a chemical vapor deposition process for silicon oxides in electronic material fabrication comprising; providing an effective amount of an antioxidant to said cyclotetrasiloxane having the following formula:

where R^{1-7} are individually selected from the group consisting of hydrogen, a normal, branched or cyclic C_{1-10} alkyl group, and a C_{1-4} alkoxy group.

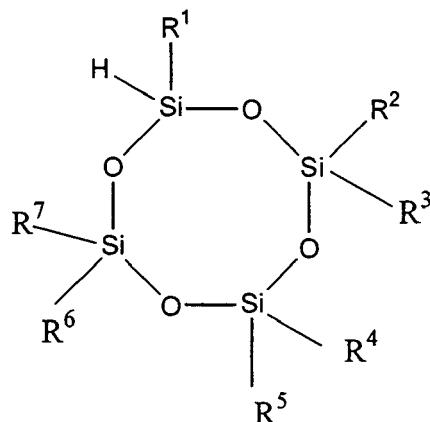
20 2. A process for stabilizing a cyclotetrasiloxane against polymerization used in a chemical vapor deposition process for silicon oxides in electronic material fabrication, comprising;
providing the cyclotetrasiloxane having the following formula:

40 where R^{1-7} are individually selected from the group consisting of hydrogen, a normal, branched or cyclic C_{1-10} alkyl group, and a C_{1-4} alkoxy group
adding an antioxidant to the cyclotetrasiloxane.

45 3. The process of claim 2 wherein the antioxidant is added in an amount ranging from 10 to 10,000 ppm (wt.).

4. The process of claim 2 wherein the antioxidant is added in an amount ranging from 10 to 5,000 ppm (wt.).

5. The process of claim 2 wherein the antioxidant is added in an amount ranging from 10 to 2,000 ppm (wt.).


50 6. The process of claim 2 wherein the antioxidant comprises a phenolic compound.

7. A process for stabilizing 1,3,5,7-tetramethylcyclotetrasiloxane against polymerization caused by oxygen, carbon dioxide and/or nitrogen trifluoride used in a chemical vapor deposition process for silicon oxides in electronic material fabrication comprising providing an antioxidant to said 1,3,5,7-tetramethylcyclotetrasiloxane.

55 8. The process of claim 7 wherein the antioxidant comprises a phenolic compound.

9. A composition used in a chemical vapor deposition process and stabilized for extended periods of heating comprising:

cyclotetrasiloxane having the following formula:

where R^{1-7} are individually selected from the group consisting of hydrogen, a normal, branched or cyclic C_{1-10} alkyl group, and a C_{1-4} alkoxy group; and an antioxidant.

25

10. The composition of claim 9 wherein the antioxidant ranges in amount from 10 to 10,000 ppm (wt.).

11. The composition of claim 9 wherein the antioxidant ranges in amount from 10 to 5,000 ppm (wt.).

12. The composition of claim 9 wherein the antioxidant ranges in amount from 10 to 2,000 ppm (wt.).

30

13. A composition of 1,3,5,7-tetramethylcyclotetrasiloxane stabilized against polymerization used in a chemical vapor deposition process as a precursor for silicon oxides in electronic material fabrication comprising 1,3,5,7-tetramethylcyclotetrasiloxane and an antioxidant.

35

40

45

50

55

EUROPEAN SEARCH REPORT

Application Number
EP 08 01 7679

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	US 2004/039219 A1 (CHEN TIANNIU [US] ET AL) 26 February 2004 (2004-02-26) * the whole document * -----	1-13	INV. C07F7/08 C07F7/20 C07F7/21 C08K5/05
X	WO 2004/027110 A (ARCH SPEC CHEM INC [US]) 1 April 2004 (2004-04-01) * the whole document * -----	1-13	
A	WO 03/051946 A (ADVANCED TECH MATERIALS [US]) 26 June 2003 (2003-06-26) * the whole document * -----	1	
D, X	US 2006/252904 A1 (MAYORGA STEVEN G [US] ET AL MAYORGA STEVEN GERARD [US] ET AL) 9 November 2006 (2006-11-09) * the whole document * -----	1-13	
D, X	US 7 101 948 B2 (MAYORGA STEVEN GERARD [US] ET AL) 5 September 2006 (2006-09-05) * the whole document * -----	1-13	
D, A	US 6 858 697 B2 (MAYORGA STEVEN GERARD [US] ET AL) 22 February 2005 (2005-02-22) * the whole document * -----	1	TECHNICAL FIELDS SEARCHED (IPC) C07F C08K
The present search report has been drawn up for all claims			
1	Place of search The Hague	Date of completion of the search 29 January 2009	Examiner Rinkel, Bert
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 08 01 7679

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-01-2009

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 2004039219	A1	26-02-2004	DE 102004041641 A1 GB 2405404 A		28-07-2005 02-03-2005
WO 2004027110	A	01-04-2004	EP 1573086 A2 JP 2006516302 T KR 20050089147 A		14-09-2005 29-06-2006 07-09-2005
WO 03051946	A	26-06-2003	AU 2002351223 A1 US 2003116421 A1 US 2006235182 A1		30-06-2003 26-06-2003 19-10-2006
US 2006252904	A1	09-11-2006	NONE		
US 7101948	B2	05-09-2006	AT 321058 T CN 1429927 A CN 1911937 A DE 60209990 T2 EP 1321469 A1 JP 2003238578 A JP 2007176949 A KR 20030053447 A SG 107629 A1 US 2003149213 A1 US 2004054114 A1		15-04-2006 16-07-2003 14-02-2007 14-09-2006 25-06-2003 27-08-2003 12-07-2007 28-06-2003 29-12-2004 07-08-2003 18-03-2004
US 6858697	B2	22-02-2005	AT 321058 T CN 1429927 A CN 1911937 A DE 60209990 T2 EP 1321469 A1 JP 2003238578 A JP 2007176949 A KR 20030053447 A SG 107629 A1 US 2003149213 A1 US 2004054114 A1		15-04-2006 16-07-2003 14-02-2007 14-09-2006 25-06-2003 27-08-2003 12-07-2007 28-06-2003 29-12-2004 07-08-2003 18-03-2004

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 48409406 A [0001]
- US 60227903 A [0001]
- US 7101948 B [0001]
- US 02989201 A [0001]
- US 6858697 B [0001]

Non-patent literature cited in the description

- Kirk-Othmer Encyclopedia of Chemical Technology.
Antioxidants. vol. 3, 102-134 [0020]