

(11) EP 2 060 795 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 20.05.2009 Patentblatt 2009/21

(51) Int Cl.: **F04D** 19/04^(2006.01) **F04D** 29/059^(2006.01)

F04D 29/063 (2006.01)

(21) Anmeldenummer: 08018521.8

(22) Anmeldetag: 23.10.2008

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA MK RS

(30) Priorität: 15.11.2007 DE 102007054632

(71) Anmelder: Pfeiffer Vacuum GmbH 35614 Asslar (DE)

(72) Erfinder: **Stanzel**, **Jörg 35583 Wetzlar (DE)**

(54) Vakuumpumpe

(57) Die Erfindung betrifft eine Vakuumpumpe (1) mit einem Flansch (28), einem Rotor (2) und mit einem Schmiermittelkreislauf, der eine Schmiermittelvorratskammer (3) und eine Schmiermittelpumpe (4; 4') enthält, und der zur Schmierung eines den Rotor drehbar unter-

stützenden Wälzlagers (5) dient. Um die Lebensdauer des Wälzlagers zu erhöhen, schlägt die Erfindung vor, dass als Bestandteil des Schmiermittelkreislaufs eine Schmiermittelsammelkammer (6) innerhalb der Vakuumpumpe zwischen Flansch und Wälzlager angeordnet ist.

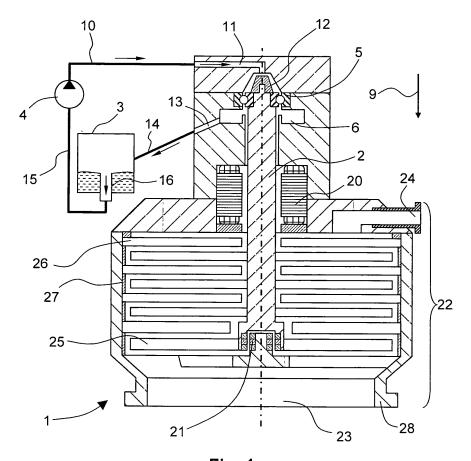


Fig. 1

EP 2 060 795 A2

Beschreibung

[0001] Die Erfindung betrifft eine Vakuumpumpe mit einem Rotor und mit einem Schmiermittelkreislauf, der eine Schmiermittelvorratskammer und eine Schmiermittelpumpe enthält, und der zur Schmierung eines den Rotor drehbar unterstützenden Wälzlagers dient.

1

[0002] Vakuumpumpen mit schnelldrehenden Rotoren, insbesondere Turbomolekularpumpen, weisen häufig Wälzlager zur Lagerung des Rotors auf. Aufgrund der schnellen Drehung, die im Bereich von einigen zehntausend Umdrehungen pro Minute liegt, ist die Versorgung des Wälzlagers mit Schmiermittel für die Lebensdauer des Lagers entscheidend. Es ist bekannt, einen Schmiermittelkreislauf vorzusehen, bei dem Schmiermittel einer Schmiermittelvorratskammer entnommen und dem Wälzlager zugeführt wird. Von dort fließt es dann zurück in die Schmiermittelvorratskammer. Der Schmiermittelkreislauf wird von einer Schmiermittelpumpe in Gang gehalten. Die Anforderungen an den Schmiermittelkreislauf werden dadurch erhöht, dass die Befestigung der Vakuumpumpe in verschiedenen Orientierungen in Bezug zur Schwerkraftrichtung an der zu evakuierenden Anlage möglich sein soll.

[0003] Ein Beispiel für eine Anordnung, mit der das gelingen kann, gibt die EP-A 1 477 721. Diese Schrift stellt eine Schmiermittelpumpe mit einer Spindeln mit zwei Förderköpfen vor, von denen jeweils eine in das in der Schmiermittelkammer befindliche Schmiermittel eingetaucht ist. Auf diese Art wird eine Förderung von Schmiermittel in jeder Orientierung erreicht.

[0004] Man stellt jedoch fest, dass die Lebensdauer im Kopfüberbetrieb, wenn der Flansch der Vakuumpumpe in Bezug zur Schwerkraftrichtung unterhalb des Wälzlagers angeordnet ist, geringer als bei umgekehrter Ausrichtung der Vakuumpumpe ist.

[0005] Daher war es Aufgabe des Erfinder, eine Vakuumpumpe zu schaffen, deren Lebensdauer insbesondere im Kopfüberbetrieb verlängert ist.

[0006] Diese Aufgabe wird gelöst durch eine Vakuumpumpe mit den Merkmalen des ersten Anspruchs. Die Ansprüche 2 bis 6 geben vorteilhafte Weiterbildungen der Erfindung an.

[0007] Eine Schmiermittelsammelkammer, die zusätzlich zur Schmiermittelvorratskammer vorgesehen und innerhalb der Vakuumpumpe zwischen Wälzlager und Flansch angeordnet ist, ermöglicht es, bis zum Stillstand des Rotors Schmiermittel in das Wälzlager zu fördern. Dieses Schmiermittel wird in der Schmiermittelsammelkammer aufgefangen und kann nicht in den Vakuumbereich der Vakuumpumpe gelangen. Dies verhindert zum einen Kontamination des Vakuumbereichs mit Schmiermittel, zum anderen werden Schmiermittelverluste erheblich verringert. Lebensdauerverringerung durch Schmiermittelverluste treten daher nicht mehr auf. Da jederzeit Schmierung gewährleistet ist, werden Betriebszustände mit mangelndem Schmiermitteleinsatz vermieden. Dadurch wird der Verschleiß herabgesetzt und somit die Lebensdauer erhöht.

[0008] In einer vorteilhaften Weiterbildung ist die Schmiermittelvorratskammer Teil der Schmiermittelpumpe, wodurch ein sehr platzsparender Aufbau mit wenigen Bauteilen erreicht wird.

[0009] Eine Verunreinigung des Vakuumbereichs wird verhindert, indem in einer Weiterbildung das Volumen der Schmiermittelsammelkammer derart bemessen ist, dass sie die komplette, im Umlauf befindliche Menge des Schmiermittels aufnehmen kann.

[0010] In einer anderen Weiterbildung weist die Schmiermittelpumpe ein Antriebsmittel auf, durch dessen Gestaltung die Förderleistung der Schmiermittelpumpe unabhängig von der Drehzahl des Rotors ist. Damit wird bei in den Stillstand übergehenden Rotor weiterhin Schmiermittel dem Wälzlager zugeführt, wodurch ein Abreißen der Schmierung verhindert wird. Dadurch wird die Lebensdauer des Wälzlagers weiter erhöht.

[0011] Die Erfindung lässt sich vorteilhaft weiterbilden, indem die Schmiermittelvorratskammer ein Begrenzungsmittel aufwiest, das eine vollständige Entnahme des Schmiermittels verhindert. Dadurch bleibt immer eine Mindestmenge Schmiermittel in der Schmiermittelvorratskammer, die dort Abkühlen kann. Etwaige durch den Umlauf in das Schmiermittel gelangte Festkörper können in dieser Mindestmenge ausfallen. Zudem ist die Nutzungszeit pro Schmiermittelmenge geringer.

[0012] Eine einfache Ausführung des Begrenzungsmittels ist ein Kragen, der um den Auslass der Schmiermittelvorratskammer herum angeordnet ist.

[0013] Anhand eines Ausführungsbeispiels soll die Erfindung näher erläutert und weitere Vorteile aufgezeigt werden. Es zeigen:

Fig. 1: Schnitt durch eine Vakuumpumpe mit Schmiermittelkreislauf

Fig. 2: Schnitt durch eine Schmiermittelpumpe, die gemäß einer Weiterbildung der Erfindung eine Schmiermittelvorratskammer umfasst.

[0014] Figur 1 zeigt eine Vakuumpumpe 1, die in Kopfüberanordnung betrieben wird. Das bedeutet, dass sich der Flansch 28 am unteren Ende der Vakuumpumpe befindet. Das untere Ende ist dabei in Bezug auf die Schwerkraftrichtung zu verstehen, die durch die Richtung der Pfeilspitze des Pfeils 9 angezeigt wird. Der Flansch 28 ist mit einer zu evakuierenden Einrichtung verbindbar. Mit dem Flansch, der den Gaseinlass 23 umgibt, beginnt der Vakuumbereich 22 der Vakuumpumpe. In diesem sind die pumpaktiven Elemente vorgesehen. Durch deren Wirkung entsteht in der mit der Vakuumpumpe verbundenen Einrichtung und innerhalb des Vakuumbereichs ein Gasdruck weit unterhalb des Atmosphärendrucks. Im Beispiel umfassen die pumpaktiven Elemente Schaufeln tragende Rotorscheiben 25, die an einem Vakuumpumpenrotor 2 angeordnet sind. Ihnen stehen ebenfalls Schaufeln tragende Statorscheiben 26 gegenüber, wobei sich Rotor- und Statorscheiben ent-

40

lang des Vakuumpumpenrotors abwechseln. Die Statorscheiben werden durch Distanzringe 27 auf axialem Abstand gehalten. Das durch die pumpaktiven Elemente verdichtete Gas wird durch einen Gasauslass 24 aus der Pumpe ausgestoßen. Das vakuumseitige Ende des Vakuumpumpenrotors 2 ist durch ein verschleiß- und schmiermittelfreies Permanenmagnetlager 21 drehbar unterstützt. Ein Motor 20 versetzt den Vakuumpumpenrotor in schnelle Drehung, bei der die pumpaktiven Elemente die Pumpwirkung entfalten.

[0015] Der Vakuumpumpenrotor 2 wird durch ein Wälzlager 5 am dem Permanentlager gegenüberliegenden Ende drehbar unterstützt. Dieses Wälzlager wird durch einen Schmiermittelkreislauf mit Schmiermittel versorgt. Der Schmiermittelkreislauf enthält eine Schmiermittelvorratskammer 3 von der Schmiermittel über einen Schmiermittelpumpenzulauf 15 zu einer Schmiermittelpumpe 4 gelangt, welche mit ihrer Förderleistung den Schmiermittelkreislauf in Gang hält. Von der Schmiermittelpumpe führt ein externer Zulauf 10 zum Gehäuse der Vakuumpumpe und ist dort mit einem internen Zulauf 11 verbunden. Dieser mündet im Bereich einer Spritzmutter 12. Diese ist auf dem Ende des Vakuumpumpenrotors befestigt und weist eine konische Gestalt auf. Durch die Drehung des Vakuumpumpenrotors dreht sich die Spritzmutter, so dass entlang des Konus eine Föderung von Schmiermittel durch Fliehkraftwirkung stattfindet. Die Spritzmutter fördert das Schmiermittel in das Wälzlager. Von dort gelangt es in einen internen Rücklauf 13, der mit einem externen Rücklauf 14 verbunden ist. Durch den externen Rücklauf gelangt das Schmiermittel schließlich zurück in die Schmiermittelvorratskammer. Der beschriebene Fluss des Schmiermittels ist in der Figur 1 durch Pfeile angedeutet.

[0016] Zwischen Wälzlager und Flansch und damit in Schwerkraftrichtung unterhalb des Wälzlagers ist eine Schmiermittelsammelkammer 6 angeordnet. Schmiermittel, welches aus dem Wälzlager austritt, wird in ihr gesammelt, bevor es in den internen Rücklauf 13 gelangt. Beim Abschalten der Vakuumpumpe ist dies besonders wichtig, denn wenn bei einer bereits mit Luft gefluteten Vakuumpumpe die Schmiermittelpumpe abgeschaltetet wird, läuft Schmiermittel durch den Schmiermittelpumpenzulauf 15 zurück in die Schmiermittelvorratskammer 3. Es verdrängt die dort befindliche Luft, welche dann Schmiermittel durch den externen Rücklauf 14 in die Vakuumpumpe drückt. Dieses Schmiermittel wird von der Schmiermittelsammelkammer 6 aufgefangen. Hierdurch wird verhindert, dass die im Umlauf befindliche Teilmenge des gesamten Schmiermittels entlang der Vakuumpumpenrotors in den Vakuumbereich eintritt. Daher wird eine Kontamination der an die Vakuumpumpe angeschlossenen Kammer verhindert. Gleichzeitig wird auch verhindert, dass Schmiermittel aus dem Schmiermittelkreislauf verloren geht, indem es in den Vakuumbereich eintritt. Von dort kann es nicht mehr in den Schmiermittelkreislauf zurückgebracht werden. Das Volumen der Schmiermittelsammelkammer ist derart bemessen, dass es die im Umlauf befindliche Schmiermittelmenge aufnehmen kann. Dadurch ist der Eintrag von Schmiermittel in den Vakuumbereich noch zuverlässiger unterbunden. Durch die Schmiermittelsammelkammer ist es möglich, bis zum Stillstand des Rotors Schmiermittel in das Wälzlager zu fördern, ohne dass es zur Kontamination des Vakuumbereichs kommen kann. Um die Menge des im Umlauf befindlichen Schmiermittels zu begrenzen, weist die Schmiermittelvorratskammer ein Begrenzungsmittel 16 auf.

[0017] Figur 2 zeigt den Schnitt durch eine Schmiermittelpumpe 4', deren Gehäuse 40 die Schmiermittelvorratskammer bildet. Die Schmiermittelvorratskammer 3' wird von einer hohlen Achse 32 durchsetzt, auf der ein Rotor 33 gleitgelagert ist. Er weist einen schraubenförmigen Kanal 34 auf, der bei Drehung des Rotors Schmiermittel in die hohle Achse hineinfördert. Von dort tritt es durch den Auslass 31 aus der Schmiermittelpumpe aus und in den Schmiermittelkreislauf ein. Durch einen Einlass 30 kommt das Schmiermittel aus dem Schmiermittelkreislauf wieder in die Schmiermittelvorratskammer hinein. Der Rotor wird von einem die Spulen 35 und die rotorseitigen Magnete 36 umfassenden Antriebsmittel in Drehung versetzt. Um die im Schmiermittelkreislauf umlaufende Schmiermittelmenge zu begrenzen, ist ein hülsenförmiger Abschnitt 16' vorgesehen, der den Rotor im Bereich des Auslasses der Schmiermittelvorratskammer umgibt. Durch diese Hülse verbleibt in der Schmiermittelsvorratskammer eine bis zur Höhe H stehende, nicht-umgewälzte Schmiermittelmenge 37. Da die umlaufende Schmiermittelmenge, welche bei der Schmierung des Wälzlagers erwärmt wird, mit dieser kühleren Schmiermittelmenge in Austausch steht, wird die Temperatur des Schmiermittels insgesamt gegenüber einem Umlauf der Gesamtmenge abgesenkt. Damit wird die Lebensdauer des Wälzlagers weiter erhöht.

Patentansprüche

40

45

50

- 1. Vakuumpumpe (1) mit einem Flansch (28), einem Rotor (2) und mit einem Schmiermittelkreislauf, der eine Schmiermittelvorratskammer (3) und eine Schmiermittelpumpe (4; 4') enthält, und der zur Schmierung eines den Rotor drehbar unterstützenden Wälzlagers (5) dient, dadurch gekennzeichnet, dass als Bestandteil des Schmiermittelkreislaufs eine Schmiermittelsammelkammer (6) innerhalb der Vakuumpumpe zwischen Flansch und Wälzlager angeordnet ist.
- 2. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Schmiermittelvorratskammer (3) Teil der Schmiermittelpumpe (4; 4') ist.
- Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Volumen der Schmiermittelsammelkammer (6) derart bemessen ist, die

im Umlauf befindliche Menge eines im Schmiermittelkreislauf befindlichen Schmiermittels aufzunehmen.

4. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schmiermittelpumpe (4; 4') ein Antriebsmittel (35, 36) aufweist, durch dessen Gestaltung die Förderleistung der Schmiermittelpumpe unabhängig von der Drehzahl des Vakuumpumpenrotors ist.

5. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schmiermittelvorratskammer (3) ein Begrenzungsmittel (16; 16') aufweist, das eine vollständige Entnahme des Schmiermittels verhindern.

6. Vakuumpumpe nach Anspruch 5, **dadurch gekennzeichnet**, **dass** das Begrenzungsmittel einen um einen Auslass der Schmiermittelvorratskammer (3) 20 herum angeordneten Kragen (16') umfasst.

25

30

35

40

45

50

55

Fig. 1

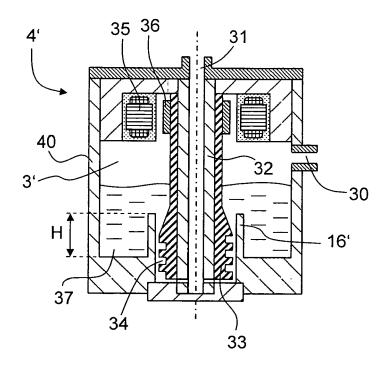


Fig. 2

EP 2 060 795 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• EP 1477721 A [0003]