[0001] The present invention relates to a tunable laser device and to a method for producing
light of respective selectable wavelengths.
[0002] Optical telecommunication systems are increasingly reliant on the use of a precise
wavelength of an optical signal in order to route the optical signal. The wavelength
can be defined or altered centrally or locally which require the provision of wavelength
sources with different properties. If fixed, the required wavelength can be provided
by a single frequency laser which is temperature controlled to maintain the precise
International Telecommunication Union (ITU) frequency. Such a laser can be realised
by known principles such as distributed feedback (DFB) or by controlled cavity reflectivities
using a slotted Fabry-Perot (SFP) device.
[0003] Replacement or addition of a wavelength channel requires a precise wavelength source.
It would be advantageous if the source can be generic and tuned to the desired wavelength.
In optical telecommunications there is also a requirement to switch incoming optical
signals on one wavelength channel to a different wavelength channel based either on
detection of the data or the retransmission on the new channel or based on keeping
the signal in the optical domain. In such cases it is desirable to switch between
wavelength channels in a timeframe of less than twenty nanoseconds.
[0004] Additionally, optical sensor systems for gas detection are based on the precise and
characteristic absorption spectra of the constituent molecules and atoms. Wavelength
tunable sources are required to perform these measurements. It would be advantageous
to have a tunable light source to cover a wide spectral range and thus be generic
to detection of many different gas species
[0005] WO 2006/008724 A1 discloses Vernier-tuned laser diodes having slots in a ridge waveguide for mode selection.
[0006] There is therefore a need for a tunable laser device for producing light of selectable
wavelengths.
[0007] The present invention is directed towards providing such a tunable laser device,
and the invention is also directed towards providing a method for producing light
of respective selectable wavelengths.
[0008] According to the invention there is provided a tunable laser device for producing
light of respective selectable wavelengths, the tunable laser device comprising:
a first ridge waveguide of a semiconductor material comprising a first laser diode
extending between a first proximal end and a first distal end, and having a first
ridge defining a first light guiding region extending in a longitudinal direction
between the first proximal end and the first distal end thereof,
a second ridge waveguide of a semiconductor material comprising a second laser diode
extending between a second proximal end and a second distal end, and having a second
ridge defining a second light guiding region extending in a longitudinal direction
between the second proximal end and the second distal end thereof,
the first and second light guiding regions communicating through the first and second
proximal ends thereof, and emitting light of the selectable wavelength through one
of the first and second distal ends,
a plurality of first refractive index altering slots formed in the first ridge of
the first waveguide extending laterally across the first ridge and being spaced apart
along the first ridge for altering the refractive index of the first light guiding
region at spaced apart locations therein to produce a first mirror loss spectrum with
minimum peak values at respective first wavelength values,
a plurality of second refractive index altering slots formed in the second ridge of
the second waveguide extending laterally across the second ridge and being spaced
apart along the second ridge for altering the refractive index of the second light
guiding region at spaced apart locations therein to produce a second mirror loss spectrum
with minimum peak values at respective second wavelength values, and
a refractive index varying means for selectively varying the refractive index of at
least the first light guiding region for in turn varying the first mirror loss spectrum
until one of the first wavelength values is similar to one of the second wavelength
values to produce light of a selected one of the wavelengths,
wherein
the first refractive index altering slots are equi-spaced apart along the first ridge,
and the one of the first refractive index altering slots which is closest to the first
distal end of the first waveguide is spaced apart from the first distal end a distance
substantially similar to the spacing between adjacent ones of the first refractive
index altering slots,
the spacing between the first refractive index altering slots is determined by the
equation:

where
d1 is the spacing between adjacent ones of the first refractive index altering slots,
centre to centre,
N1 is an integer from one upwards,
λ is the centre wavelength of the range of wavelengths of light over which the laser
device is to be tunable, and
n1eff, ave is the average effective refractive index of the first light guiding region,
the second refractive index altering slots are equi-spaced apart along the second
ridge, and the one of the second refractive index altering slots which is closest
to the second distal end of the second waveguide is spaced apart from the second distal
end a distance substantially similar to the spacing between adjacent ones of the second
refractive index altering slots,
the spacing between the second refractive index altering slots is different to the
spacing between the first refractive index altering slots, and
the spacing between the second refractive index altering slots is determined by the
equation:

where
d2 is the spacing between adjacent ones of the second refractive index altering slots,
centre to centre,
N2 is an integer from one upwards,
λ is the centre wavelength of the range of wavelengths of light over which the laser
device is to be tunable, and
n2eff, ave is the average effective refractive index of the second light guiding region.
[0009] In one embodiment of the invention the first and second refractive index altering
means are adapted for altering the refractive index of the respective first and second
light guiding regions at locations corresponding to the respective locations of the
first and second refractive index altering means.
[0010] In another embodiment of the invention the first and second refractive index altering
means are located so that the first and second mirror loss spectra produced by the
respective first and second light guiding regions are different when the refractive
index altering means is inactive.
[0011] In a further embodiment of the invention the first and second refractive index altering
means are located so that the first and second mirror loss spectra produced by the
respective first and second light guiding regions are the same when the refractive
index altering means is inactive.
[0012] Preferably, the refractive index varying means comprises a means for selectively
varying the refractive indices of the respective first and second light guiding regions.
[0013] Advantageously, the refractive index varying means comprises a means for selectively
varying the refractive indices of the respective first and second light guiding regions
independently of each other.
[0014] Ideally, the refractive index varying means comprises a first current injecting means
for injecting a first electrical current into the first waveguide to vary the refractive
index of the first light guiding region.
[0015] Preferably, the first current injecting means comprises a means for selectively varying
the first current.
[0016] Advantageously, the refractive index varying means comprises a second current injecting
means for injecting a second electrical current into the second waveguide to vary
the refractive index of the second light guiding region.
[0017] Preferably, the second current injecting means comprises a means for selectively
varying the second current.
[0018] Ideally, the first and second current injecting means are independently operable
for independently selecting the values of the first and second currents.
[0019] In another embodiment of the invention a gain section is located intermediate the
first and second waveguides for producing light for the first and second waveguides.
[0020] Preferably, the gain section is adapted to be pumped with a pumping current independently
of the first and second waveguides.
[0021] In one embodiment of the invention the first and second waveguides are passive waveguides.
[0022] In another embodiment of the invention the first and second waveguides are active
waveguides and are adapted to be pumped with respective pumping currents independently
of each other.
[0023] In a further embodiment a phase section is located intermediate the gain section
and one of the first and second waveguides for controlling the phase of the light.
[0024] Preferably, the phase section is adapted to be injected with a phase controlling
current independently of the gain section and the first and second waveguides.
[0025] In one embodiment of the invention each first refractive index altering slot is adapted
for causing a corresponding refractive index perturbation in the first light guiding
region.
[0026] In another embodiment of the invention each second refractive index altering slot
is adapted for causing a corresponding refractive index perturbation in the second
light guiding region.
[0027] Preferably, the first and second slots extend completely across the respective first
and second ridges of the first and second waveguides, respectively.
[0028] In another embodiment of the invention the value of N
2 is different to the value of N
1.
[0029] In another embodiment of the invention the first and second light guiding regions
of the respective first and second waveguides are aligned longitudinally with each
other for communication therebetween through the first and second proximal ends thereof.
[0030] In another embodiment of the invention the first and second waveguides are integrally
formed from a ridge waveguide having a single light guiding region.
[0031] In a further embodiment of the invention the first and second ridges of the respective
first and second waveguides are formed from a single ridge.
[0032] Preferably, an electrical isolating means is provided for substantially electrically
isolating the first current in the first light guiding region and the second current
in the second light guiding region from each other.
[0033] Advantageously, the electrical isolating means comprises an isolating slot formed
in and extending laterally of the ridge intermediate the first and second waveguides.
[0034] In one embodiment of the invention a longitudinally extending active layer is located
between a lower longitudinally extending cladding layer and an upper longitudinally
extending cladding layer, the respective active layer and the lower and upper cladding
layers forming respective first and second active layers and first and second lower
and upper cladding layers of the respective first and second waveguides.
[0035] Preferably, the respective active layer and the lower and upper cladding layers form
an active layer and lower and upper cladding layers of the gain section.
[0036] In one embodiment of the invention a lower conducting layer is provided on the under
surface of the lower cladding layer, and an upper conducting layer is provided on
a top surface of the ridge of the respective first and second waveguides for facilitating
injection of the first and second currents into the first and second waveguides.
[0037] In one embodiment of the invention the active layer comprises at least one quantum
well layer.
[0038] In another embodiment of the invention the active layer comprises a plurality of
quantum well layers.
[0039] In a further embodiment of the invention the active layer comprises at least one
quantum dot.
[0040] In a still further embodiment of the invention the active layer comprises a plurality
of quantum dots.
[0041] In one embodiment of the invention the first and second ridge waveguides are of a
semiconductor material.
[0042] In a further embodiment of the invention the wavelength of light produced by the
tunable laser device is selected using a Vernier principle.
[0043] Additionally the invention provides a method for producing light of respective selectable
wavelengths, the method comprising:
providing a first ridge waveguide of a semiconductor material comprising a first laser
diode extending between a first proximal end and a first distal end, and having a
first ridge defining a first light guiding region extending in a longitudinal direction
between the first proximal end and the first distal end thereof,
providing a second ridge waveguide of a semiconductor material comprising a second
laser diode extending between a second proximal end and a second distal end, and having
a second ridge defining a second light guiding region extending in a longitudinal
direction between the second proximal end and the second distal end thereof,
providing the first and second light guiding regions communicating through the first
and second proximal ends thereof, and emitting light of the selectable wavelength
through one of the first and second distal ends,
providing a plurality of first refractive index altering slots formed in the first
ridge of the first waveguide extending laterally across the first ridge and being
spaced apart along the first ridge for altering the refractive index of the first
light guiding region at spaced apart locations therein to produce a first mirror loss
spectrum with minimum peak values at respective first wavelength values,
providing a plurality of second refractive index altering slots formed in the second
ridge of the second waveguide extending laterally across the second ridge and being
spaced apart along the second ridge for altering the refractive index of the second
light guiding region at spaced apart locations therein to produce a second mirror
loss spectrum with minimum peak values at respective second wavelength values,
providing a refractive index varying means for selectively varying the refractive
index of at least the first light guiding region, and
varying the first mirror loss spectrum by operating the refractive index varying means
to vary the refractive index of the first light guiding region until one of the first
wavelength values is similar to the one of the second wavelength values at which the
minimum peak value of the second mirror loss spectrum corresponding to the selected
wavelength occurs,
wherein
the first refractive index altering slots are equi-spaced apart along the first ridge,
and the one of the first refractive index altering slots which is closest to the first
distal end of the first waveguide is spaced apart from the first distal end a distance
substantially similar to the spacing between adjacent ones of the first refractive
index altering slots,
the spacing between the first refractive index altering slots is determined by the
equation:

where
d1 is the spacing between adjacent ones of the first refractive index altering slots,
centre to centre,
N1 is an integer from one upwards,
λ is the centre wavelength of the range of wavelengths of light over which the laser
device is to be tunable, and
n1eff, ave is the average effective refractive index of the first light guiding region,
the second refractive index altering slots are equi-spaced apart along the second
ridge, and the one of the second refractive index altering slots which is closest
to the second distal end of the second waveguide is spaced apart from the second distal
end a distance substantially similar to the spacing between adjacent ones of the second
refractive index altering slots,
the spacing between the second refractive index altering slots is different to the
spacing between the first refractive index altering slots, and
the spacing between the second refractive index altering slots is determined by the
equation:

where
d2 is the spacing between adjacent ones of the second refractive index altering slots,
centre to centre,
N2 is an integer from one upwards,
λ is the centre wavelength of the range of wavelengths of light over which the laser
device is to be tunable, and
n2eff, ave is the average effective refractive index of the second light guiding region.
[0044] The advantages of the tunable laser devices according to the invention are many.
A particularly important advantage of the tunable laser devices according to the invention
is the simplicity of the tunable laser devices, and in particular, the simplicity
of the manufacturing process required to produce the tunable laser devices, and the
actual operation of the tunable laser devices. The tunable laser devices according
to the invention can be produced by a relatively straightforward and uncomplicated
fabrication process. In particular, no regrowth steps are required in the fabrication
process for producing the tunable laser devices according to the invention, as opposed
to other known tunable laser devices in which the fabrication processes are considerably
more complicated, and require a number of regrowth steps, for example, in distributed
feedback devices, where the manufacturing process is relatively complex and requires
a number of regrowth steps. Because the fabrication process required to produce the
tunable laser devices according to the invention is a relatively simple and straightforward
fabrication process, it has a strong potential for increased wafer yield. Since the
reflecting means are provided by lateral slots, only one wafer growth is needed, and
the lateral slots may be formed by any suitable conventional method, for example,
by conventional photolithography and dry etching. Indeed, the fabrication process
required for producing the tunable laser devices according to the invention with the
reflecting means being provided by lateral slots, is not much more complex than the
fabrication process required for fabricating a ridge waveguide laser device. Additionally,
control of the tunable laser device for producing light of a selectable wavelength
is a relatively simple and straightforward operation. All that is required is two
independently variable injection currents, or two independently variable pumping currents,
depending on the construction of the tunable laser device. Where the tunable laser
device is provided as a two section device with two active waveguide or feedback sections,
two pumping currents are required, and by varying one or both of the pumping currents
the refractive index of the light guiding regions of the corresponding one or both
of the active sections is varied for varying the wavelength of light being produced
by the laser device. In a three section device, where a central gain section is provided
intermediate the two waveguides or feedbacks, with the two feedback sections provided
at respective opposite ends of the gain section, and with the reflecting means being
provided in the respective feedback sections, the two feedback sections may be passive
or active sections. If the two feedback sections are passive sections, only the gain
section is pumped, and two independently variable injection currents are injected
into the respective feedback sections. In such a tunable laser device, the respective
injection currents are varied for varying the refractive indices of the light guiding
regions of the two feedback sections, for in turn varying the wavelength of light
produced. Alternatively, where the two feedback sections are also active sections,
the gain section and the two feedback sections are pumped with three independently
variable pumping currents, and the pumping currents which pump the two feedback sections
are independently varied for varying the refractive indices of the light guiding regions
of the two feedback sections for producing light of selectable wavelength. While it
is preferable in the case of a three section tunable laser device which comprises
a central gain section and two feedback sections to only pump the central gain section,
and to operate the two feedback sections as passive sections, injecting respective
independently variable currents into the two feedback sections for varying the wavelength
of light produced, since operating the two feedback sections as passive sections provides
more precise wavelength selection, a disadvantage of operating the feedback sections
as passive sections is that the reflecting means result in power loss, and in order
to compensate for the power loss, it is sometimes preferable to operate the feedback
sections as active sections and pump the feedback sections independently with respective
independently variable pumping currents, independently of each other and independently
of the central gain section.
[0045] The invention will be more clearly understood from the following description of some
embodiments thereof which are given by way of example only with reference to the accompanying
drawings in which:
Fig. 1 is a side elevational view of a typical tunable laser device according to the
invention,
Fig. 2 is an end elevational view of the laser device of Fig. 1,
Fig. 3 is a block representation of a control circuit for controlling the operation
of the laser device of Fig. 1,
Fig. 4 is a diagrammatic representation of another typical tunable laser device also
according to the invention,
Fig. 5 is a schematic representation of a right-hand side feedback section of the
laser device of Fig. 4,
Fig. 6 illustrates a waveform representative of the modulus of reflectivity from a
grid of ten refractive index altering slots as a function of φs (units of π) referred to in Example 1 hereof,
Fig. 7 illustrates a waveform representative of calculated reflectance from ten refractive
index altering slots and the end facet plotted against wavelengths in microns of the
laser device of Fig. 4,
Fig. 8 illustrates a waveform representative of the reflectance from ten refractive
index altering slots and the end facet when a phase shifter is used plotted against
wavelengths in microns of the laser device of Fig. 4,
Fig. 9 represents a plot of threshold gain spectrum plotted against wavelengths in
microns of the laser device of Fig. 4,
Fig. 10 illustrates waveforms of plots of reflectance against wavelengths in microns
of the functions |rl|2, |rr|2 and |rl rr| of the laser device of Fig. 4,
Fig. 11 illustrates the threshold gain plotted against wavelengths in microns of the
laser device of Fig. 4,
Fig. 12 illustrates a plot of side mode suppression ratio in dB plotted against wavelength
in microns for the laser device of Fig. 4,
Fig. 13 illustrates waveforms of the reflectance spectra for the left and right mirrors
(and their products) of the laser device of Fig. 4 when the index of one mirror is
changed by 0.008, all of which are plotted against wavelengths in microns,
Fig. 14 represents a plot of side mode suppression ratio in dB spectra plotted against
wavelength in microns when the index of one mirror is changed by 0.008,
Fig. 15 is a diagrammatic representation of first and second waveguides formed from
a single waveguide of a tunable laser device of the type illustrated in Figs. 1 to
3,
Figs. 16(a) and (b) are plots of the first and second mirror loss spectra of the first
and second waveguides (sections A and B of Fig. 15 plotted against wavelengths in
microns),
Fig. 16(c) are plots of the power reflectivity against wavelength for the first and
second waveguides (sections A and B of Fig. 15),
Fig. 17 is a schematic representation of two sections A and B of a tunable laser device
similar to the laser device of Figs. 1 to 3,
Fig. 18 illustrates waveforms of calculated mirror loss spectra for the two sections
A, B incorporating different slot patterns in the two sections of the laser device
of Fig. 17,
Fig. 19 illustrates calculated mirror loss spectra for the two sections A and B illustrating
super-mode hops obtained by tuning one section while leaving the other section fixed,
Fig. 20 illustrates a plot of output power in mW plotted against tuning current in
mA for the sections A and B of the laser device of Fig. 17,
Fig. 21 illustrates a waveform representative of the emission spectrum of the laser
device of Fig. 17 measured at a temperature of 25°C with the sections A and B biased
at 40mA,
Fig. 22 illustrates waveforms representing the emission spectrum and side mode suppression
ratio of the laser device with sections A and B of the laser device of Fig. 17 biased
at 40mA versus heat sink temperature,
Fig. 23 illustrates a three-dimensional representation of the emission spectrum of
the laser device of Fig. 17 as a function of section A and section B biased current
at a constant heat sink temperature,
Fig. 24 is a three-dimensional representation of the side mode suppression ratio of
the laser device of Fig. 17 as a function of section A and section B biased currents
at a constant heat sink temperature,
Fig. 25 illustrates a plot of reflection amplitude and transmission amplitude against
depth of a refractive index altering slot where the slot is formed in a ridge of a
ridge waveguide of a tunable laser device according to the invention,
Fig. 26 is a plot of reflection amplitude against length of a refractive index altering
slot in the direction of light propagation in a ridge waveguide of a tunable laser
device according to the invention,
Fig. 27 is a side-elevational view of a tunable laser device according to another
embodiment of the invention,
Fig. 28 is a top plan view of the tunable laser device of Fig. 27, and
Fig. 29 is an end elevational view of the tunable laser device of Fig. 27.
[0046] Referring to the drawings and initially to Figs. 1 to 3 thereof there is illustrated
a typical tunable laser device according to the invention indicated generally by the
reference numeral 1. The tunable laser device 1 as will be described below is tunable
for producing laser light of selectable wavelengths within a relatively wide range
of wavelengths about a centre wavelength, and the tuning may be continuous over the
range of wavelengths or discontinuous. When tuning is continuous the wavelength of
the light produced by the laser device 1 is progressively variable over the wavelength
range from the lowest wavelength of the range to the highest wavelength of the range
or vice-versa. When tuning is discontinuous the wavelength of the light is variable
in steps, which may not necessarily progress sequentially from the lowest wavelength
of the range to the highest thereof or vice versa.
[0047] The tunable laser device 1 is formed as a single integral waveguide unit by an integral
ridge waveguide 2 which forms a first ridge waveguide 5 and a second ridge waveguide
6 arranged in series with each other, which co-operate as will be described below
for producing light of the selectable wavelengths using a Vernier-tuning principle.
However, before describing the co-operating action between the first and second waveguides
5 and 6, the construction of the first and second waveguides 5 and 6 in the integral
ridge waveguide 2 will first be described.
[0048] The integral ridge waveguide 2 comprises a lower cladding layer 8 and an upper cladding
layer 9, between which is located an active layer 10, which in this embodiment of
the invention is formed by a plurality of quantum well layers. A ridge 12 formed in
the upper cladding layer extends upwardly from the upper cladding layer 9, and defines
a longitudinally extending light guiding region 13. The ridge 12 defines the lateral
width in the X-direction of the light guiding region 13 in the active layer 10. The
light guiding region 13 extends into adjacent portions of the lower and upper cladding
layers 8 and 9 adjacent the active layer 10 beneath the ridge 12. A lower electrically
conductive layer 14 on the underside of the lower cladding layer 8 and an upper electrically
conductive layer 15 on the ridge 12 are provided for facilitating pumping of the first
and second waveguides 5 and 6 with respective pumping currents as will be described
below. The upper and lower cladding layers 8 and 9, the active region 10 and the ridge
12 form corresponding upper and lower cladding layers, active layers and ridges of
the first and second waveguides 5 and 6.
[0049] An electrical isolating means comprising an electrical isolating slot 16 extends
into and laterally across the ridge 12 to define the first and second waveguides 5
and 6 in the integral ridge waveguide 2, and also for electrically isolating the first
and second waveguides 5 and 6 for permitting pumping of the first and second waveguides
5 and 6 with respective electrical pumping currents independently of each other. The
isolating slot 16 also forms the ridge 12 into first and second ridges 17 and 18,
respectively, of the first and second waveguides 5 and 6. The isolating slot 16 also
defines first and second light guiding regions 19 and 20, respectively, of the respective
first and second waveguides 5 and 6 in the light guiding region 13 of the integral
ridge waveguide 2. First and second proximal ends 22 and 23 of the first and second
waveguides 5 and 6 through which light passes between the first and second light guiding
regions 19 and 20 are effectively defined by the isolating slot 16. End facets 24
of the integral ridge waveguide 2 are cleaved to form reflective first and second
distal ends 25 and 26, respectively, of the respective first and second waveguides
5 and 6. In this embodiment of the invention light of the selected wavelength is emitted
through the first distal end 25 of the first waveguide 5. In order to produce a sufficient
degree of electrical isolation, the isolating slot 16 is formed in the ridge 12 to
a depth substantially similar to the depth of the ridge 12.
[0050] A plurality of first refractive index altering means, in this embodiment of the invention
provided by a plurality of equi-spaced apart, centre to centre, first slots 27 are
formed in and extend laterally across the first ridge 17 of the first waveguide 5
for producing respective refractive index perturbations in the first light guiding
region 19 at locations corresponding to the locations of the respective first slots
27. The refractive index perturbations resulting from the first slots 27 cause some
of the lasing modes to undergo reflections which produces a first mirror loss spectrum
of the first waveguide 5 with a plurality of minimum peak values at respective first
wavelength values. A typical first mirror loss spectrum, which will be described below,
is illustrated by the waveform A of Fig. 16(a). A plurality of second refractive index
altering means provided by a plurality of equi-spaced apart, centre to centre, second
slots 28 formed in and extending laterally across the second ridge 18 of the second
waveguide 6 produce respective refractive index perturbations in the second light
guiding region 20 at locations corresponding to the locations of the respective second
slots 28. The refractive index perturbations in the second light guiding region 20
cause some of the lasing modes to undergo reflections, which produces a second mirror
loss spectrum of the second waveguide 6 with a plurality of minimum peak values at
respective second wavelength values. A typical second mirror loss spectrum, which
will also be described below, is illustrated by the waveform B of Fig. 16(b).
[0051] The numbers of first and second slots 27 and 28 may be similar or may be different.
The actual number of first and second slots may be any suitable number, and the choice
of first and second slots is described in more detail below. The spacings of the first
and second reflecting slots 27 and 28 are different to each other for producing the
first and second mirror loss spectra with the minimum peak values thereof at the respective
first and second wavelength values so that only one of the minimum values of the first
mirror loss spectrum occurs at the same wavelength value at which one of the minimum
values of the second mirror loss spectrum occurs. In other words, the first and second
wavelength values at which the minimum peak values of the first and second mirror
loss spectra occur are similar for only one of the minimum peak values of first and
second mirror loss spectra. When two minimum peak values, one from each of the first
and second mirror loss spectra occur at the same wavelength value, the first and second
waveguides 5 and 6 co-operate to produce light of the wavelength value at which the
two minimum peak values at the same wavelength value occur. The remaining modes of
the light lasing in the first and second waveguides 5 and 6 are suppressed. Thus,
by varying the wavelength value at which one of the minimum peak values of the respective
first and second mirror loss spectra occur, the wavelength of the light produced by
the laser device 1 can be selected using the principle of Vernier-tuning.
[0052] Fig. 16(c) illustrates a typical plot of power reflectivity against wavelength for
the light produced by the respective first and second waveguides 5 and 6 based on
the first and second mirror loss spectra of the waveforms A and B of Figs. 16(a) and
(b). The waveform A of Fig. 16(c) represents the power reflectivity of light produced
by the first waveguide 5 based on the first mirror loss spectrum A of Fig. 16(a).
The waveform B of Fig. 16(c) represent the power reflectivity of the light produced
by the second waveguide 6 based on the second mirror spectrum B of Fig. 16(b). The
wavelengths at which the peaks of the waveforms A and B of Fig. 16(c) occur correspond
to the wavelengths at which the minimum peak values of the first and second mirror
loss spectra A and B of Figs. 16(a) and (b), respectively, occur. Since from Figs.
16(a) and 16(b) the only common wavelength at which minimum peak values of the first
and second mirror loss spectra A and B occur is approximately 1,550nm, the only wavelength
at which the peak values of the power reflectivities of the light produced by the
first and second waveguides 5 and 6 coincide is approximately 1,550nm. Thus, in this
particular case, light is produced by the laser device 1 of wavelength of 1,550nm.
By varying the wavelengths at which the minimum peak values of the first and/or second
mirror loss spectra A and B of Fig. 16(a) and (b) occur, and the wavelength at which
two minimum peak values, one from each of the first and second mirror loss spectrum
A and B coincide, the wavelength of the light produced by the laser device 1 is varied.
[0053] A control circuit 29 for pumping electrical currents into the first and second waveguides
5 and 6 comprises a current source 30, which is operated under the control of a microcontroller
31 for producing a pumping current for injecting into the first and second waveguides
5 and 6. A refractive index varying means for independently varying the refractive
indices of the first and second light guiding regions 19 and 20 of the respective
first and second waveguides 5 and 6 for Vernier tuning of the laser devices 1 comprises
respective first and second current sources 32 and 33 for producing first and second
currents for pumping the first and second waveguides 5 and 6, respectively. The first
and second currents produced by the first and second current sources 32 and 33 are
independently variable. By varying the first and second currents with which the first
and second waveguides 5 and 6 are pumped, the effective refractive indices of the
first and second light guiding regions 19 and 20 of the respective first and second
waveguides 5 and 6 are varied, and thus the wavelengths at which the minimum peak
values of the respective first and second mirror loss spectra occur are also varied.
Accordingly, by varying the first and second currents with which the first and second
waveguides 5 and 6 are pumped, the wavelength of light produced by the laser device
1 can be varied. By varying the second current while holding the first current constant,
or vice versa the tuning of the tunable laser device 1 is discontinuous. In other
words, the wavelength of the light produced by the laser device 1 hops from one wavelength
to another wavelength in wavelength steps. However, by simultaneously and appropriately
varying the first and second currents, the tuning of the laser device 1 can be made
to be continuous, whereby the light produced by the laser device 1 is progressively
varied from light of the minimum wavelength of the tunable range to light of the maximum
wavelength of the tunable range and vice versa.
[0054] In order to maintain the reflected modes from the first distal end facet 25 in phase
with the reflected mode from the first slots 27, the first slot 27 which is closest
to the first distal end 25 of the first waveguide 5 is spaced apart from the first
distal end 25 a distance similar to the spacing between adjacent ones of the first
slots 27. Similarly, in order to maintain the reflected modes from the second distal
end facet 26 in phase with the reflected modes from the second slots 28, the spacing
of the second slot 28 which is closest to the second distal end 26 of the second waveguide
6 is similar to the spacing between adjacent ones of the second slots 28. Additionally,
both the first and second slots 27 and 28 are located towards the respective first
and second distal ends 25 and 26 of the respective first and second waveguides 5 and
6. In order that the mirror loss spectra produced by the first and second waveguides
5 and 6 are different to each other, the spacing between the second slots 28 is greater
than the spacing between the first slots 27.
[0055] In one embodiment of the invention the lower cladding layer 8 is of N-type material,
and the upper cladding layer 9 and the ridge 12 are integrally grown and are of P-type
material. The active layer 10 comprises five quantum well layers and is of AlGaInAs.
The overall length of the integral ridge waveguide 2 is 800 microns, and the isolating
slot 16 is located centrally intermediate the first and second distal ends 25 and
26, thereby forming the first and second waveguides 5 and 6 each of 400 microns approximately.
[0056] The spacing between the first slots 27 is determined from the following equation:

where
d1 is the spacing between adjacent ones of the first slots 27, centre to centre,
N1 is an integer from one upwards,
λ is the centre wavelength of light of the range of wavelengths of light over which
the laser device 1 is tunable, and
n1 eff, ave is the average effective refractive index of the first light guiding region 19 of
the first waveguide 5.
[0057] The spacing between the second slots 28 is determined from the following equation:

where
d2 is the spacing between adjacent ones of the second slots 28, centre to centre,
N2 is an integer from one upwards,
λ is the centre wavelength of light of the range of wavelengths of light over which
the laser device 1 is tunable, and
n2eff, ave is the average effective refractive index of the second light guiding region 20 of
the second waveguide 6.
[0058] In one particular embodiment of the invention as will be described below with reference
to Example 2 the integer number N
1 is selected to be 340, the centre wavelength λ is selected to be 1,550 nanometres,
the average effective refractive index n
1eff,ave of the first light guiding region 19 of the first waveguide 5 in the absence of pumping
current is 3.2, and thus from equation (B1) the spacing d
1 between the first slots 27 is 41 microns. The integer number N
2 is selected to be 360, the centre wavelength λ is already selected as 1,550 nanometres,
the average effective refractive index of the second light guiding cavity 20 of the
second waveguide in the absence of pumping current is also 3.2, since the first and
second waveguides 5 and 6 are integrally formed by the integral ridge waveguide 2.
Thus, from equation (B2) the spacing d
2 between the second slots 28 is 43 microns. This produces a tunable laser device 1
which produces light within a tunable range of wavelengths from 1,500 nanometres to
1,600 nanometres which is centred around a centre wavelength of 1,550 nanometres,
as will be described in more detail with reference to Example 2.
[0059] The number of first slots 27 formed in the first ridge 17 of the first waveguide
5 is nine, and the number of second slots 28 formed in the second ridge 18 of the
second waveguide 6 is also nine. In any tunable laser device according to the invention
the number of first and second slots is determined based on an optimisation of the
reflection required to improve the selection of the selected mode over other lasing
modes on the one hand and losses resulting from the first and second slots on the
other hand.
[0060] The values of the first and second pumping currents are set so that the wavelength
at which the minimum peak values of the first and second mirror loss spectra produced
by the first and second waveguides 5 and 6, respectively, coincide at the desired
wavelength at which the light is to be produced. One or both of the first and second
pumping currents is varied to vary the corresponding one or both of the first and
second mirror loss spectra, in order to vary the wavelength of the light produced.
[0061] It will be readily apparent to those skilled in the art that a tunable laser device
according to the invention could be produced with a tunable wavelength range of 1,500
nanometres to 1,600 nanometres centred around a centre wavelength of 1,550 nanometres
by selecting different values of the integer numbers N
1 and N
2. Furthermore, it will be appreciated that by varying the spacing d
1 and d
2 between the first and second slots 27 and 28, respectively, the tunable wavelength
range may be varied. This will be well known and readily apparent to those skilled
in the art.
[0062] In use, the control circuit 29 is operated for independently pumping the first and
second waveguides 5 and 6 with first and second currents, which are independent of
each other, and are independently variable. By holding one of the first and second
currents constant and varying the other of the first and second pumping currents,
tuning of the laser device 1 to produce light of respective selected wavelengths is
discontinuous. However, by selectively varying the first and second currents simultaneously,
tuning of the laser device 1 to produce light of selectable wavelengths can be made
to be continuous, with the wavelength of the light being progressively selected from
the minimum wavelength value of the selectable range to the maximum wavelength value
of the selectable range and vice versa.
[0063] In order to provide a better understanding of the invention, two examples of tunable
laser devices according to the invention together with an explanation of the theory
behind the tunable laser devices will now be given with reference to the following
two examples:
Example 1
[0064] Consider the laser device 40 illustrated in Fig. 4, which is also according to the
invention. The laser device 40 is integrally formed, and comprises first and second
ridge waveguides 41 and 42, which for convenience will hereinafter be referred to
as left and right feedback sections 41 and 42, respectively. Left slots 43 and right
slots 44, which correspond to the first and second reflecting slots 27 and 28 are
formed in the ridge 47 of the left and right feedback sections 41 and 42, respectively.
A central gain section 45 is located between the left and right feedback sections
43 and 44 and in series therewith.
[0065] In this embodiment of the invention the gain section 45 is an active section, and
the left and right feedback sections 41 and 42 may be passive or active. Where the
gain section 45 and the left and right feedback sections 41 and 42 are all active
sections, all three sections are independently pumped and the feedback sections 41
and 42 are pumped with respective independently variable currents. One or both of
the pumping currents which pump the left and right feedback sections 41 and 42 are
varied for varying the refractive index or the refractive indices of one or both of
the light guiding regions of the respective left and right feedback sections 41 and
42, depending on whether one or both pumping currents are varied. By varying the refractive
index or the refractive indices of one or both of the light guiding regions of the
respective left and right feedback sections 41 and 42, the wavelength of the light
produced by the laser device 40 is varied. On the other hand, where the left and right
feedback sections 41 and 42 are passive sections, only the gain section is pumped,
and independently variable tuning currents are injected into the left and right feedback
sections 41 and 42, for the purpose of varying the refractive indices of one or both
of the light guiding regions of the left and right feedback sections 41 and 42. The
currents which are injected into the left and right feedback sections 41 and 42 are
variable independently of each other, and variable independently of the pumping current
of the gain section 45.
[0066] In what follows the left and right feedback sections 41 and 42 are considered to
be passive lossless feedback sections.
[0067] Each of the left and right slots 43 and 44 have a reflectivity
rd and a transmitivity of
td. The distal end facets 46 have a reflectivity of
rf. Since the laser device 40 comprises a gain amplifier section 45 and the left and
right feedback sections 41 and 42, the gain and refractive index of the light guiding
regions of each section can be controlled independently of each other by varying the
currents to the respective sections. In this example it is intended to calculate the
complex reflectivities of the right and left feedback sections 43 and 44 as a function
of wavelength λ, namely, the complex reflectivity
rl(λ) of the left feedback section 41 and the complex reflectivity
rr(λ) of the right feedback section 42, so that by solving the transverse resonance condition,

where
ncav is the complex refractive index of the gain section 45,
Lcav is the length of the gain section 45,
the resonant wavelengths
λm and the associated threshold gain,

can be determined as,

where
λm is the mode wavelength, and
m is the Fabry-Perot mode number.
[0068] The complex reflectivities,
rl(λ) and
rr(λ) of the left and right feedback sections 41 and 42 can be calculated by a matrix formalism
or equivalently by repeated applications of the Fabry-Perot reflectivity expression
as follows,

accounting for each slot reflectivity in turn in the order from the corresponding
one of the distal end facet 46 towards the gain section 45.
Where
rLHS is the reflection coefficient (amplitude) for incidence from left-hand side of the
slot,
rRHS is reflection coefficient (amplitude) for incidence from right-hand side of the slot,
t is the transmission coefficient (amplitude) of the slot left-hand or right-hand as
appropriate,
φ is the phase accumulated as light propagates from one slot to its adjacent slot in
the relevant left- or right-hand group of slots, and
i is the imaginary unit.
[0069] It should be noted that if there is gain in the feedback sections the feedback reflectivities
can have moduli greater than unity. An analysis to predict the mode wavelength and
threshold gain of each mode would therefore involve the following steps:
- Set slot positions and number
- Set gain in the left and right feedback sections 41 and 42 as g1 and g3
- Calculate feedback reflectivities as a function of wavelength using equation (A3)
- Find resonant wavelengths using equation (A1)
- Find threshold gain in the amplifier section 45 as g2 using equation (A2).
[0070] In general
g2≠g1,g3. If the left- and right-hand feedback sections 41 and 42 and the gain section 45
are completely coupled, then
g1=g2=g3, and the above sequence must be iterated to find a self-consistent solution.
Side Mode Suppression Ratio (SMSR)
[0071] An estimate for the SMSR for a Fabry-Perot cavity can be derived given knowledge
of the threshold gain values as,

where
ng is the group refractive index,
gth is the lowest threshold gain,
h is Plank constant,
c is the speed of light in a vacuum,
nsp is the spontaneous emission factor, and has a value of about 2, and
PR is the output power from the distal end facet 46 of the right feedback section 42.
Approximate Expression for Feedback Reflectivities
[0072] Consider the reflectivities
rd of the right slots 44 and the facet 46 of the right feedback section 42 as illustrated
in Fig. 5. Assuming an incident wave from the left, the reflected field will be due
to two sources, firstly and most significantly, the laser facet and secondly, providing
the perturbation, the slots:

where
N is the number of slots, and

where
i=0,1, 2, 3 ... phase accumulated from one slot to another,
k0 is the wave number in vacuum,
n is the effective refractive index of the waveguide, and
Li is the distance between slots.
[0073] The expression (A5) assumes that only contributions from a single round trip are
significant. To maximise the feedback reflectivity all the reflections should be in-phase.
[0074] If it is assumed that the inter-slot spacing is constant then the reflectivity due
to the slots alone,
rs, can be written,

where
φs is the phase shift accumulated as light propagates from one slot to its adjacent
slot.
[0075] This finite geometric series can be summed as,

which can also be written as,

where
φd is the phase of the slot reflection coefficient,
φs was assumed to be real, that is, the region of the feedback section containing the
slots are assumed to be passive with no losses. The second modulus term of this expression
is plotted in Fig. 6 for N=10. In Fig. 6 the modulus of reflectivity is plotted on the Y-axis and phase is plotted
on the X-axis.
[0076] The slots therefore provide a filtering function in which the facet reflectivity
will have a maximum modulation when

where
n is the effective refractive index of the waveguide,
L is the distance between slots, and
m is an integer representing the order of the slots.
[0077] For wavelengths for which equation (A10) is true, the slot reflectivity given by
equation (A9) becomes,

[0078] The total reflectivity from one of the feedback sections will be the sum of that
due to the facet alone,
rF, and the slots,
rr =
rF +
rs, where

[0079] In Fig. 7 the reflectance of a feedback section formed by 10 slots each spaced at
5µm apart is illustrated. The defects are formed by a change in the real part of the
refractive index in which case there is a π/2 phase change on reflection associated
with them. This phase change, not experienced by the facet reflectivity, can be compensated
by adding an extra quarter wavelength to the spacing between the final slot and the
adjacent facet in which case the reflectance shown in Fig. 8 is obtained. Either response
leads to an enhanced reflectance at wavelength intervals governed by the slot spacing.
In Figs. 7 and 8 reflectance is plotted on the Y-axis and wavelengths in microns is
plotted on the X-axis.
Lasing
[0080] Expressions for the reflectivity from the feedback sections 41 and 42 have been obtained.
If a gain section is provided separating identical left and right feedback sections,
a laser is formed. For a cavity of an integer number of slot lengths, lasing near
the high reflectivity resonances of the left and right feedback sections can be expected.
Given the mirrors described in the previous section and a total length of 100 slot
lengths (500µm) the threshold gain spectrum shown in Fig. 9 was obtained. In Fig.
9 gain threshold in cm
-1 is plotted on the Y-axis and wavelength in microns is plotted on the X-axis.
[0081] Decreasing the length of the slot-to-slot spacing could reduce the number of resonances
appearing in the bandwidth shown in Fig. 9. This advantage will be offset by an increase
in the bandwidth of the resonance so that nearest neighbour lasing becomes more probable.
Vernier Effect
[0082] From equation (A2) it can be seen that the gain threshold is minimised by maximising
the product of the reflectivities from the left and right feedback sections 41 and
42. By having slightly different slot spacings in each feedback section, lasing can
be expected at only those resonances common to each feedback section. For example,
to obtain lasing at 1.5µm, for the left feedback section 41, the following equation
must be satisfied:

where
LLHS is the length of the left feedback section,
n is the effective refractive index, and
mL is an integer.
[0083] Assuming a refractive index of 3.15 and a slot length of 5µm the integer
mL is 21. An analogous expression to (A13) also applies to the right feedback section
42, which must also be resonant at 1.5µm, and therefore,

where
LRHS is the length of the right feedback section, and
mR is an integer.
[0084] Here
mR is chosen to be 20 giving a 238nm difference in slot spacing between the left and
right slots. The reflectance of the left and right feedback section is shown in Fig.
10 along with the absolute value of the product of the reflectivities. The resulting
gain thresholds and the side mode suppression ratio (SMSR) are illustrated in Figs.
11 and 12. In Fig. 10 reflectance is plotted on the Y-axis and wavelength in microns
is plotted on the X-axis. In Fig. 11 gain threshold in cm
-1 is plotted on the Y-axis and wavelength in microns is plotted on the X-axis. In Fig.
12 side mode suppression ratio (SMSR) in dB is plotted on the Y-axis and wavelength
in microns is plotted on the X-axis.
Tuning
[0085] If the refractive indices of both the left and right feedback sections are changed
simultaneously the resonant mode shifts, according to equation (A13) at a rate given
by,

where
L is the cavity length,
m is an integer, and
n is the effective refractive index,
so that, in this example, a 0.01 change of index changes the resonant wavelength by
5nm.
[0086] By considering Fig. 10 it can be seen that whilst perfect alignment is achieved at
the common resonant wavelength, λ
c, (here 1.5µm) on either side the left and right mirrors are 'misaligned' by a wavelength
difference
Δλ. If the response of either of the mirrors is shifted by this amount the common resonance
hops (in this example by about 75nm) to the position corresponding to incrementing
mL (or
mR) by ±1 (depending on the sign of the change of index to which mirror). The wavelength
separations between the misaligned modes on either side of the aligned position are
not equal. It is straightforward to show that on the long wavelength side the misalignment
is given by,

where
λc is the common resonant wavelength,
mR is an integer, and
mL is an integer.
[0087] Using equation (A15), the refractive index change,
Δn, in a mirror to achieve this shift is,

[0088] On the short wavelength side,

and

[0089] It is therefore slightly 'easier' to hop to shorter wavelengths. In the example treated
here the differential index change required to obtain a mode hop of 75 nm to longer
wavelengths is only
Δn ~ 0.008. The reflectance and resultant side mode suppression ratio spectra for this
tuned laser are shown in Figs. 13 and 14. In this case
mL and
mR differ by only 1. Choosing this to be a larger value will make the discrete tuning
lower geared, even to the point that the single mode might be very stable to variations
in mirror indices. In Fig. 13 reflectance is plotted on the Y-axis and wavelength
in microns is plotted on the X-axis. In Fig. 14 side mode suppression ratio in dB
is plotted on the Y-axis, and wavelength in microns is plotted on the X-axis.
[0090] In Example 1 a laser comprising of a central gain section coupled to two passive,
lossless sections containing a distribution of reflectors has been described. By having
a regular and identical grid distribution of slots in each passive feedback section,
a comb response can be obtained. By having non-identical grid periodicities, a single
resonance can be obtained (within the gain bandwidth) at the resonance common to both
mirrors. It has been shown that a very highly geared discrete tuning, between the
resonances of the comb, is possible by controlling the difference in index between
the two feedback sections. A much lower geared, continuous tuning is achieved by varying
the refractive indices of the light guiding regions of the left and right feedback
sections simultaneously. Continuous tuning over a very large range is possible if
the comb spacing matched the maximum continuous tuning range.
Example 2: Widely tunable Slotted Fabry-Pérot laser (WT-SFP)
[0091] In the case of a widely tunable laser employing the Vernier effect the free spectral
range (FSR) is required to be narrow (≈7nm), so as to produce a comb of mirror loss
minima. By increasing the value of N in equation (B1) or (B2) the FSR in the mirror
loss spectrum can be reduced. Fig 15 illustrates two structures of a laser device
according to the invention which is of a similar general construction to that of the
laser device 1 described with reference to Figs. 1 to 3. In the laser device of Fig.
15 the value of N has been increased to 340 and 360 resulting in a slot positions
spacing d
1 is 42.99µm in the first waveguide or feedback section (structure A) and d
2 is 46.10µm in the second waveguide or feedback section (structure B). Fig. 16 displays
the corresponding mirror loss spectra for these two feedback sections A and B with
a resulting FSR of 7nm and 6.5nm.
[0092] For Vernier effect tuning, it is necessary that the effective refractive index of
each feedback section A and B can be varied independently. To achieve this effect,
an electrical isolating slot which is similar to the electrical isolating slot 16
of the laser device of Figs. 1 to 3 is formed in the centre of a ridge of the structures
A and B, which is similar to the ridge 12 of the laser device of Figs. 1 to 3, so
that the first and second pumping currents of the feedback sections A and B can be
varied independently of each other. The tunable laser device is schematically illustrated
in Fig. 17, the laser device is split into two sections, namely, the first waveguide
or feedback section A and the second waveguide or feedback section B by etching the
isolating slot into the ridge. In a working device the resistance between the two
sections was measured to be 1kΩ. The slot periods in the first and second feedback
sections A and B are slightly different. The active layer consists of 5 quantum wells
material InAlGaAs/InP, operating at 1310nm. The cavity length is 800µm with nine slots
per section the width of each slot is 1µm with a slot depth of 0.9µm.
[0093] The slot positions in the two section device are
Section B
[0094]
800µM |
Facet |
761.2547µm |
|
722.5094µm |
|
683.7641µm |
|
645.0188µm |
|
606.2735µm |
|
567.5282µm |
|
528.7829µm |
|
490.0376µm |
|
451.2923µm |
|
Section A
[0095]
321.28046µm |
|
285.59396µm |
|
249.90746µm |
|
214.22096µm |
|
178.53446µm |
|
142.84796µm |
|
107.16146µm |
|
71.47496µm |
|
35.78846µm |
|
0 |
Facet |
[0096] Thus, the comb-like mirror loss spectra of each feedback section A and B possess
a slightly different periodicity, which permits the use of Vernier-effect tuning to
achieve quasi-continuous wavelength coverage.
[0097] Fig 18 illustrates another example of the calculated mirror loss spectra of the tunable
laser device with the two feedback sections A and B that are similar to the ones employed
in the devices of Figs. 1 to 3 and 15 to 17. In this case the number and spacing of
the first and second slots in the feedback sections A and B, respectively, are selected
to produce the laser device with a tuning range from 1,260 nanometres to 1,340 nanometres.
Lasing occurs at the wavelength where reflection peaks of both tuning feedback sections
A and B line up best, which in this case is at a wavelength of 1313 nm in the present
example. Large wavelength jumps, so-called super mode hops, are obtained by varying
the pumping current of one of the feedback sections A and B, while leaving the pumping
current of the other one of the feedback sections A and B unchanged as shown in Fig.
19, whereas continuous tuning is obtained by simultaneously varying the pumping currents
of the respective feedback sections A and B. In Fig. 19 mirror loss is plotted in
cm
-1 on the Y-axis and wavelength in microns is plotted on the X-axis.
Tuning characteristics
[0098] In the following, data from an 800 µm long tunable laser device is presented. Characterisation
of the laser device was carried out at a heat sink temperature of 25°C. Light-current
and voltage-current characteristics of the laser device are shown in Fig. 20. The
lasing threshold is reached at a current of 28mA and a voltage of 0.89 V. In Fig.
20 output power in milliwatts is plotted on one of the Y-axes, and forward voltage
in volts is plotted on the other Y-axis. The pumping current in milliamps for the
feedback sections A and B is plotted on the X-axis. The waveform H represents the
forward voltage version of the feedback sections A and B tuning current. The waveform
J represents the output power of the laser version of the feedback sections A and
B tuning current.
[0099] For the spectral characterisation, the light emitted by this laser device was collected
with a lens ended single mode fibre butt coupled to the front facet of the laser.
A fibre coupled output power of 10mW was obtained at a current of 100mA. The optical
characteristics of the diode were measured using an optical spectrum analyser. Fig
21 shows the emission spectrum from the laser at a temperature of 25°C with the feedback
sections A and B biased at 40mA respectively. The device lases in a single mode with
an SMSR of 38.2dB. In Fig. 21 power in dBm is plotted on the Y-axis and wavelength
in nm is plotted on the X-axis.
[0100] The extended tuning range of the laser device was measured with a fixed current of
40mA into the feedback sections A and B with the heat sink temperature varied from
5 to 60°C. The discontinuous tuning jumps are due to new reflection modes coming into
alignment. A maximum discontinuous tuning range of 30nm was achieved as shown in Fig
22. In Fig. 22 wavelength in nanometres is plotted on one Y-axis and side mode suppression
ratio in dB is plotted on the other Y-axis, while temperature in degrees centigrade
is plotted on the X-axis.
[0101] Figs. 23 and 24 show the behaviour of the emission wavelength and the SMSR as functions
of the two pumping currents of the respective feedback sections A and B. During the
measurement of these tuning characteristics, the heat sink temperature was fixed at
25°C. It can be seen in Fig 23 that there are several bands, also referred to as super
modes (which can be more easily recognised by identifying the regions of high SMSR),
where continuous tuning can be carried out by varying both tuning currents simultaneously.
Within the super modes, the emission wavelength is shifting towards longer wavelength,
which is characteristic for electro thermal tuning. In Fig. 23 wavelength in microns
is plotted on the Y-axis, current in milliamps which is injected into the feedback
section B is plotted on the X-axis and current in milliamps which is injected into
the feedback section A is plotted on the X-axis. In Fig. 24 the side mode suppression
ratio in decibels is plotted on the Y-axis, the current in milliamps which is injected
into the feedback section B is plotted on the X-axis and the current in milliamps
which is injected into the feedback section A is plotted on the Z-axis.
[0102] Referring now to Fig. 25, a plot of reflection amplitude|r| and transmission amplitude
|t| against slot depth is illustrated. As can be seen from the waveform A of Fig.
25, which is a plot of reflection amplitude against slot depth, the reflection amplitude
increases with slot depth. However, from the waveform B of Fig. 25, which is a plot
of transmission amplitude against slot depth, the light transmission amplitude decreases
with slot depth, and thus, a trade-off must be made reflection amplitude and transmission
amplitude when selecting slot depth of the first and second slots. Additionally, in
order to minimise internal losses in the laser devices it is necessary to keep the
number of first and second slots to a minimum. This requires a slot pattern which
provides just enough optical feedback to ensure that the laser operates in a single
longitudinal mode over the wide tuning range of interest.
[0103] It is also important that the length of the first and second slots, in other words,
the length of the first and second slots in the direction of light propagation is
relatively small, typically, less than 3µm. This is required in order to ensure that
the internal loss in the respective first and second light guiding regions is minimised,
since the internal losses in the light guiding regions is substantially higher under
the first and second slots than elsewhere in the first and second light guiding regions,
and also as a result of the fact that the dopant concentration in semiconductor material
at the bottom of a slot may be less than one-tenth of the level adjacent the dopant
level adjacent the top of the ridge, and thus, it would be difficult if not impossible
to create a low resistance metal contact on the ridge adjacent the bottom of the first
and second slots. Thus, if the length of the slots in the direction of light propagation
is increased arbitrarily, a portion of the waveguide beneath the slot will remain
unpumped.
[0104] Fig. 26 illustrates a plot of reflection amplitude r against slot length in the direction
of light propagation.
[0105] Referring now to Figs. 27 and 28 there is illustrated a tunable laser device according
to another embodiment of the invention which is indicated generally by the reference
numeral 70. The tunable laser device 70 comprises a ridge waveguide 71 which is substantially
similar to the ridge waveguide 2 of the tunable laser device 1, and comprise upper
and lower cladding layers 72 and 73 and an active layer 74 located between the upper
and lower cladding layers 72 and 73. A ridge 77 formed in the upper cladding layer
72 defines a light guiding region 78 which extends the length of the waveguide 71.
Upper and lower electrically conductive layers 80 and 81 are provided on the ridge
77 and on the lower cladding layer 73, respectively.
[0106] In this embodiment of the invention the waveguide 71 defines a first waveguide 82
and a second waveguide 83, as well as a gain section 84 and a phase section 85 located
intermediate the first and second waveguides 82 and 83. The first and second waveguides
82 and 83, the gain section 84 and the phase section 85 are arranged in series with
each other. First and second lateral slots 86 and 87 are formed in the ridge 77 in
the first waveguide 82 and the second waveguide 83 to form respective feedback sections
in the first and second waveguides 82 and 83. An electrical isolating slot 90 electrically
isolates the gain section 84 from the phase section 85, and electrical isolating slots
91 and 92 isolate the first and second waveguides 82 and 83 from the gain section
84 and the phase section 85, respectively. Accordingly, the first and second waveguides
82 and 83 and the gain and phase section 84 and 85 can be independently pumped, or
electrical currents can be independently injected into the respective first and second
waveguides 82 and 83 and the gain section 84 and the phase section 85, independently
of each other.
[0107] Operation of the tunable laser device 70 is substantially similar to operation of
the tunable laser device 40 of Fig. 4. The first and second waveguide sections 82
and 83 may be passive or active, and if active are pumped by independently variable
pumping currents for varying the wavelength of light produced. If on the other hand
the first and second waveguides 82 and 83 are passive, independently variable tunable
currents are injected into the first and second waveguides 82 and 83 for varying the
wavelength of light produced by the device 70. The gain region 84 is pumped independently
of the first and second waveguides 82 and 83 and of the phase section 85, and a suitable
phase controlling current is injected into the phase section 85 for controlling the
phase of light produced by the tunable laser device 70.
[0108] While the laser devices according to the invention have been described as comprising
an integral ridge waveguide which integrally incorporates the first and second ridge
waveguides or feedback sections, so that the first and second light guiding regions
are axially aligned and communicate directly with each other, it is envisaged in certain
cases that the tunable laser devices according to the invention may be provided by
first and second waveguides separately formed, and where the first and second waveguides
have been formed as two separate units, the first and second waveguides may be brought
together with their respective first and second light guiding regions aligned and
communicating directly with each other, or the first and second waveguides may be
spaced apart from each other with the first and second light guiding regions optically
coupled, and in which case, the first and second light guiding regions need not be
axially aligned. The optical coupling of the first and second light guiding regions
may be carried out by any suitable optical coupler, for example an optical fibre,
a separate laser diode, or as already described, a separate gain section, or the like.
[0109] It is also envisaged that the laser devices according to the invention may be provided
by an integral ridge waveform of arcuate shape.
[0110] It is also envisaged that the laser device according to the invention may be provided
by a buried heterostructure waveguide. In such a structure, slots would be formed
in the waveguide before the growth or regrowth of the upper cladding layers of such
a structure.
[0111] Furthermore, while the laser devices according to the invention has been described
as comprising only a first and second waveguide, it is envisaged in certain cases
that the laser device may be provided with more than two waveguides, for example,
three, four or more waveguides for further enhancing the resolution between selectable
wavelengths. Each of the ridge waveguides will include an appropriate number of refractive
index altering means appropriately spaced apart in their respective ridges. However,
it will be appreciated that in general the spacing between the refractive index altering
means will be different from ridge waveguide to ridge waveguide. Additionally, where
more than two ridge waveguides are provided, the ridge waveguides may be formed integrally
in a single integral ridge waveguide, or may be formed separately of each other. Each
ridge waveguide would be individually pumped or injected with tuning currents for
facilitating independently varying the refractive indices of the light guiding regions
of the respective ridge waveguides.
1. A tunable laser device (1) for producing light of respective selectable wavelengths,
the tunable laser device comprising:
a first ridge waveguide (5) of a semiconductor material comprising a first laser diode
extending between a first proximal (22) end and a first distal (25) end, and having
a first ridge (17) defining a first light guiding region extending in a longitudinal
direction between the first proximal end and the first distal end thereof,
a second ridge waveguide (6) of a semiconductor material comprising a second laser
diode extending between a second proximal (23) end and a second distal (26) end, and
having a second ridge (18) defining a second light guiding region extending in a longitudinal
direction between the second proximal end and the second distal end thereof,
the first and second light guiding regions communicating through the first and second
proximal ends thereof, and emitting light of the selectable wavelength through one
of the first and second distal ends,
a plurality of first refractive index altering slots (27) formed in the first ridge
of the first waveguide extending laterally across the first ridge and being spaced
apart along the first ridge for altering the refractive index of the first light guiding
region at spaced apart locations therein to produce a first mirror loss spectrum with
minimum peak values at respective first wavelength values,
a plurality of second refractive index altering slots (28) formed in the second ridge
of the second waveguide extending laterally across the second ridge and being spaced
apart along the second ridge for altering the refractive index of the second light
guiding region at spaced apart locations therein to produce a second mirror loss spectrum
with minimum peak values at respective second wavelength values, and
a refractive index varying means (32,33) for selectively varying the refractive index
of at least the first light guiding region for in turn varying the first mirror loss
spectrum until one of the first wavelength values is similar to one of the second
wavelength values to produce light of a selected one of the wavelengths, wherein
the first refractive index altering slots are equi-spaced apart along the first ridge,
and the one of the first refractive index altering slots which is closest to the first
distal end of the first waveguide is spaced apart from the first distal end a distance
substantially similar to the spacing between adjacent ones of the first refractive
index altering slots,
the spacing between the first refractive index altering slots is determined by the
equation:

where
d1 is the spacing between adjacent ones of the first refractive index altering slots,
centre to centre,
N1 is an integer from one upwards,
λ is the centre wavelength of the range of wavelengths of light over which the laser
device is to be tunable, and
n1 eff, ave is the average effective refractive index of the first light guiding region,
the second refractive index altering slots are equi-spaced apart along the second
ridge, and the one of the second refractive index altering slots which is closest
to the second distal end of the second waveguide is spaced apart from the second distal
end a distance substantially similar to the spacing between adjacent ones of the second
refractive index altering slots,
the spacing between the second refractive index altering slots is different to the
spacing between the first refractive index altering slots, and
the spacing between the second refractive index altering slots is determined by the
equation:

where
d2 is the spacing between adjacent ones of the second refractive index altering slots,
centre to centre,
N2 is an integer from one upwards,
λ is the centre wavelength of the range of wavelengths of light over which the laser
device is to be tunable, and
n2 eff, ave is the average effective refractive index of the second light guiding region.
2. A tunable laser device as claimed in Claim 1 characterised in that N2 is of value different to the value of N1.
3. A tunable laser device as claimed in Claim 1 or 2 characterised in that the first and second refractive index altering slots are adapted for altering the
refractive index of the respective first and second light guiding regions at locations
corresponding to the respective locations of the first and second refractive index
altering slots.
4. A tunable laser device as claimed in any preceding claim characterised in that the refractive index varying means comprises a means for selectively varying the
refractive indices of the respective first and second light guiding regions independently
of each other.
5. A tunable laser device as claimed in any preceding claim characterised in that the refractive index varying means comprises a first current injecting means for
injecting a first electrical current into the first waveguide to vary the refractive
index of the first light guiding region, and a second current injecting means for
injecting a second electrical current into the second waveguide to vary the refractive
index of the second light guiding region.
6. A tunable laser device as claimed in Claim 5 characterised in that the first current injecting means comprises a means for selectively varying the first
current, and the second current injecting means comprises a means for selectively
varying the second current, the first and second current injecting means being independently
operable for independently selecting the values of the first and second currents.
7. A tunable laser device as claimed in any preceding claim characterised in that a gain section is located intermediate the first and second waveguides for producing
light for the first and second waveguides, the gain section being adapted to be pumped
with a pumping current independently of the first and second waveguides.
8. A tunable laser device as claimed in Claim 7 characterised in that the first and second waveguides are passive waveguides.
9. A tunable laser device as claimed in Claim 7 characterised in that the first and second waveguides are active waveguides and are adapted to be pumped
with respective pumping currents independently of each other.
10. A tunable laser device as claimed in any of Claims 7 to 9 characterised in that a phase section is located intermediate the gain section and one of the first and
second waveguides for controlling the phase of the light.
11. A laser device as claimed in Claim 10 characterised in that the phase section is adapted to be injected with a phase controlling current independently
of the gain section and the first and second waveguides.
12. A tunable laser device as claimed in any preceding claim characterised in that the first and second light guiding regions of the respective first and second waveguides
are aligned longitudinally with each other for communication therebetween through
the first and second proximal ends thereof.
13. A tunable laser device as claimed in any preceding claim characterised in that the first and second waveguides are integrally formed from a ridge waveguide having
a single light guiding region, and an electrical isolating means is provided for substantially
electrically isolating the first current in the first light guiding region and the
second current in the second light guiding region from each other.
14. A tunable laser device as claimed in any preceding claim characterised in that the wavelength of light produced by the tunable laser device is selected using a
Vernier principle.
15. A method for producing light of respective selectable wavelengths, the method comprising:
providing a first ridge waveguide (5) of a semiconductor material comprising a first
laser diode extending between a first proximal (22) end and a first distal (25) end,
and having a first ridge (17) defining a first light guiding region extending in a
longitudinal direction between the first proximal end and the first distal end thereof,
providing a second ridge waveguide (6) of a semiconductor material comprising a second
laser diode extending between a second proximal (23) end and a second distal (26)
end, and having a second ridge (18) defining a second light guiding region extending
in a longitudinal direction between the second proximal end and the second distal
end thereof,
providing the first and second light guiding regions communicating through the first
and second proximal ends thereof, and emitting light of the selectable wavelength
through one of the first and second distal ends,
providing a plurality of first refractive index altering slots (27) formed in the
first ridge of the first waveguide extending laterally across the first ridge and
being spaced apart along the first ridge for altering the refractive index of the
first light guiding region at spaced apart locations therein to produce a first mirror
loss spectrum with minimum peak values at respective first wavelength values,
providing a plurality of second refractive index altering slots (28) formed in the
second ridge waveguide extending laterally across the second ridge and being spaced
apart along the second ridge for altering the refractive index of the second light
guiding region at spaced apart locations therein to produce a second mirror loss spectrum
with minimum peak values at respective second wavelength values,
providing a refractive index varying means (32,33) for selectively varying the refractive
index of at least the first light guiding region, and
varying the first mirror loss spectrum by operating the refractive index varying means
to vary the refractive index of the first light guiding region until one of the first
wavelength values is similar to the one of the second wavelength values at which the
minimum peak value of the second mirror loss spectrum corresponding to the selected
wavelength occurs, wherein the first refractive index altering slots are equi-spaced
apart along the first ridge, and the one of the first refractive index altering slots
which is closest to the first distal end of the first waveguide is spaced apart from
the first distal end a distance substantially similar to the spacing between adjacent
ones of the first refractive index altering slots,
the spacing between the first refractive index altering slots is determined by the
equation:

where
d1 is the spacing between adjacent ones of the first refractive index altering slots,
centre to centre,
N1 is an integer from one upwards,
λ is the centre wavelength of the range of wavelengths of light over which the laser
device is to be tunable, and
n1 eff, ave is the average effective refractive index of the first light guiding region,
the second refractive index altering slots are equi-spaced apart along the second
ridge, and the one of the second refractive index altering slots which is closest
to the second distal end of the second waveguide is spaced apart from the second distal
end a distance substantially similar to the spacing between adjacent ones of the second
refractive index altering slots,
the spacing between the second refractive index altering slots is different to the
spacing between the first refractive index altering slots, and
the spacing between the second refractive index altering slots is determined by the
equation:

where
d2 is the spacing between adjacent ones of the second refractive index altering slots,
centre to centre,
N2 is an integer from one upwards,
λ is the centre wavelength of the range of wavelengths of light over which the laser
device is to be tunable, and
n2 eff, ave is the average effective refractive index of the second light guiding region.
1. Abstimmbare Laservorrichtung (1) zum Erzeugen von Licht von jeweils wählbarer Wellenlänge,
wobei die abstimmbare Laservorrichtung aufweist:
einen ersten Stegwellenleiter (5) aus einem Halbleitermaterial, der eine erste, sich
zwischen einem ersten proximalen (22) Ende und einem ersten distalen (25) Ende erstreckende
Laserdiode aufweist und einen ersten Steg (17) hat, der einen ersten lichtleitenden
Bereich bildet, der sich in einer Längsrichtung zwischen seinem ersten proximalen
Ende und seinem ersten distalen Ende erstreckt,
einen zweiten Stegwellenleiter (6) aus einem Halbleitermaterial, der eine zweite,
sich zwischen einem zweiten proximalen (23) Ende und einem zweiten distalen (26) Ende
erstreckende Laserdiode aufweist und einen zweiten Steg (18) hat, der einen zweiten
lichtleitenden Bereich bildet, der sich in einer Längsrichtung zwischen seinem zweiten
proximalen Ende und seinem zweiten distalen Ende erstreckt,
wobei die ersten und zweiten lichtleitenden Bereiche durch ihre ersten und zweiten
proximalen Enden kommunizieren, und Licht der wählbaren Wellenlänge durch eines ihrer
ersten und zweiten distalen Enden aussenden,
eine Mehrzahl von ersten, den Brechungsindex verändernden Schlitzen (27), die im ersten
Steg des ersten Wellenleiters ausgebildet sind, sich seitlich über den ersten Steg
erstrecken und entlang des ersten Stegs voneinander beabstandet sind, um den Brechungsindex
des ersten lichtleitenden Bereichs an voneinander beabstandeten Stellen darin zu ändern,
um ein erstes Spiegelverlustspektrum mit minimalen Spitzenwerten bei jeweiligen ersten
Wellenlängenwerten zu erzeugen, eine Mehrzahl von zweiten, den Brechungsindex verändernden
Schlitzen (28), die im zweiten Steg des zweiten Wellenleiters ausgebildet sind, sich
seitlich über den zweiten Steg erstrecken und entlang des zweiten Stegs voneinander
beabstandet sind, um den Brechungsindex des zweiten lichtleitenden Bereichs an voneinander
beabstandeten Stellen darin zu ändern, um ein zweites Spiegelverlustspektrum mit minimalen
Spitzenwerten bei jeweiligen zweiten Wellenlängenwerten zu erzeugen, und
eine den Brechungsindex verändernde Einrichtung (32, 33) zum wahlweise Verändern des
Brechungsindex wenigstens des ersten lichtleitenden Bereichs um so wiederum das erste
Spiegelverlustspektrum zu verändern bis einer der ersten Wellenlängenwerte ähnlich
einem der zweiten Wellenlängenwerte ist, um Licht einer ausgewählten Wellenlänge der
Wellenlängen zu erzeugen,
wobei
die ersten den Brechungsindex verändernden Schlitze in gleichen Abständen voneinander
entlang des ersten Stegs angeordnet sind, und der eine der ersten den Brechungsindex
verändernden Schlitze, der dem ersten distalen Ende des ersten Wellenleiters am nächsten
gelegen ist, in einem Abstand von dem ersten distalen Ende angeordnet ist, der im
Wesentlichen dem Abstand zwischen benachbarten der ersten den Brechungsindex verändernden
Schlitze gleicht,
der Abstand zwischen den ersten den Brechungsindex verändernden Schlitzen durch die
folgenden Gleichung bestimmt wird:

wobei
d1 der Mittenabstand zwischen benachbarten der ersten den Brechungsindex verändernden
Schlitze ist,
N1 eine ganze Zahl von Eins aufwärts ist,
λ die zentrale Wellenlänge des Bereichs von Lichtwellenlängen ist, über den die Laservorrichtung
abstimmbar sein soll, und
n1 eff, ave der durchschnittliche effektive Brechungsindex des ersten lichtleitenden Bereichs
ist,
die zweiten den Brechungsindex verändernden Schlitze in gleichen Abständen voneinander
entlang des zweiten Stegs angeordnet sind, und der eine der zweiten den Brechungsindex
verändernden Schlitze, der dem zweiten distalen Ende des zweiten Wellenleiters am
nächsten gelegen ist, in einem Abstand von dem zweiten distalen Ende angeordnet ist,
der im Wesentlichen dem Abstand zwischen benachbarten der zweiten den Brechungsindex
verändernden Schlitze gleicht,
der Abstand zwischen den zweiten den Brechungsindex verändernden Schlitzen sich von
dem Abstand zwischen den ersten den Brechungsindex verändernden Schlitzen unterscheidet,
und
der Abstand zwischen den zweiten den Brechungsindex verändernden Schlitzen durch die
folgenden Gleichung bestimmt wird:

wobei
d2 der Mittenabstand zwischen benachbarten der zweiten den Brechungsindex verändernden
Schlitze ist,
N2 eine ganze Zahl von Eins aufwärts ist,
λ die zentrale Wellenlänge des Bereichs von Lichtwellenlängen ist, über den die Laservorrichtung
abstimmbar sein soll, und
n2 eff, ave der durchschnittliche effektive Brechungsindex des zweiten lichtleitenden Bereichs
ist.
2. Abstimmbare Laservorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass N2 einen Wert aufweist, der sich vom Wert von N1 unterscheidet.
3. Abstimmbare Laservorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die ersten und zweiten den Brechungsindex verändernden Schlitze dazu ausgebildet
sind, den Brechungsindex der jeweiligen ersten und zweiten lichtleitenden Bereiche
an Stellen zu ändern, die den jeweiligen Stellen der ersten und zweiten den Brechungsindex
verändernden Schlitzen entsprechen.
4. Abstimmbare Laservorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die den Brechungsindex verändernde Einrichtung eine Einrichtung aufweist, zum wahlweisen
Verändern der Brechungsindizes der jeweiligen ersten und zweiten lichtleitenden Bereiche
unabhängig voneinander.
5. Abstimmbare Laservorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die den Brechungsindex verändernde Einrichtung eine erste Strominjektionseinrichtung
aufweist, zum Injizieren eines ersten elektrischen Stroms in den ersten Wellenleiter,
um den Brechungsindex des ersten lichtleitenden Bereichs zu ändern, und eine zweite
Strominjektionseinrichtung zum Injizieren eines zweiten elektrischen Stroms in den
zweiten Wellenleiter, um den Brechungsindex des zweiten lichtleitenden Bereichs zu
ändern.
6. Abstimmbare Laservorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die ersten Strominjektionseinrichtung eine Einrichtung zum wahlweisen Ändern des
ersten Stroms aufweist, und die zweite Strominjektionseinrichtung eine Einrichtung
zum wahlweisen Ändern des zweiten Stroms aufweist, wobei die ersten und zweiten Strominjektionseinrichtungen
unabhängig voneinander betreibbar sind, um die Werte des ersten und zweiten Stroms
unabhängig voneinander zu wählen.
7. Abstimmbare Laservorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Verstärkungsbereich zwischen den ersten und zweiten Wellenleitern angeordnet
ist, zum Erzeugen von Licht für die ersten und zweiten Wellenleiter, wobei der Verstärkungsbereich
dazu ausgebildet ist, unabhängig von den ersten und zweiten Wellenleitern mit einem
Pumpstrom gepumpt zu werden.
8. Abstimmbare Laservorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die ersten und zweiten Wellenleiter passive Wellenleiter sind.
9. Abstimmbare Laservorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die ersten und zweiten Wellenleiter aktive Wellenleiter sind und dazu ausgebildet
sind, unabhängig voneinander mit jeweiligen Pumpströmen gepumpt zu werden.
10. Abstimmbare Laservorrichtung nach einem beliebigen der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass sich zwischen dem Verstärkungsbereich und einem der ersten und zweiten Wellenleiter
ein Phasenbereich befindet, zum Steuern der Phase des Lichts.
11. Laservorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der Phasenbereich dazu ausgebildet ist, unabhängig von dem Verstärkungsbereich und
den ersten und zweiten Wellenleitern, mit einem Phasensteuerstrom injiziert zu werden.
12. Abstimmbare Laservorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten und zweiten lichtleitenden Bereiche der jeweiligen ersten und zweiten
Wellenleiter in Längsrichtung aufeinander ausgerichtet sind, so dass durch deren erste
und zweite proximale Enden eine Kommunikation stattfinden kann.
13. Abstimmbare Laservorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten und zweiten Wellenleiter in einem Stück aus einem einen einzigen lichtleitenden
Bereich aufweisenden Stegwellenleiter gebildet sind, und dass eine elektrische Isoliereinrichtung
vorgesehen ist, um den ersten Strom in dem ersten lichtleitenden Bereich und den zweiten
Strom in dem zweiten lichtleitenden Bereich im Wesentlichen voneinander zu isolieren.
14. Abstimmbare Laservorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wellenlänge von durch die abstimmbare Laservorrichtung erzeugtem Licht unter
Verwendung eines Vernier Prinzips ausgewählt wird.
15. Verfahren zum Erzeugen von Licht von jeweils wählbarer Wellenlänge, wobei das Verfahren
die folgenden Schritte aufweist:
Bereitstellen eines ersten Stegwellenleiters (5) aus einem Halbleitermaterial, der
eine erste, sich zwischen einem ersten proximalen (22) Ende und einem ersten distalen
(25) Ende erstreckende Laserdiode aufweist und einen ersten Steg (17) hat, der einen
ersten lichtleitenden Bereich bildet, der sich in einer Längsrichtung zwischen seinem
ersten proximalen Ende und seinem ersten distalen Ende erstreckt,
Bereitstellen eines zweiten Stegwellenleiters (6) aus einem Halbleitermaterial, der
eine zweite, sich zwischen einem zweiten proximalen (23) Ende und einem zweiten distalen
(26) Ende erstreckende Laserdiode aufweist und einen zweiten Steg (18) hat, der einen
zweiten lichtleitenden Bereich bildet, der sich in einer Längsrichtung zwischen seinem
zweiten proximalen Ende und seinem zweiten distalen Ende erstreckt,
Bereitstellen der ersten und zweiten lichtleitenden Bereiche, die durch ihre ersten
und zweiten proximalen Enden kommunizieren und Licht der wählbaren Wellenlänge durch
eines der ersten und zweiten distalen Enden aussenden,
Bereitstellen einer Mehrzahl von ersten, den Brechungsindex verändernden Schlitzen
(27), die im ersten Steg des ersten Wellenleiters ausgebildet sind, sich seitlich
über den ersten Steg erstrecken und entlang des ersten Stegs voneinander beabstandet
sind, um den Brechungsindex des ersten lichtleitenden Bereichs an voneinander beabstandeten
Stellen darin zu ändern, um ein erstes Spiegelverlustspektrum mit minimalen Spitzenwerten
bei jeweiligen ersten Wellenlängenwerten zu erzeugen,
Bereitstellen einer Mehrzahl von zweiten, den Brechungsindex verändernden Schlitzen
(28), die im zweiten Stegwellenleiter ausgebildet sind, sich seitlich über den zweiten
Steg erstrecken und entlang des zweiten Stegs voneinander beabstandet sind, um den
Brechungsindex des zweiten lichtleitenden Bereichs an voneinander beabstandeten Stellen
darin zu ändern, um ein zweites Spiegelverlustspektrum mit minimalen Spitzenwerten
bei jeweiligen zweiten Wellenlängenwerten zu erzeugen,
Bereitstellen einer den Brechungsindex verändernden Einrichtung (32, 33) zum wahlweise
Verändern des Brechungsindex wenigstens des ersten lichtleitenden Bereichs, und
Verändern des ersten Spiegelverlustspektrums durch Betätigen der den Brechungsindex
verändernden Einrichtung, um den Brechungsindex des ersten lichtleitenden Bereichs
zu verändern bis einer der ersten Wellenlängenwerte ähnlich dem einen der zweiten
Wellenlängenwerte ist, bei dem der kleinste Spitzenwert des der gewählten Wellenlänge
entsprechenden zweiten Spiegelverlustspektrums auftritt,
wobei
die ersten den Brechungsindex verändernden Schlitze in gleichen Abständen voneinander
entlang des ersten Stegs angeordnet sind, und der eine der ersten den Brechungsindex
verändernden Schlitze, der dem ersten distalen Ende des ersten Wellenleiters am nächsten
gelegen ist, in einem Abstand von dem ersten distalen Ende angeordnet ist, der im
Wesentlichen dem Abstand zwischen benachbarten der ersten den Brechungsindex verändernden
Schlitze gleicht,
der Abstand zwischen den ersten den Brechungsindex verändernden Schlitzen durch die
folgenden Gleichung bestimmt wird:

wobei
d1 der Mittenabstand zwischen benachbarten der ersten den Brechungsindex verändernden
Schlitze ist,
N1 eine ganze Zahl von Eins aufwärts ist,
λ die zentrale Wellenlänge des Bereichs von Lichtwellenlängen ist, über den die Laservorrichtung
abstimmbar sein soll, und
n1 eff, ave der durchschnittliche effektive Brechungsindex des ersten lichtleitenden Bereichs
ist,
die zweiten den Brechungsindex verändernden Schlitze in gleichen Abständen voneinander
entlang des zweiten Stegs angeordnet sind, und der eine der zweiten den Brechungsindex
verändernden Schlitze, der dem zweiten distalen Ende des zweiten Wellenleiters am
nächsten gelegen ist, in einem Abstand von dem zweiten distalen Ende angeordnet ist,
der im Wesentlichen dem Abstand zwischen benachbarten der zweiten den Brechungsindex
verändernden Schlitze gleicht,
der Abstand zwischen den zweiten den Brechungsindex verändernden Schlitzen sich von
dem Abstand zwischen den ersten den Brechungsindex verändernden Schlitzen unterscheidet,
und
der Abstand zwischen den zweiten den Brechungsindex verändernden Schlitzen durch die
folgenden Gleichung bestimmt wird:

wobei
d2 der Mittenabstand zwischen benachbarten der zweiten den Brechungsindex verändernden
Schlitze ist,
N2 eine ganze Zahl von Eins aufwärts ist,
λ die zentrale Wellenlänge des Bereichs von Lichtwellenlängen ist, über den die Laservorrichtung
abstimmbar sein soll, und
n2 eff, ave der durchschnittliche effektive Brechungsindex des zweiten lichtleitenden Bereichs
ist.
1. Dispositif laser réglable (1) destiné à produire une lumière qui présente des longueurs
d'onde sélectionnables, le dispositif laser réglable comprenant :
un premier guide d'ondes nervuré (5) en matériau semi-conducteur comprenant une première
diode laser s'étendant entre une première extrémité proximale (22) et une première
extrémité distale (25), et ayant une première nervure (17) définissant une première
zone de guidage de la lumière s'étendant dans une direction longitudinale entre la
première extrémité proximale et la première extrémité distale de celui-ci,
un second guide d'ondes nervuré (6) en matériau semi-conducteur comprenant une seconde
diode laser s'étendant entre une seconde extrémité proximale (23) et une seconde extrémité
distale (26), et ayant une seconde nervure (18) définissant une seconde zone de guidage
de la lumière s'étendant dans une direction longitudinale entre la seconde extrémité
proximale et la seconde extrémité distale de celui-ci,
la première et la seconde zones de guidage de la lumière communiquant par la première
et la seconde extrémités proximales de celui-ci, et émettant de la lumière qui présente
la longueur d'onde sélectionnable par le biais de l'une de la première et de la seconde
extrémités distales,
une pluralité de premières fentes de modification d'indice de réfraction (27) formées
dans la première nervure du premier guide d'ondes, s'étendant latéralement au sein
de la première nervure, et étant espacées le long de la première nervure afin de modifier
l'indice de réfraction de la première zone de guidage de la lumière à des emplacements
espacés, afin de produire un premier spectre de perte miroir avec des valeurs de pointe
minimum à des premières valeurs de longueur d'onde respectives,
une pluralité de secondes fentes de modification d'indice de réfraction (28) formées
dans la seconde nervure du second guides d'ondes, s'étendant latéralement au sein
de la seconde nervure et étant espacées le long de la seconde nervure afin de modifier
l'indice de réfraction de la seconde zone de guidage de la lumière à des emplacements
espacés, afin de produire un second spectre de perte miroir avec des valeurs de pointe
minimum à des secondes valeurs de longueur d'onde respectives, et
des moyens de variation d'indice de réfraction (32, 33) destinés à faire varier sélectivement
l'indice de réfraction d'au moins la première zone de guidage de la lumière, de façon
à faire varier ensuite le premier spectre de perte miroir jusqu'à ce que l'une des
premières valeurs de longueur d'onde soit similaire à l'une des secondes valeurs de
longueur d'onde, afin de produire une lumière qui présente l'une des longueurs d'onde
sélectionnées,
dans lequel
les premières fentes de modification d'indice de réfraction sont espacées à équidistance
le long de la première nervure, et l'une des premières fentes de modification d'indice
de réfraction qui est la plus proche de la première extrémité distale du premier guide
d'ondes est espacée de la première extrémité distale selon une distance sensiblement
similaire à l'espacement entre les premières fentes de modification d'indice de réfraction
adjacentes,
l'espacement entre les premières fentes de modification d'indice de réfraction est
déterminé par l'équation :

où
d1 correspond à l'espacement entre les premières fentes de modification d'indice de
réfraction adjacentes, de centre à centre,
N1 est un entier supérieur à 1,
λ est la longueur d'onde centrale de la plage de longueurs d'onde de la lumière sur
laquelle le dispositif laser peut être réglé, et
N1eff,ave correspond à l'indice de réfraction effectif moyen de la première zone de guidage
de la lumière,
les secondes fentes de modification d'indice de réfraction sont espacées à équidistance
le long de la seconde nervure, et l'une des secondes fentes de modification d'indice
de réfraction qui est la plus proche de la seconde extrémité distale du second guide
d'ondes est espacée de la seconde extrémité distale selon une distance sensiblement
similaire à l'espacement entre les secondes fentes de modification d'indice de réfraction
adjacentes,
l'espacement entre les secondes fentes de modification d'indice de réfraction est
différent de l'espacement entre les premières fentes de modification d'indice de réfraction,
et
l'espacement entre les secondes fentes de modification d'indice de réfraction est
déterminé par l'équation :

où
d2 correspond à l'espacement entre les secondes fentes de modification d'indice de réfraction
adjacentes, de centre à centre,
N2 est un entier supérieur à 1,
λ est la longueur d'onde centrale de la plage de longueurs d'onde de la lumière sur
laquelle le dispositif laser peut être réglé, et
N2eff,ave correspond à l'indice de réfraction effectif moyen de la seconde zone de guidage
de la lumière.
2. Dispositif laser réglable selon la revendication 1, caractérisé en ce que N2 possède une valeur différente de la valeur de N1.
3. Dispositif laser réglable selon la revendication 1 ou 2, caractérisé en ce que les premières et les secondes fentes de modification d'indice de réfraction sont
adaptées pour modifier l'indice de réfraction des premières et secondes zones de guidage
de la lumière respectives à des emplacements correspondant aux emplacements respectifs
des premières et secondes fentes de modification d'indice de réfraction.
4. Dispositif laser réglable selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de variation d'indice de réfraction comprennent un moyen destiné à faire
varier sélectivement les indices de réfraction des premières et des secondes zones
de guidage de la lumière respectives, indépendamment les uns des autres.
5. Dispositif laser réglable selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de modification d'indice de réfraction comprennent un premier moyen d'injection
de courant destiné à injecter un premier courant électrique dans le premier guide
d'ondes afin de faire varier l'indice de réfraction de la première zone de guidage
de la lumière, et un second moyen d'injection de courant destiné à injecter un second
courant électrique dans le second guide d'ondes afin de faire varier l'indice de réfraction
de la seconde zone de guidage de la lumière.
6. Dispositif laser réglable selon la revendication 5, caractérisé en ce que le premier moyen d'injection de courant comprend un moyen destiné à faire varier
sélectivement le premier courant, et le second moyen d'injection de courant comprend
un moyen destiné à faire varier sélectivement le second courant, le premier et le
second moyens d'injection de courant pouvant fonctionner de manière indépendante afin
de sélectionner indépendamment les valeurs du premier et du second courants.
7. Dispositif laser réglable selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une section de gain est située entre le premier et le second guides d'ondes afin de
produire de la lumière pour le premier et le second guides d'ondes, la section de
gain étant adaptée pour être pompée avec un courant de pompage indépendamment du premier
et du second guides d'ondes.
8. Dispositif laser réglable selon la revendication 7, caractérisé en ce que le premier et le second guides d'ondes sont des guides d'ondes passifs.
9. Dispositif laser réglable selon la revendication 7, caractérisé en ce que le premier et le second guides d'ondes sont des guides d'ondes actifs et sont adaptés
pour être pompés avec des courants de pompage respectifs indépendamment l'un de l'autre.
10. Dispositif laser réglable selon l'une quelconque des revendications 7 à 9, caractérisé en ce qu'une section de phase est située entre la section de gain et l'un du premier et du
second guides d'ondes afin de contrôler la phase de la lumière.
11. Dispositif laser réglable selon la revendication 10, caractérisé en ce que la section de phase est adaptée pour être injectée avec un courant de contrôle de
phase indépendamment de la section de gain et du premier et du second guides d'ondes.
12. Dispositif laser réglable selon l'une quelconque des revendications précédentes, caractérisé en ce que la première et la seconde zones de guidage de la lumière du premier et du second
guides d'ondes respectifs sont alignées longitudinalement l'une avec l'autre, afin
de pouvoir communiquer entre elles par le biais de la première et de la seconde extrémités
proximales de ceux-ci.
13. Dispositif laser réglable selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier et le second guides d'ondes sont intégralement formés à partir d'un guide
d'ondes nervuré ayant une seule zone de guidage de la lumière, et un moyen d'isolation
électrique est prévu pour isoler sensiblement de manière électrique le premier courant
dans la première zone de guidage de la lumière et le second courant dans la seconde
zone de guidage de la lumière l'un de l'autre.
14. Dispositif laser réglable selon l'une quelconque des revendications précédentes, caractérisé en ce que la longueur d'onde de la lumière produite par le dispositif laser réglable est sélectionnée
à l'aide d'un principe de Vernier.
15. Procédé de production de lumière présentant des longueurs d'onde sélectionnables respectives,
le procédé comprenant :
le fait de prévoir un premier guide d'ondes nervuré (5) en matériau semi-conducteur
comprenant une première diode laser s'étendant entre une première extrémité proximale
(22) et une première extrémité distale (25), et ayant une première nervure (17) définissant
une première zone de guidage de la lumière s'étendant dans une direction longitudinale
entre la première extrémité proximale et la première extrémité distale de celui-ci,
le fait de prévoir un second guide d'ondes nervuré (6) en matériau semi-conducteur
comprenant une seconde diode laser s'étendant entre une seconde extrémité proximale
(23) et une seconde extrémité distale (26), et ayant une seconde nervure (18) définissant
une seconde zone de guidage de la lumière s'étendant dans une direction longitudinale
entre la seconde extrémité proximale et la seconde extrémité distale de celui-ci,
le fait de prévoir la première et la seconde zones de guidage de la lumière communiquant
par la première et la seconde extrémités proximales de celui-ci, et émettant de la
lumière qui présente la longueur d'onde sélectionnable par le biais de l'une de la
première et de la seconde extrémités distales,
le fait de prévoir une pluralité de premières fentes de modification d'indice de réfraction
(27) formées dans la première nervure du premier guide d'ondes, s'étendant latéralement
au sein de la première nervure, et étant espacées le long de la première nervure afin
de modifier l'indice de réfraction de la première zone de guidage de la lumière à
des emplacements espacés, afin de produire un premier spectre de perte miroir avec
des valeurs de pointe minimum à des premières valeurs de longueur d'onde respectives,
le fait de prévoir une pluralité de secondes fentes de modification d'indice de réfraction
(28) formées dans le second guides d'ondes nervuré, s'étendant latéralement au sein
de la seconde nervure et étant espacées le long de la seconde nervure afin de modifier
l'indice de réfraction de la seconde zone de guidage de la lumière à des emplacements
espacés, afin de produire un second spectre de perte miroir avec des valeurs de pointe
minimum à des secondes valeurs de longueur d'onde respectives,
le fait de prévoir des moyens de variation d'indice de réfraction (32, 33) destinés
à faire varier sélectivement l'indice de réfraction d' au moins la première zone de
guidage de la lumière, et à faire varier le premier spectre de perte miroir en faisant
fonctionner les moyens de variation d'indice de réfraction de façon à faire varier
l'indice de réfraction de la première zone de guidage de la lumière jusqu'à ce que
l'une des premières valeurs de longueur d'onde soit similaire à l'une des secondes
valeurs de longueur d'onde auxquelles la valeur de pointe minimum du second spectre
de perte miroir correspondant à la longueur d'onde sélectionnée se produit,
dans lequel
les premières fentes de modification d'indice de réfraction sont espacées à équidistance
le long de la première nervure, et l'une des premières fentes de modification d'indice
de réfraction qui est la plus proche de la première extrémité distale du premier guide
d'ondes est espacée de la première extrémité distale selon une distance sensiblement
similaire à l'espacement entre les premières fentes de modification d'indice de réfraction
adjacentes,
l'espacement entre les premières fentes de modification d'indice de réfraction est
déterminé par l'équation :

où
d1 correspond à l'espacement entre les premières fentes de modification d'indice de
réfraction adjacentes, de centre à centre,
N1 est un entier supérieur à 1,
λ est la longueur d'onde centrale de la plage de longueurs d'onde de la lumière sur
laquelle le dispositif laser peut être réglé, et
N1eff,ave correspond à l'indice de réfraction effectif moyen de la première zone de guidage
de la lumière,
les secondes fentes de modification d'indice de réfraction sont espacées à équidistance
le long de la seconde nervure, et l'une des secondes fentes de modification d'indice
de réfraction qui est la plus proche de la seconde extrémité distale du second guide
d'ondes est espacée de la seconde extrémité distale selon une distance sensiblement
similaire à l'espacement entre les secondes fentes de modification d'indice de réfraction
adjacentes,
l'espacement entre les secondes fentes de modification d'indice de réfraction est
différent de l'espacement entre les premières fentes de modification d'indice de réfraction,
et
l'espacement entre les secondes fentes de modification d'indice de réfraction est
déterminé par l'équation :

où
d2 correspond à l'espacement entre les secondes fentes de modification d'indice de réfraction
adjacentes, de centre à centre,
N2 est un entier supérieur à 1,
λ est la longueur d'onde centrale de la plage de longueurs d'onde de la lumière sur
laquelle le dispositif laser peut être réglé, et
N2eff,ave correspond à l'indice de réfraction effectif moyen de la seconde zone de guidage
de la lumière.