(11) EP 2 065 867 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 03.06.2009 Bulletin 2009/23

(51) Int Cl.: **G08G 1/123** (2006.01)

(21) Application number: 07022238.5

(22) Date of filing: 15.11.2007

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Designated Extension States:

AL BA HR MK RS

(71) Applicant: Vodafone Holding GmbH 40213 Düsseldorf (DE)

(72) Inventors:

 De Weerd, Jeroen 6229 WE Maastricht (NL)

Koraichi, Najib
 6333 CT Schimmert (NL)

(74) Representative: Müller, Thomas et al Patentanwalt Müller & Schubert Innere Wiener Strasse 13 81667 München (DE)

(54) Method for providing transport time schedule information, mobile terminal and central processing unit

(57) The present invention relates to a method for providing transport time schedule information, comprising the steps of determining position information of at least one vehicle (3) of a transport network, calculating the estimated time of arrival (ETA) of the at least one vehicle at a selected location, transmitting at least one calculated estimated time of arrival value (ETA) to at least one mobile terminal (2). The method is characterized in that after a calculation of an initial estimated time of arrival

value (ETA₀) at least one additional calculation of the estimated time of arrival for the at least one vehicle (3) of the transport network at the selected location is carried out and the difference (Δ ETA) between the calculated initial estimated time of arrival value (ETA₀) and a subsequently calculated estimated time of arrival value (ETA₁) is determined. Furthermore a central processing unit (1) and a mobile terminal (2) in particular for usage with the inventive method are described.

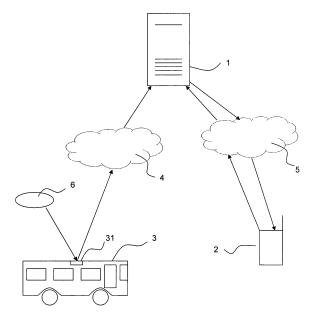


FIG. 1

[0001] The present invention relates to a method for

1

providing transport time schedule information as well as to a mobile terminal and a central processing unit for usage in this method.

[0002] In particular in public transport passengers often are faced with delays in arrival of the vehicle which they intend to use. In order to inform the passenger of such delays information systems such as display boards at the stops provided for passengers to board the vehicle, e.g. a bus stop or a train station, are known. One disadvantage of such display boards is, however, that the passenger already has to be at the stop in order to be able to be notified about the delay.

[0003] In US 2006/0074545A1 a system and method for controlling public transport is described, wherein information as to buses scheduled for arrival at respective bus stops, as well as travel values of the respective buses etc. which are calculated with reference to data collected from the buses can be provided to the passenger via different means. In particular, a service centre server can be accessed through a personal computer or a mobile terminal. One disadvantage of this system and method is that the user has to actively search for the respective information.

[0004] In US 6,253,148 B1 an information system for informing users of a public transport network about waiting times at stops in the network is suggested. In this information system receivers are provided which may be portable and are specifically designed for receiving oneway paging. In this system the positions of the public transport vehicles are being broadcast to the receivers by radio. The position information is provided by a central computer which repetitively broadcasts new positions for the public transport vehicles. The broadcasting begins at a successive transmission instance Θ . For each broadcast instance the transmission time to the receiver is considered and the estimated position of the vehicle after the estimated transmission time is transmitted as the current position. Thereby the determination of waiting times, which is carried out at the receiver can be improved.

[0005] One disadvantage of this system is that the receiver has to be adapted to not only display a waiting time to a passenger but also to determine the waiting time based on the received position information. Hence, the receiver has to be provided with a considerable amount of computing power and memory storage. Furthermore, the amount of data which has to be transmitted to the receiver is considerable.

[0006] The problem to be solved by the present invention is thus to provide a solution, wherein users such as for example passengers can conveniently be provided with up-to-date information on transport time schedules, in particular public transport time schedules.

[0007] The invention is based on the finding that this problem can be solved by transmitting the estimated time of arrival of a transport vehicle to a mobile terminal and

limiting the transmission to estimated time of arrival values which are of relevance to the user.

[0008] According to a first aspect of the invention, this problem is solved by a method for providing transport time schedule information, comprising the steps of determining position information of at least one vehicle of a transport network, calculating the estimated time of arrival of the at least one vehicle at a selected location, transmitting at least one calculated estimated time of arrival value to at least one mobile terminal. The method is characterized in that after a calculation of an initial estimated time of arrival value at least one additional calculation of the estimated time of arrival for the at least one vehicle of the transport network at the selected location is carried out and the difference between the calculated initial estimated time of arrival value and a subsequently calculated estimated time of arrival value is determined.

[0009] Transport time schedule information according to the present invention comprises in particular the estimated time of arrival of a vehicle at a selected location. The transport time schedule information may further comprise an indication of the vehicle and/or of the selected location. The transport network may be a public transport network or a transport network for goods.

[0010] In case of a public transport network, the locations which can be selected are preferably stops or stations for the vehicle where passengers can board and exit the vehicle. The vehicle of the public transportation network may be a bus, a train, an airplane or any other vehicle of public transport.

[0011] In case of a transport network for goods, the locations which can be selected are for example the entrance to a plant or factory or a storage location within a storage facility for the goods. The vehicles of this network may for example be trucks, trains or forklifts.

[0012] In either transport network the position information of the vehicle which is used for the calculation of the estimated time of arrival value preferably comprises the current geographical position of the vehicle as well as the current travelling speed. At least the information on the current geographical position may be obtained by positioning systems such as Global Positioning System (GPS). Also the speed of the vehicle may be obtained from the positioning system. Alternatively, the speed may also be obtained from the speedometer or tachometer of the vehicle.

[0013] The estimated time of arrival is preferably calculated based on the obtained position information as well as based on route or map information, wherein the geographic position of the selected location is contained. Thereby, the distance of the vehicle to the selected location, e.g. the bus stop, can be determined. Based on the current travelling speed the estimated time of arrival can then be calculated. The calculation may also consider information such as general information of the route between the current position and the selected location. Such general information may be traffic information, e.g.

40

30

40

45

information about traffic lights and traffic jams, an average speed of vehicles for the route, speed information obtained from previous trips of the vehicle on the route etc.

[0014] The thus calculated estimated time of arrival value is transmitted to a mobile terminal. The mobile terminal may be a mobile phone and is associated to a user. The user or passenger associated to the mobile terminal is the user intending to obtain information on the transport time schedule. Preferably, the transmission is carried out via a mobile communication network, in particular a cellular mobile communication network such as GPRS. The transmission to the mobile terminal is preferably a directed transmission to individual mobile terminals rather then a broadcast. Thereby, the individual interests of individual users or passengers can be observed. The communication connection between the mobile terminal and a central processing unit, where the estimated time of arrival may be calculated or received from another unit, is preferably a bidirectional connection, so that information can not only be received at the mobile terminal but can also be transmitted from the mobile terminal.

[0015] By calculating the estimated time of arrival at least once again after an initial calculation of the estimated time of arrival, changes in the current situation can be addressed. The initial calculation may be the first calculation executed for a specific user or a first calculation executed for a specific vehicle for a selected location.

[0016] The difference between the calculation results will reflect changes of the current situation. In addition, the determination of the actual difference will give an indication of the deviation of the currently estimated time of arrival to a previously determined estimated time of arrival. By calculating the difference, the present invention thus provides an additional criterion which may be used for deciding on the necessity of transmittal of the newly calculated estimated time of arrival value to the mobile terminal. Also internal settings may use this additional criterion. For example the difference may be used for managing vehicles within the transport network.

[0017] According to a preferred embodiment, the difference between the calculated estimated time of arrival values is compared against a threshold value for the difference. By this comparison it will be possible to avoid further steps in cases where the difference between the two values is small. Such a small difference may for example occur due to rounding mistakes in the calculation. In these cases the difference between the calculated values should be ignored. If the difference, however, reaches or exceeds the threshold value, further steps may be necessary. The detection of whether the difference is of sufficient amount to justify further processing cannot be performed by systems, where only a comparison between two values is carried out.

[0018] As the difference between the calculated estimated time of arrival values may be a positive value or a negative value depending on whether the vehicles is delayed to or is going to arrive earlier than the initial es-

timated time of arrival, the threshold value is preferably compared to the absolute value of the difference, e.g. 10 minutes. Thereby, both a delay and an early arrival can be determined.

[0019] Preferably, the comparison is carried out at a central processing unit and the threshold value is received at the central processing unit from a mobile terminal. By comparing the calculated difference to a threshold value at a central processing unit, it will be possible to minimize the data transfer to a mobile terminal as differences occurring due to rounding errors or other calculation or measuring errors will be detected during the comparison. The threshold value may thus be set within the central processing unit to cover respective errors. Alternatively or additionally, it is, however, also possible that the threshold value is received at the central processing unit from a mobile terminal. Thereby, the user of the mobile terminal who wishes to be informed on the time schedule information will be able to set a personal threshold. The threshold can be input by the user at the mobile terminal and can be transferred to the central processing unit either together with a request for time schedule information or during a setup session, wherein the user can define his personal settings at the central processing unit. In the latter case, the threshold value may be used for all requests received from the mobile terminal after the setting has been defined. The personal threshold value will reflect the time difference between an estimated time of arrival value which the user received on his mobile terminal and the actual time of arrival of the vehicle.

[0020] Preferably, the initial estimated time of arrival value is the value which is transmitted to the mobile terminal. By using the value which has been transmitted to the mobile terminal and of which the user has thus been informed as a basis for the determination of a difference to current estimated time of arrival values, it can be assured that threshold, in particular the personal threshold value is applied to the values of relevance to the user. If more than one estimated time of arrival is transmitted to the mobile terminal, the estimated time of arrival value which was transmitted last will be considered as the initial estimated time of arrival which will be used to determine the difference to subsequently calculated values. Thereby, it can be assured that for example the personal threshold is compared to the appropriate difference.

[0021] According to the present invention, it is, however, also possible that the initial estimated time of arrival value is the result of the calculation of the estimated time of arrival immediately preceding a present calculation of an estimated time of arrival. In this case, a threshold value set within the central processing unit for determining rounding errors or other errors will be used for the comparison to the difference between the calculated values.

[0022] According to a preferred embodiment of the present invention, the transmission of the estimated time of arrival value to a mobile terminal is dependent on the comparison result against the threshold value. In particular, an estimated time of arrival value will be transmitted

20

to the mobile terminal only if a threshold value, in particular a personal threshold value of the user of the mobile terminal is reached or exceeded. It should be noted that this limitation of transmissions to the mobile terminal only applies to transmissions after a first transmission to the mobile terminal. By basing the decision on whether a new estimated time of arrival value is to be transmitted to the mobile terminal on the comparison to a threshold value, it will be possible to minimize the data transfer to the mobile terminal. At the same time, this selected transmission assures that the user will always be informed of the most updated estimated time of arrival.

[0023] Preferably, the transmission of an estimated time of arrival value to the mobile terminal will trigger the initial estimated time of arrival at the central processing unit to be replaced by the newly transmitted estimated time of arrival value. Thereby, the subsequent calculations of differences will be based on the value, which the user was made aware of most recently.

[0024] In a further preferred embodiment, the mobile terminal replaces a received estimated time of arrival value upon subsequent receipt of another estimated time of arrival value. Thereby, the information available to the user will always be up to date.

[0025] It is also possible that the mobile terminal starts a timer upon receipt of an estimated time of arrival value. Thereby, the mobile will be able to count-down to the estimated time of arrival value and alert the user of the mobile terminal once the estimated time of arrival has been reached. Preferably, a preset time limit is included in the timer. In this case the user may be alerted in advance of the upcoming reaching of the estimated time of arrival and the user will be able to take appropriate actions such as leaving for a bus stop in time.

[0026] In case of successive receipt of more than one estimated time of arrival value, the timer will preferably be restarted upon receipt of each estimated time of arrival value.

[0027] According to one embodiment, a mobile terminal issues a request for time schedule information, including an indication of a selected location, an indication of a vehicle of a transport network, an identification of the mobile terminal and/or a time specification. Upon receipt of this request at the central processing unit the calculation process of the estimated time of arrival will be initiated. By providing the information of the selected location, the relevant route and map information for the location can be considered. In addition, the vehicles related to this location, e.g. buses which stop at the bus stop can be identified. If the user provides an indication of the vehicle he is interested in such as a bus number, the calculation of the estimated time of arrival can be initiated at the central processing unit. In case the user only provides a time specification, in this request, the central processing unit may select a vehicle where the scheduled time of arrival matches the time specification and calculate the estimated time of arrival for this vehicle. An indication of the mobile terminal in the request may

be used by the central processing unit to direct the transmission of estimated time of arrival values. This is advantageous since the mobile terminal will in that case not have to maintain a connection to the central processing unit. The central processing unit may rather establish a connection to the mobile terminal in case a transmission of information is to be carried out.

[0028] According to one embodiment of the invention, the at least one calculation of the estimated time of arrival is carried out at a remote central processing unit. The remote central processing unit is remote to both the vehicle and the mobile terminal and may for example be a central server. This server may be hosted at a management facility of the transport network. By executing the calculation at a remote central processing unit, the calculation power and memory capacities are not limited as is the case with mobile terminals. The calculation of the estimated time of arrival may thus be carried out more rapidly and the calculated values can be stored for future usage. One additional advantage of the calculation at a remote central processing unit is that the central processing unit may easily obtain additional information necessary for the calculation from other systems such as a positioning system. If the calculation of at least the estimated time of arrival is carried out at the central processing unit, the requirements for the mobile terminal are decreased. This means, that also a mobile phone or other mobile terminal with limited processing capability can be used as the mobile terminal for the inventive method. It will thus be possible to provide the necessary information to the user or passenger to a device which he or she is carrying for a different purpose. It will not be necessary for the user or passenger to carry an additional device in order to obtain the desired information. Finally, a data transfer of input values for the calculation via a mobile network to the mobile terminal is not necessary and the mandatory data traffic to the mobile terminal can thus be minimized.

[0029] In addition or alternatively, also the determination of the difference between the calculated values of the estimated time of arrival may be carried out at a remote central processing unit. Also in this case the remote central processing unit may be a server. By determining the difference at the remote central processing unit from where the estimated time of arrival is preferably transmitted to the at least one mobile terminal, the difference can easily be integrated in the decision process of whether the newly calculated estimated time of arrival is to be transmitted to the mobile terminal.

[0030] The at least one calculation of the estimated time of arrival may according to the present invention also be carried out at the vehicle of the transport network, which is to be monitored, i.e. the arrival of which is of interest to the passenger. The advantage of this embodiment is that the position information of the vehicle which may be obtained by a positioning system will be readily available at the vehicle. In common positioning systems a receiver for the position information is provided at the

30

40

vehicle. In this embodiment only the calculated estimated time of arrival has to be transmitted to the central processing unit, thus decreasing signalling' between the vehicle and the central processing unit.

[0031] Alternatively or additionally also the determination of the difference between the calculated values can be carried out at the vehicle of the public transport. In this case it will be possible to only transmit the estimated time of arrival to the central processing unit once and subsequently to only transmit the difference of the newly calculated estimated time of arrival to the previously transmitted estimated time of arrival. Only if a comparison at the central processing unit to a threshold value, preferably a personal threshold of the user, shows that the threshold value has been reached, the last estimated time of arrival value, which was used for the determination of the difference has to be transmitted to the central processing unit for further transmission to the mobile terminal.

[0032] According to a further aspect, the present invention relates to a central processing unit for providing transport time schedule information having at least one communication interface for communication with at least one mobile terminal and at least one receiving unit for receiving information from a vehicle of a transport network. The central processing unit is characterized in that it comprises a unit for determining the difference between an initial estimated time of arrival value and at least one subsequently calculated estimated time of arrival value for at least one vehicle of a transport network at a selected location.

[0033] By providing a determining unit for determining the difference between these values, it will be possible to minimize data transfer to mobile terminals which are in communication with the central processing unit and to improve the reliability of the central processing unit as the determination unit can provide and additional criterion for the handling of estimated time of arrival values.

[0034] According to one embodiment, the central processing unit comprises storage means for storing a threshold value for the difference between the calculated values. By storing this value it will be readily available for comparison against a difference value which was calculated or received at the central processing unit. By providing storage means for the threshold value it will be possible for a user to provide a threshold value which should always be used for information to be transmitted to him, i.e. a personal threshold value. The storage means may also contain a threshold value set for or by the central processing unit to account for calculation or measuring errors.

[0035] In a preferred embodiment, the central processing unit comprises a calculation unit for calculating an estimated time of arrival of at least one vehicle of the transport network at a selected location. This calculation unit will be connected to the receiving unit for receiving position information of the vehicle. The calculation unit will further be connected to a memory unit where infor-

mation on the transport network, in particular route information for individual vehicles and other traffic information may be stored. By considering both the position information of the vehicle as well as route and traffic information, it will be possible to calculate an accurate estimated time of arrival of the vehicle at a selected location.

[0036] The central processing unit is preferably adapted to be used in the inventive method.

[0037] According to a further aspect, the present invention relates to a mobile terminal for providing transport time schedule information of at least one vehicle of a transportation network, comprising a communication interface for communication with at least one central processing unit and at least one output device for output of the information. The mobile terminal is characterized in that it comprises a receiving unit for receiving and handling information from the central processing unit on estimated time of arrival values which are transmitted based on a difference between an initial estimated time of arrival value and at least one subsequently calculated estimated time of arrival value for at least one vehicle of the transport network at a selected location.

[0038] The mobile terminal may be a mobile telephone or any other mobile terminal device which is capable of communicating with a central processing unit via a communication network such as a cellular mobile network. The receiving unit at the mobile terminal is adapted to receive the information from the central processing unit and to handle or process it for output at the mobile terminal. For this reason the receiving unit will be connected to an output interface such as a display of the mobile terminal. The information from the central processing unit on estimated time of arrival values which are transmitted based on a difference between an initial estimated time of arrival value and at least one subsequently calculated estimated time of arrival value for at least one vehicle of the transport network at a selected location is preferably an updated estimated time of arrival value. The mobile terminal will thus be able to display or otherwise output the received information. In addition, the mobile terminal will be able to replace a previously received estimated time of arrival value by the updated time of arrival value without necessitating further processing power.

[0039] The mobile terminal may further comprise an input unit for inputting a location, vehicle identification, a threshold value and / or a time specification to be transmitted to the central processing unit. The input unit may be connected to the keypad of the mobile terminal or any other input means provided at mobile terminals or mobile phones such as a touchpad. The input unit will also be connected to a transmitting unit of the mobile terminal for transmitting the information to the central processing unit. The information input into the input unit will be transmitted to the central processing unit within a request for time schedule information. The input may, however, also be transmitted to the central processing unit individually, e.g. during a set up session when the user of the mobile terminal sets up a service to use from the central process-

30

40

ing unit for delivery of the time schedule information.

[0040] According to one embodiment, the mobile terminal comprises a timer connected to the receiving unit for counting down the remaining time difference to a received estimated time of arrival and/or to a preset time limit to the received estimated time of arrival. Thereby, the mobile terminal will be able to count-down to the estimated time of arrival value and alert the user of the mobile terminal once the estimated time of arrival or a preset time limit to this value has been reached. This will enable the user to take appropriate actions such as leaving for a bus stop in time.

[0041] The mobile terminal is preferably adapted to be used in the inventive method and /or is suitable for communication with the central processing unit according to present invention.

[0042] The units and modules of the mobile terminal and/or the central processing unit may be realized as hardware and/or software components and may at least partially be combined within one unit.

[0043] Features and advantages described in context with the mobile terminal and/or the central processing unit also apply to the inventive method and vice versa.

[0044] The invention will now be described again in detail with reference to the enclosed drawings, wherein: [0045] Figure 1: shows a schematic depiction of a provisioning system where the method according to the present invention can be used; and

[0046] Figure 2: shows a flowchart of one embodiment of the inventive method.

[0047] In Figure 1 a provisioning system where the method according to the present invention can be used is shown. In this system a central processing unit 1 is comprised. The central processing unit 1 can communicate with a mobile terminal 2 which is depicted as a mobile phone as well as with a vehicle 3 via a vehicle unit 31. The communication between the vehicle unit 31 and the central processing unit 1 is carried out via a mobile network 4. The communication between the mobile terminal 2 and the central processing unit 1 is carried out via a mobile network 5. It should be noted that the two networks 4 and 5 could be the same communication network. The vehicle unit 31 can furthermore receive information from a positioning system 6 which may be a GPS system or other known positioning systems. The vehicle unit 31 may thus comprise or be connected to a receiver of a positioning system 6.

[0048] The positioning system 6 provides the vehicle unit 31 with current position information, which comprises the actual geographic location of the vehicle as well as the current speed of the vehicle 3. Alternatively, the speed of the vehicle 3 may be obtained for the speedometer of the vehicle 3.

[0049] As indicated by the arrows in Figure 1 the communication between the vehicle unit 31 and the central processing unit 1 is preferably only in one direction, i.e. from the vehicle unit 31 to the central processing unit 1. In some embodiments of the inventive method the central

processing unit 1 may, however, also communicate with the vehicle unit 31, for example to request the transmission of information.

[0050] The communication between the mobile terminal 2 and the central processing unit 1 in contrast is bidirectional. The mobile terminal 2 can transmit requests and information supporting or relating to the request to the central processing unit 1. The central processing unit 1 will transmit information in response to the request and subsequent information, in particular updated information to the mobile terminal 2.

[0051] In Figure 2 a flowchart of one embodiment of the inventive method is shown and will now be described with reference to the example of a passenger using the inventive method to obtain information on arrival time of a bus.

[0052] The user may connect to the central processing unit 1, which will hereinafter also be referred to as the server, via his mobile phone 2. The server 1 may be part of or will be connected to a public transport network management system.

[0053] Via the mobile terminal 2 the user can send a request to obtain information on the estimated time of arrival of a specific bus, e.g. number 159, at a specific location, e.g. bus stop XX to the server. In this request or separate from the request the user can send a threshold value for the difference between the estimated time of arrival of the bus at the bus stop transmitted to his mobile terminal and a subsequently calculated estimated time of arrival of the bus at the bus stop.

[0054] The server 1 receives the request and the threshold value. Upon receipt thereof the server 1 will check the availability of position information of the requested bus 159. If the position information is not available the server 1 may send and invitation to the vehicle unit 31 of bus 159 to start transmitting this information. Once the position information is available at the server 1, the server 1 calculates the estimated time of arrival ETA₀ of bus 159 at bus stop XX. The thus calculated estimated time of arrival ETA₀ is transmitted to the mobile phone 2 of the user from where the request originated. After transmittal of the estimated time of arrival value ETA₀ server 1 continues to receive positioning information from the vehicle unit 31 and calculates new estimated time of arrival values ETA_1 based on this information. From the new estimated time of arrival value ETA₁ and the initial estimated time of arrival value ETA₀ the difference Δ ETA between these two values is calculated. The absolute amount of the calculated difference Δ ETA is compared to the threshold value received from the mobile terminal 2. If the Δ ETA is smaller then the threshold value, the newly calculated ETA₁ is ignored and the server continues to calculate new estimated time of arrival values based on the received position information from the vehicle unit 31 of the bus 159. If the Δ ETA is larger then the threshold value, the newly calculated ETA₁ is sent to the mobile terminal 2. At the server 1 the newly calculated ETA₁ is used as the new initial estimated time

40

of arrival ${\sf ETA}_0$ for the determination of the difference to subsequently calculated estimated time of arrival values. **[0055]** The following use cases describe the possible features and advantages of the present invention.

[0056] A user sends a request for information on arrival for a specific vehicle of public transport, such as a bus, a train, a tram, a metro, etc. at a selected location, i.e. a bus stop, train station, etc. to a server of a transport network or another central processing unit connected to the transport network. The request further comprises a threshold value which indicates the maximum deviation the user is willing to accept between the estimated time of arrival provided to him in response to the request and the actual time of arrival. The request is sent via a mobile network to the central server. The vehicles belonging to a public transport network regularly sends their actual GPS information and their identification, e.g. number, to the server. This information and identification is sent via a mobile network which may be identical to the mobile network used for the transmission of the request from the mobile terminal to the server. The mobile network may, however, also be a different network. In the server the route information for all vehicles of the public transport network are stored. This stored information is considered in combination with the selected location, e.g. bus stop, which was sent from the mobile terminal within the request for estimated time of arrival. From the GPS information together with the route information, the estimated time of arrival for the selected location can be calculated at the server. Once calculated, the result of this first calculation will be sent to the mobile terminal from which the request originated. At the mobile device, the receipt of the calculated estimated time of arrival from the first calculation will start a count-down unit and will count down the time remaining until the estimated time of arrival. The count-down will be displayed at the screen of the mobile terminal. The estimated time of arrival is calculated for the first vehicle to arrive at the selected location. The central server stores the calculated estimated time of arrival sent to the mobile terminal and will also store indicia of the mobile terminal to which this calculated value was sent.

[0057] The central server will continue calculating the current or actual estimated time of arrival which was requested by the mobile terminal. After each calculation the central server will compare the value of the most recent calculation to the value which was sent to the mobile terminal and will determine the difference between these two values. Once the difference determined at the central server exceeds the threshold value provided with the initial request from the mobile terminal, the most recently calculated estimated time of arrival will be sent to the mobile terminal from which the request originated.

[0058] Thereby, the user will be informed of any delay or early arrival of the vehicle of interest at the selected location and can plan his time accordingly, e.g. leave for the bus stop early to maximize available boarding time or leave later in case of a delay.

[0059] According to the invention also a synchronized system providing semi-real-time public transport estimated time of arrival information can be used as described now. A unit system is provided at the vehicle of the public transport. This unit is adapted to track the arrival time of the vehicle at specific locations such as a bus stop or any other selected location. Since this unit will also have GPS it can constantly check whether the estimated time of arrival currently calculated is still in line with an estimated time of arrival initially calculated. A second unit is provided centrally at the location of the public transport network management system. This central unit keeps track of the estimated time to the next bus stop or other selected location and keeps track of the selected location of interest to the customer. As soon as the difference between the initial estimated time of arrival and a subsequently calculated estimated time of arrival is larger than a threshold value, the initial estimated time of arrival will be updated at the central unit via the mobile data connection from the bus to the central unit. The central unit will then notify all users registered for that specific bus and the affected bus stop. A third unit resides on the mobile terminal of the waiting passenger. The passenger may set an alarm at the mobile terminal to notify him once the time difference between the actual time and the received estimated time of arrival drops below a given value. This given value may for example be the time the passenger requires for getting to the bus stop.

[0060] The present invention is not limited to the embodiments and use cases described above. In particular, individual steps of the described method may be omitted. It is for example possible that the mobile terminal does not count down the time until the estimated time of arrival. Also the setting of an alarm is not mandatory.

[0061] The present invention provides the possibility to reduce the time a passenger, in particular a commuter, has to wait for public transport vehicles to arrive, as he always is aware of the actual estimated time of arrival. This awareness is independent of the current location of the passenger. Even though the invention has mainly been described with respect to public transport aspects where passengers are to be transported for one location to another, it is obvious that the invention also applies to transports of goods as the logistics are the same. A truck driver may also wish to be informed on the estimated time of arrival of the goods which he is supposed to be loading at a specific location. Also internal logistics of a plant or a factory may utilize the present invention, so that workers within the premises will be aware of the arrival time of a delivery vehicle.

Reference Numbers

[0062]

- Central processing unit
- 2 Mobile terminal
- 3 Vehicle

15

20

25

30

35

40

45

50

- 31 Vehicle unit
- 4 Mobile network
- 5 Mobile network
- 6 Positioning system

Claims

Method for providing transport time schedule information, comprising the steps of determining position information of at least one vehicle (3) of a transport network, calculating the estimated time of arrival (ETA) of the at least one vehicle at a selected location, transmitting at least one calculated estimated time of arrival value (ETA) to at least one mobile terminal (2), characterized in that after a calculation of an initial estimated time of arrival value (ETA₀) at least one additional calculation of the estimated time of arrival for the at least one vehicle (3) of the transport network at the selected location is carried out and the difference (Δ ETA) between the calculated initial estimated time of arrival value (ETA₀) and a subsequently calculated estimated time of arrival value (ETA₁) is determined.

13

- Method according to claim 1, characterized in that the difference between the calculated estimated time of arrival values (ETA₀, ETA₁) is compared against a threshold value for the difference.
- 3. Method according to claim 2, characterized in that the comparison is carried out at a central processing unit (1) and the threshold value is received at the central processing unit (1) from a mobile terminal (2).
- 4. Method according to anyone of claims 1 to 3, characterized in that the initial estimated time of arrival value (ETA₀) is the value which is transmitted to the mobile terminal (2).
- 5. Method according to anyone of claims 2 to 4, characterized in that the transmission of the estimated time of arrival value (ETA₁) to a mobile terminal is dependent on the comparison result against the threshold value.
- 6. Method according to anyone of claims 1 to 5, characterized in that a mobile terminal (2) issues a request for time schedule information, including an indication of a selected location, an indication of a vehicle (3) of a transport network, an identification of the mobile terminal (2) and/or a time specification.
- 7. Method according to anyone of claims 1 to 6, characterized in that the at least one calculation of the estimated time of arrival (ETA_{0,1}) and/or the determination of the difference (ΔΕΤΑ) between the calculated values (ETA₀, ETA₁) is carried out at a re-

mote central processing unit (1).

- Method according to anyone of claims 1 to 7, characterized in that the at least one calculation of the estimated time of arrival (ETA_{0,1}) and/or the determination of the difference (Δ ETA) between the calculated values (ETA₀, ETA₁) is carried out at a vehicle (3) of the transport network.
- 10 Method according to anyone of claims 1 to 8, characterized in that the mobile terminal (2) replaces a received estimated time of arrival value (ETA₀) upon subsequent receipt of another estimated time of arrival value (ETA₁).
 - 10. Method according to anyone of claims 1 to 9, characterized in that the mobile terminal (2) starts a timer upon receipt of an estimated time of arrival value (ETA_{0,1}).
 - 11. Central processing unit (1) for providing transport time schedule information having at least one communication interface for communication with at least one mobile terminal (2) and at least one receiving unit for receiving information from a vehicle (3) of a transport network, characterized in that it comprises a unit for determining the difference (ΔΕΤΑ) between an initial estimated time of arrival value (ETA₀) and at least one subsequently calculated estimated time of arrival value (ETA₁) for at least one vehicle (3) of a transport network at a selected location.
 - 12. Central processing unit according claim 11, characterized in that comprising storage means for storing a threshold value for the difference.
 - 13. Central processing unit according to anyone of claims 11 or 12, characterized in that it comprises a calculation unit for calculating an estimated time of arrival (ETA_{0.1}) of at least one vehicle (3) of the transport network at a selected location.
 - 14. Central processing unit according to anyone of claims 11 to 13, characterized in that it is adapted to be used in a method according to anyone of claims 1 to 10.
 - 15. Mobile terminal for providing transport time schedule information of at least one vehicle (3) of a transportation network, comprising a communication interface for communication with at least one central processing unit (1) and at least one output device for output of the information, characterized in that it comprises a receiving unit for receiving and handling information from the central processing unit (1) on estimated time of arrival values (ETA_{0.1}) which are transmitted based on a difference between an initial estimated time of arrival value (ETA₀) and at

least one subsequently calculated estimated time of arrival value (ETA₁) for at least one vehicle (3) of the transport network at a selected location.

16. Mobile terminal according to claim 15, **characterized in that** it comprises an input unit for inputting a location, a vehicle identification, a threshold value and / or a time specification to be transmitted to the central processing unit (1).

17. Mobile terminal according to anyone of claims 15 or 16, characterized in that it comprises a timer connected to the receiving unit for counting down the remaining time difference to a received estimated time of arrival (ETA_{0,1}) and/or to a preset time limit to the received estimated time of arrival (ETA_{0,1}).

18. Mobile terminal according to anyone of claims 15 to 17, **characterized in that** it is adapted to be used in a method according to anyone of claims 1 to 10.

19. Mobile terminal according to anyone of claims 15 to 18, **characterized in that** it is suitable for communication with the central processing unit according to anyone of claims 11 to 14.

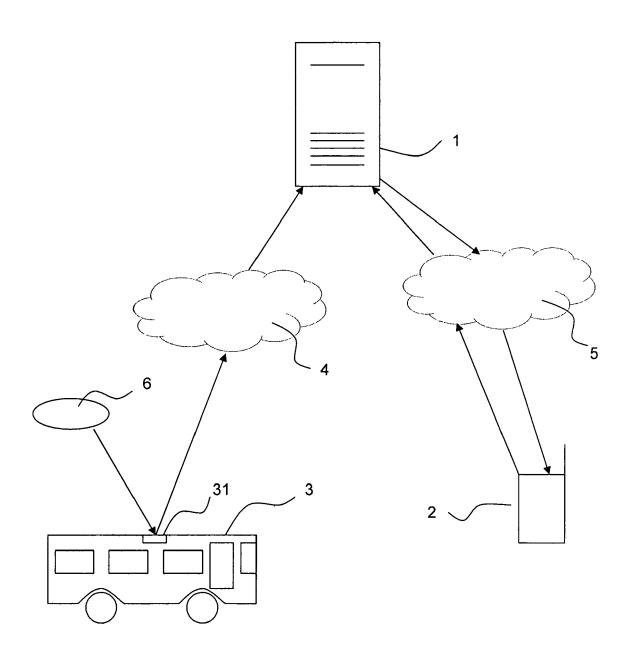


FIG. 1

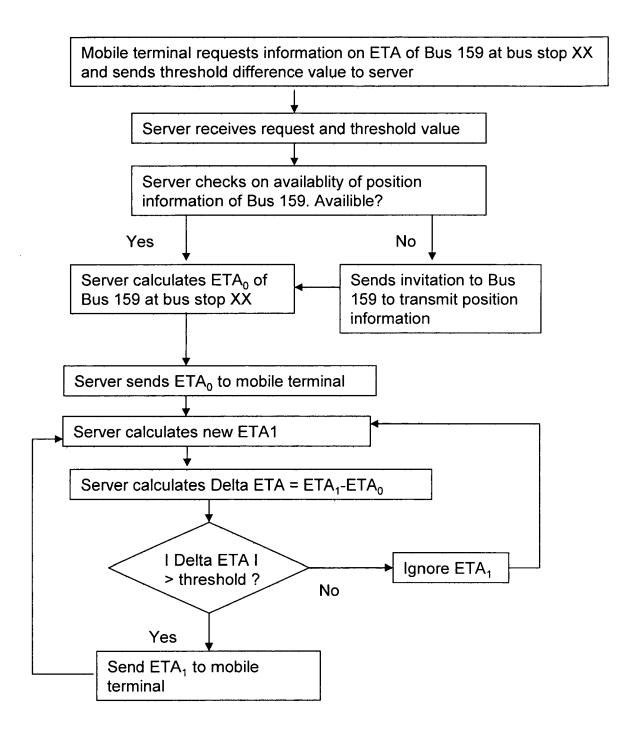


FIG. 2

EUROPEAN SEARCH REPORT

Application Number EP 07 02 2238

	DOCUMENTS CONSIDE			
ategory	Citation of document with inc of relevant passag		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
ategory		ER KENNETH J [US]; 98-02-26) s 2,3 *		
	The present search report has be	en drawn up for all claims Date of completion of the searc	h	Examiner
	Munich	16 April 2008		fa, Andrew
X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another imment of the same category incological background written disclosure rmediate document	T : theory or pri E : earlier pater after the filin r D : document ci L : document ci	nciple underlying the introduced to the introduc	nvention shed on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 07 02 2238

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

16-04-2008

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9808206	A	26-02-1998	AT AU CA DE EP IL JP NZ US	231636 T 735935 B2 3912697 A 2263153 A1 69718651 D1 0917697 A1 128479 A 2001503541 T 334228 A 6374176 B1	15-02-2003 19-07-2001 06-03-1998 26-02-1998 27-02-2003 26-05-1999 10-03-2002 13-03-2001 23-02-2001 16-04-2002
				6374176 B1	

FORM P0459 For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 2 065 867 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 20060074545 A1 [0003]

• US 6253148 B1 [0004]