(19)
(11) EP 2 072 829 B2

(12) NEUE EUROPÄISCHE PATENTSCHRIFT
Nach dem Einspruchsverfahren

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch:
20.12.2017  Patentblatt  2017/51

(45) Hinweis auf die Patenterteilung:
17.12.2014  Patentblatt  2014/51

(21) Anmeldenummer: 07024940.4

(22) Anmeldetag:  21.12.2007
(51) Internationale Patentklassifikation (IPC): 
F04D 13/08(2006.01)
E21B 43/12(2006.01)
F04D 13/10(2006.01)
E21B 47/00(2012.01)

(54)

Tauchpumpe

Immersion pump

Pompe submersible


(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(43) Veröffentlichungstag der Anmeldung:
24.06.2009  Patentblatt  2009/26

(73) Patentinhaber: Grundfos Management A/S
8850 Bjerringbro (DK)

(72) Erfinder:
  • Lyngholm, Jan
    8471 Sabro (DK)

(74) Vertreter: Vollmann, Heiko et al
Vollmann & Hemmer Patentanwälte Wallstrasse 33a
23560 Lübeck
23560 Lübeck (DE)


(56) Entgegenhaltungen: : 
EP-A- 1 324 011
WO-A-2006/053944
DE-A1- 19 728 392
RU-C1- 2 285 155
US-A- 2 969 740
US-A- 5 148 408
EP-A1- 0 033 192
DE-A1- 4 013 978
JP-A- 2006 170 903
US-A- 2 550 667
US-A- 3 021 788
US-A1- 20070 114 040
   
       


    Beschreibung


    [0001] Die Erfindung betrifft eine Bohrlochpume gemäß den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen.

    [0002] Bei Tauchpumpen zählt es heutzutage zum Stand der Technik, diese mit einem Frequenzumrichter anzusteuern, sie weisen somit in der Regel eine Motorelektronik auf, die es erforderlich oder zumindest zweckmä-ßig erscheinen lässt, wesentliche Betriebsgrößen der Pumpe zu erfassen und bei der Ansteuerung zu berücksichtigen und ggf. zu verarbeiten. Hierzu zählen beispielsweise die Wicklungstemperatur des Motors, die Temperatur des zu fördernden Mediums, der Förderdruck, der Umgebungsdruck und dergleichen. Zur Erfassung dieser Größen wird entsprechende Sensorik in die Tauchpumpen integriert. Aus EP 1 324 011 A2, US 3,021,788, US 2007/0114040 A1 und US 2,969,740 zählt es zum Stand der Technik, bei Tauchpumpen, insbesondere Schmutzwasserpumpen ein oder mehrere Sensoren in den Strömungsweg einzugliedern.

    [0003] Aus EP 0 033 192 A1 ist es bekannt, bei Bohrgestängen eine Signalübertragung durch akustische Wellen durch das Gestänge hindurch zu bewirken.

    [0004] Die Anordnung derartiger Sensoren in Tauchpumpen ist aufwendig, da einerseits eine Datenverbindung zu der Steuer- und Regelelektronik des Motors bestehen muss, andererseits eine elektrische Versorgung erforderlich ist und schließlich eine zuverlässige Abdichtung gegenüber dem Fördermedium gewährleistet sein muss. Allerdings bereitet bei Tauchpumpen der vorgenannten Art (Schmutzwasserpumpen) die Sensoranordnung konstruktiv weniger Probleme, da der Bauraum der Pumpe vergleichsweise groß ist und die Sensorik in der Regel an geeigneter Stelle innerhalb des Pumpengehäuses eingegliedert werden kann, ohne dass hierzu wesentliche konstruktive Änderungen des Pumpenaggregats selbst erforderlich sind. Anders ist dies hingegen bei Bohrlochpumpen, bei denen der Bauraum insbesondere in radialer Richtung eng begrenzt ist und bei denen nach Möglichkeit ein modulartiger Aufbau zum Vorsehen verschiedener Anzahl von Pumpenstufen gegeben sein sollte. Bei Bohrlochpumpen stellt dies also ein räumliches Problem dar, weshalb man bisher auf den Einbau solcher Sensorik entweder verzichtet hat oder einen enormen Bauaufwand kalkulieren musste.

    [0005] Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, eine gattungsgemäße Bohrlochpumpe so auszubilden, dass ein oder mehrere Sensoren kostengünstig an geeigneter Stelle angeordnet und entsprechend signal- bzw. datenverbunden werden können.

    [0006] Diese Aufgabe wird gemäß der Erfindung durch die in Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung und der Zeichnung.

    [0007] Die erfindungsgemäße Bohrlochpumpe weist einen elektrischen Antriebsmotor und eine davon angetriebene ein- oder mehrstufige Kreiselpumpe auf. Gemäß der Erfindung sind ein oder mehrere Sensoren der Pumpe in einem Sensorgehäuse angeordnet, welches, flüssigkeitsdurchströmt ist und flüssigkeitsumgeben ist. Das Sensorgehäuse ist zwischen Motor und Pumpe, am Ende der Pumpe oder innerhalb der Pumpe angeordnet. Dabei kann das Sensorgehäuse entweder als gesondertes Gehäuse am Ende Pumpe angeordnet sein oder auch Teil des Pumpengehäuses bilden, also integral mit diesem ausgebildet sein.

    [0008] Grundgedanke der vorliegenden Erfindung ist es, nach Möglichkeit die komplette Sensorik, zumindest jedoch einen oder mehrere Sensoren in einem gesonderten Sensorgehäuse unterzubringen, welches am Ende der Pumpe, innerhalb der Pumpe oder zwischen Motor und Pumpe, also am anderen Ende der Pumpe angeordnet ist. Dieses Sensorgehäuse kann modulartig ausgebildet sein, sodass es ggf. auch bei vorhandenen Pumpen nachgerüstet werden kann oder zumindest Pumpen der gleichen Serie mit oder ohne Sensorgehäuse ausgestattet werden können, also mit und ohne Sensorik ausgeliefert können. Da das Sensorgehäuse zwischen Motor und Pumpe, innerhalb der Pumpe oder am Ende der Pumpe angeordnet ist, wird die Bohrlochpumpe hierdurch in ihrer Außenkontur nicht verändert, sondern lediglich in ihrer Länge, was für Bohrlochpumpen besonders wichtig ist. Da die Sensorik typischerweise mit dem Förderstrom der Pumpe einerseits und dem umgebenden Medium andererseits in Verbindung steht, ist das erfindungsgemä-ße Sensorgehäuse so ausgebildet und angeordnet, dass es einerseits flüssigkeitsdurchströmt und andererseits von Flüssigkeit umgeben ist. So können beispielsweise Temperaturen und/oder Druck sowohl vom umgebenden als auch vom geförderten Fluid erfasst werden. Da nach Möglichkeit die gesamte Sensorik oder zumindest ein Großteil innerhalb des Sensorgehäuses angeordnet ist, braucht wenn überhaupt, nur dieses Sensorgehäuse mit einem nach außen geführten Kabel versehen zu sein, was bei Bohrlochpumpen von Vorteil ist, wenn das Sensorgehäuse am oberen Ende der Pumpe angeordnet ist, an welchem ohnehin nur das Netzkabel neben der Förderleitung verläuft. Bei der Anordnung zwischen Motor und Pumpe ergibt sich der Vorteil, dass die Verkabelung über den Motor erfolgen kann, der ohnehin eine Kabelführung nach außen zur elektrischen Stromversorgung und ggf. auch zur Steuer- und Regelelektronik benötigt.

    [0009] Dabei ist das Sensorgehäuse in einen flüssigkeitsführenden Gehäuseteil und einen flüssigkeitsfreien Gehäuseteil aufgeteilt, die durch eine vorzugsweise durch Edelstahlblech gebildete Gehäusewand voneinander getrennt sind. Eine solche Gehäusewand kann nach Art eines Spaltrohres vergleichsweise dünn aber absolut flüssigkeitsdicht ausgebildet sein, sodass mit Ausnahme der Druck- und/oder Differenzdrucksensoren ggf. auch durch die Gehäusewand hindurch gemessen werden kann, beispielsweise Temperatur, Vibration und dergleichen. Dies hat den erheblichen Vorteil, dass die hoch feuchtigkeitsempfindliche Elektronik und Sensorik in einem zuverlässig flüssigkeitsfreien Gehäuseteil angeordnet werden kann, wohingegen durch die Gehäusewand praktisch auch Zugriff auf das Fördermedium und/oder das umgebende Medium besteht.

    [0010] Zweckmäßigerweise wird nicht nur ein Teilstrom sondern der gesamte Förderstrom der Pumpe durch das flüssigkeitsführende Gehäuseteil geleitet, wobei das Gehäuseteil so ausgebildet ist, dass es quasi eine weitere Pumpenstufe oder eine Rohrverlängerung darstellt, also möglichst wenig Strömungswiderstand bietet. Die im Sensorgehäuse befindliche Sensorik und ggf. Elektronik benötigt vergleichsweise wenig Platz, sodass ein kleiner umlaufender Freiraum in der Regel ausreicht, um diese Bauelemente unterzubringen.

    [0011] Gemäß der Erfindung ist es vorgesehen, die elektrische Energie, die erforderlich ist, um die im Sensorgehäuse angeordneten Sensoren zu betreiben und ggf. die davon ausgehenden elektrischen Signale aufzubereiten, weiterzuverarbeiten und in digitale Daten umzusetzen, unmittelbar innerhalb des Sensorgehäuses zu erzeugen, um damit auf eine Leitung zur Stromversorgung des Sensorgehäuses völlig verzichten zu können. Hierzu ist gemäß der Erfindung im Sensorgehäuse eine Induktionsanordnung vorgesehen, mit der beim Betrieb der Pumpe elektrische Energie erzeugt wird.

    [0012] Dazu weist die Induktionsanordnung mindestens einen im flüssigkeitsführenden Gehäuseteil rotierbar angeordneten Magneten auf und mindestens eine im flüssigkeitsfreien Gehäuseteil angeordnete Induktionsspule auf, derart, dass durch den sich an der Spule vorbei bewegenden Magneten ein Strom in der Spule induziert wird, der für die vorgenannten Zwecke nutzbar ist. Zweckmäßigerweise werden zwei oder mehr Magneten angeordnet sein, die mit ggf. mehreren Induktionsspulen zusammenwirken und somit eine Art elektrischen Generator bilden.

    [0013] Um einen Antrieb für die Magneten zu bilden ist gemäß einer Weiterbildung der Erfindung vorgesehen, innerhalb des flüssigkeitsführenden Gehäuseteils ein Pumpenlaufrad drehbar zu lagern und so anzuordnen, dass es durch den Förderstrom der Pumpe in Rotation versetzt wird. Bei einer solchen Ausbildung ist das Sensorgehäuse quasi als weitere passive Pumpenstufe ausgebildet, der durchströmende Förderstrom treibt das darin angeordnete Pumpenlaufrad mit den daran befestigten Magneten, die dadurch in der oder den Spulen eine Spannung induzieren bzw. einen Strom erzeugen und somit die Sensorik innerhalb des Gehäuses mit Strom versorgen.

    [0014] Gemäß einer Weiterbildung der Erfindung kann ein solches passives Pumpenlaufrad, das innerhalb des Sensorgehäuses frei drehbar angeordnet ist, und an dem mindestens ein Magnet angeordnet ist, auch Teil eines Durchflussmessers bilden, wobei dann innerhalb des flüssigkeitsfreien Gehäuseteils ein induktiver Aufnehmer, beispielsweise eine Spule angeordnet ist, so dass die Drehzahl des Pumpenlaufrads erfasst werden kann und darüber die Durchflussmenge ermittelt werden kann. Es muss nicht zwingend notwendig ein Pumpenlaufrad drehbar angeordnet sein, es kann eine Art Flügel rotierbar angeordnet sein, an dessen Ende ein Magnet sitzt, welcher in Abhängigkeit der Strömungsmenge schneller oder langsamer rotiert.

    [0015] Wenn hingegen das Sensorgehäuse mehr oder weniger integraler Bestandteil der Pumpe ist, also die Pumpe konstruktiv daran angepasst werden kann, dann kann statt eines passiven Laufrads vorteilhaft die Antriebswelle bis in das Sensorgehäuse hinein verlängert werden und dort mit einem Halter versehen werden, welcher den oder die Magneten trägt und der durch die Antriebwelle selbst rotiert wird, auch kann ein aktives Pumpenlaufrad vorgesehen sein, das Magneten trägt.

    [0016] Bei integraler Ausbildung des Sensorgehäuses im Pumpengehäuse kann prinzipiell beispielsweise bei einer mehrstufigen Bohrlochpumpe jede beliebige Pumpenstufe durch entsprechende Modifizierung als Sensorgehäuse ausgebildet werden. So ist es auch denkbar, nicht nur ein, sondern mehrere Sensorgehäuse vorzusehen, um beispielsweise den Druck jeder einzelnen Pumpenstufe überwachen zu können.

    [0017] Da durch die vorgenannten konstruktiven Maßnahmen auf eine elektrische Stromversorgung des Sensorgehäuses von außen verzichtet werden kann, ist es besonders zweckmäßig, auch die aus dem Sensorgehäuse herauszuführenden elektrischen Signale und/oder Sensordaten kabellos herauszuführen.

    [0018] Da zum Motor hin ohnehin ein elektrisches Versorgungskabel liegt, kann dieses durch entsprechende Ausgestaltung in einfacher Weise auch zur Datenübertragung genutzt werden, sei es durch Aufmodulieren des Signals oder durch Vorsehen eines weiteren Leiters. Dann ist es zweckmäßig, die elektrischen Signale der Sensoren bzw. die daraus abgeleiteten Daten vom Sensorgehäuse in das Motorgehäuse zu übertragen. Dies erfolgt erfindungsgemäß mechanisch über die gemeinsame Welle. Hierzu kann im Bereich des Sensorgehäuses ein elektroakustischer Wandler vorgesehen sein, welcher das elektrische Signal in ein Schallsignal, typischerweise ein Ultraschallsignal umwandelt und direkt oder indirekt auf die Welle überträgt. Motorseitig ist dann ein akustoelektrischer Wandler vorzusehen, der dieses Signal wieder in ein elektrisches Signal umwandelt, das dann in geeigneter Weise herausgeführt wird.

    [0019] Innerhalb des Sensorgehäuses können unterschiedlichste Sensoren angeordnet sein, typischerweise ein oder mehrere Temperatursensoren zur Erfassung der Temperatur des Förderstroms und/oder des umgebenden Mediums, ein Vibrationssensor zur Erfassung mechanischer Schwingungen, ein Druck- oder Differenzdrucksensor zur Erfassung des Umgebungsdrucks und/oder des Förderdrucks. Diese Aufzählung ist nur beispielhaft und kann durch beliebige weitere Sensoren ergänzt werden.

    [0020] Besonders vorteilhaft werden zumindest die Sensoren, die nicht zwingend mit der umgebenden oder geförderten Flüssigkeit in Verbindung stehen müssen, wie z. B. der Druck- oder Differenzdrucksensor, in dem flüssigkeitsfreien Gehäuseteil angeordnet. So kann bei geeigneter Ausbildung der Gehäusewand der Temperatursensor durch die Gehäusewand von der Flüssigkeit getrennt angeordnet werden, ebenso der Vibrationssensor, was ersichtlich Vorteile mit sich bringt.

    [0021] Die Erfindung ist nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
    Fig. 1
    in stark vereinfachter schematischer Darstellung die Anordnung einer Bohrlochpumpe in einem Bohrloch,
    Fig. 2
    eine nicht zur Erfindung gehörende erste Ausführung eines Sensorgehäuses im Schnitt,
    Fig. 3
    eine zweite nicht zur Erfindung gehörende Ausführung eines Sensorgehäuses im Schnitt,
    Fig. 4
    eine dritte nicht zur Erfindung gehörende Ausführung eines Sensorgehäuses im Schnitt,
    Fig. 5
    den oberen Teil einer Bohrlochpumpe mit integriertem Sensorgehäuse im Schnitt,
    Fig. 6
    eine alternative Bauform mit im Pumpengehäuse integriertem Sensorgehäuse im Schnitt,
    Fig. 7
    eine erste Ausführung einer Bohrlochpumpe mit mechanischer Signalübertragung vom Sensorgehäuse zum Motorgehäuse in Schnittdarstellung und
    Fig. 8
    eine weitere Ausführung in Darstellung nach Fig. 7


    [0022] Die anhand von Fig. 1 dargestellte Bohrlochpumpe 1 ist in einem Bohrloch 2 abgesenkt. Sie besteht aus einem unteren Motorteil 3, von dem in Fig. 1 nur das Motorgehäuse sichtbar ist, daran schließt sich nach oben eine mehrstufige Kreiselpumpe 4 an, deren Pumpenstufen in Fig. 1 angedeutet sind. Zwischen Motor 3 und Pumpe 4 befinden sich Ansaugöffnungen 5 über welche die im Bohrloch 2 befindliche Flüssigkeit angesaugt, durch die mehrstufige Kreiselpumpe 4 nach oben gefördert und schließlich über eine Druckleitung 6 bis zur Verbrauchsstelle gefördert wird.

    [0023] Der Motor 3 wird über ein Kabel 7 versorgt, das im Bereich der Kreiselpumpe 4 an der Außenseite lang geführt ist und neben der Druckleitung 6 verläuft bis zu einem Versorgungs- und Steuergehäuse 8, über den der Motor stromversorgt wird. Innerhalb des Steuergehäuses 8 kann beispielsweise ein Frequenzumrichter vorgesehen sein, sowie sämtliche Mittel zum Steuern und Überwachen der Pumpe. Zwischen dem oberen Ende der Kreiselpumpe und dem unteren Ende der Druckleitung 6 ist ein Sensorgehäuse 9 angeordnet, dessen Aufbau beispielhaft im Folgenden erläutert ist.

    [0024] Das in Fig. 2 dargestellte Sensorgehäuse 9a ist rotationssymmetrisch aufgebaut, im Außenumfang an den Außenumfang der Pumpenstufen angepasst und weist an seiner Unterseite einen Gewindestutzen 10 auf, der zum Eingliedern in das endseitige Gewinde der Kreiselpumpe 4 vorgesehen ist. Vom Gewindestutzen 10 springt die Gehäusewand radial nach außen vor, sodass sie mit der umfänglichen Gehäusewandung der darunterliegenden Pumpenstufen 4 fluchtet. Zum oberen Ende hin ist die Gehäusewand eingezogen und an der Innenseite mit einen Innengewinde 11 versehen, welches in Steigung und Durchmesser dem Innengewinde am oberen Ende der Pumpe entspricht, sodass die Druckleitung 6 wahlweise direkt an das obere Ende der Pumpe oder unter Eingliederung des Sensorgehäuses 9a angeschlossen werden kann.

    [0025] Das Sensorgehäuse 9a weist einen flüssigkeitsführenden inneren Gehäuseteil 12 und einen flüssigkeitsfreien äußeren Gehäuseteil 13 auf, die durch eine spaltrohrähnliche dünne Wandung 14 voneinander getrennt sind. Der flüssigkeitsführende Gehäuseteil 12 ist im Wesentlichen rohrförmig ausgebildet und setzt den Querschnitt der Druckleitung 6 erweiternd fort, um dann wieder in den Gewindestutzen 10 überzugehen. In dem erweiterten Bereich ist der flüssigkeitsfreie Gehäuseteil 13 angeordnet, der einen umlaufenden ringförmigen Raum bildet, in dem Sensoren, nämlich ein Temperatursensor an der Wandung 14 anliegend zur Erfassung der Temperatur des Fördermediums, ein Drucksensor, die Wandung 14 durchdringend zur Erfassung des Drucks der Förderflüssigkeit, ein Drucksensor die Außenwandung durchdringend zur Erfassung des Umgebungsdrucks und ein Vibrationssensor angeordnet sind. Weiterhin ist innerhalb dieses flüssigkeitsfreien Gehäuseteils 13 die zur Aufbereitung der von den Sensoren abgegebenen elektrischen Signale erforderliche Elektronik vorgesehen. Die Stromversorgung der innerhalb des Sensorgehäuses 9a befindlichen Sensorik erfolgt über ein Kabel 15, über welches auch die elektrischen Signale der Sensoren herausgeführt werden. Das Kabel 15 kann mit dem Kabel 7 zusammengeführt sein oder parallel dazu laufen.

    [0026] Das anhand der Fig. 3 dargestellte Sensorgehäuse 9b weist die gleiche Außenkontur wie das Sensorgehäuse 9a auf, lagert jedoch in dem inneren flüssigkeitsführenden Teil 12 ein passives, d.h. nicht angetriebenes Pumpenlaufrad 16, das durch die durchströmende Förderflüssigkeit angetrieben, d.h. in Rotation versetzt wird. An der Unterseite des Pumpenlaufrads 16 sind Magneten 17 angeordnet, die mit geringem Abstand zur Wandung 1 laufen. Unmittelbar benachbart innerhalb des flüssigkeitsfreien Gehäuseteils 13 sind an der Wandung 14 anliegend Spulen 18 vorgesehen, in denen beim Vorbeilaufen der Magneten 16 ein Strom erzeugt wird, welcher für die elektrische Stromversorgung der im Sensorgehäuse 9b befindlichen Sensoren und Elektronik dient. Die Sensorsignale bzw. die daraus ermittelten Daten werden entweder über ein Datenkabel oder aber induktiv in das dort am Gehäuse 9b geführte Kabel 7 eingespeist.

    [0027] Bei der anhand von Fig. 4 dargestellten Ausführungsvariante des Sensorgehäuses 9c ist anstelle des Pumpenlaufrads 16 ein zweiarmiger Flügel 19 vorgesehen, der an seinen Enden Magneten 17 trägt, die in gleicher Weise wie anhand von Fig. 3 vorbeschrieben zur Stromerzeugung dienen. Die Flügel 19 sind mit ihren Endflächen schräg gestellt, sodass sie bei Durchströmung ebenfalls in Rotation versetzt werden, jedoch einen gegenüber dem Laufrad 16 deutlich geringerem Strömungswiderstand aufweisen.

    [0028] Anhand der Fig. 5-8 sind Ausführungsvarianten beschrieben, bei welchen das Sensorgehäuse integraler Bestandteil des Pumpengehäuses ist bzw. unlösbar mit dem Pumpengehäuse verbunden ist. Bei der Ausführung gemäß Fig. 5 ist die Antriebswelle für die Laufräder der Kreiselpumpe 4 nach oben verlängert und trägt am oberen Ende ein Pumpenlaufrad 16, welches aufgrund des Antriebs durch die Welle 20 ein aktives Laufrad ist. Es ist jedoch innerhalb eines Sensorgehäuses 9d eingegliedert, dessen Wandung 14 den flüssigkeitsfreien Gehäuseteil 13 vom übrigen Pumpengehäuse trennt. An dem Pumpenlaufrad 16 sind an der Unterseite Magneten 17 angeordnet, die in gleicher Weise wie anhand von Fig. 3 vorbeschrieben mit entsprechenden Spulen 18 im flüssigkeitsfreien Gehäuseteil 13 zusammenwirken und für die Stromversorgung innerhalb des Sensorgehäuses 9d sorgen. Das Sensorgehäuse 9d kann auch durch Modifizierung einer beliebigen Pumpenstufe gebildet sein. Es können somit auch mehrere Sensorgehäuse 9d vorgesehen sein, wenn z. B. mehrere Pumpenstufen überwacht werden sollen.

    [0029] Bei der Ausführungsvariante gemäß Fig. 6 ist das Sensorgehäuse 9e ebenfalls fest mit der letzten Stufe der Kreiselpumpe 4 verbunden, jedoch ist dort das innerhalb des Sensorgehäuses 9e gelagerte Pumpenlaufrad 16 frei drehbar, also als passives Pumpenlaufrad ähnlich der Anordnung gemäß Fig. 3 ausgebildet. Auch hier erfolgt die Stromversorgung der Sensorik über Magnete 17 an der Unterseite des Pumpenlaufrads 16, welche mit innerhalb des flüssigkeitsfreien Gehäuseteils 13 angeordneten Spulen zusammenwirken.

    [0030] In der Darstellung gemäß Fig. 7 ist links das obere Ende einer mehrstufigen Kreiselpumpe 4 dargestellt, dessen unteres Ende an den Motorenteil 3 anschließt, der rechts dargestellt ist. Durch das Gehäuseteil führt eine gemeinsame Welle 20, die sich im Motorenteil 3 fortsetzt. Das am oberen Ende der Pumpe 4 angebrachte Sensorgehäuse 9f entspricht im Wesentlichen dem anhand von Fig. 3 dorgstellten und erläuterten. Allerdings erfolgt hier eine Signalübertragung aus dem flüssigkeitsfreien Gehäuseteil 13 heraus durch die Flüssigkeit hindurch bis zur Welle 20 durch mechanische Wellen. Hierzu ist innerhalb des flüssigkeitsfreien Gehäuseteils 13 des Sensorgehäuses 9f ein elektroakustischer Wandler vorgesehen, welcher die Sensorsignale in Ultraschallsignale umwandelt, die über die Flüssigkeit bis auf die Welle 20 übertragen werden. Am motorseitigen Ende der Welle 20 ist ein akustoelektrischer Wandler 21 vorgesehen, der diese mechanischen Schwingungen wieder in ein elektrisches Signal umwandelt, das dann über das Versorgungskabel 7 des Motors zum Versorgungs- und Steuergehäuse 8 geleitet wird.

    [0031] Bei der anhand von Fig. 8 dorgstellten Ausführungsvariante ist die Welle 20 bis in das Sensorgehäuse 9g geführt, auf dem ein Pumpenlaufrad 16 der vorbeschriebenen Ausbildung gemäß Fig. 3.sitzt. Dieses Pumpenlaufrad 16 wird somit aktiv durch die Welle 20 angetrieben. Zur Übertragung der Ultraschallschwingungen genügt es hier, die Wandung 14 oder ein anderes Gehäuseteil in Schwingung zu versetzen, die sich aufgrund der Körperschallausbreitung auf die Welle 20 übertragen.

    Bezugszeichenliste



    [0032] 
    1
    - Bohrlochpumpe
    2
    - Bohrloch
    3
    - Motorteil
    4
    - Kreiselpumpe
    5
    - Ansaugöffnungen
    6
    - Druckleitung
    7
    - Kabel
    8
    - Versorgungs- und Steuergehäuse
    9
    - Sensorgehäuse in Fig. 1
    9a
    - Sensorgehäuse in Fig. 2
    9b
    - Sensorgehäuse in Fig. 3
    9c
    - Sensorgehäuse in Fig. 4
    9d
    - Sensorgehäuse in Fig. 5
    9e
    - Sensorgehäuse in Fig. 6
    9f
    - Sensorgehäuse in Fig. 7
    9g
    - Sensorgehäuse in Fig. 8
    10
    - Gewindestutzen
    11
    - Innengewinde
    12
    - flüssigkeitsführender Gehäuseteil
    13
    - flüssigkeitsfreier Gehäuseteil
    14
    - Wandung
    15
    - Kabel
    16
    - Pumpenlaufrad
    17
    - Magneten
    18
    - Spulen
    19
    - Flügel
    20
    - Welle
    21
    - akustoelektrischer Wandler



    Ansprüche

    1. Bohrlochpumpe(1) mit einem elektrischen Antriebsmotor (3) und einer davon angetriebenen ein- oder mehrstufigen Kreiselpumpe (4) mit einem oder mehreren Sensoren, die in einem flüssigkeitsdurchströmten und flüssigkeitsumgebenen Sensorgehäuse (9) angeordnet sind, welches einen flüssigkeitsführenden Gehäuseteil (12) und einen flüssigkeitsfreien Gehäuseteil (13) aufweist, die durch eine Gehäusewand (14) voneinander getrennt sind, welches zwischen Motor (3) und Pumpe (4), am Ende der Pumpe (4) oder innerhalb der Pumpe angeordnet ist, wobei eine Induktionsanordnung (17,18) im Sensorgehäuse (9) vorgesehen ist, mit der beim Betrieb der Pumpe (4) elektrische Energie erzeugt wird, dadurch gekennzeichnet, dass die Induktionsanordnung (17, 18) mindestens einen im flüssigkeitsführenden Gehäuseteil (12) rotierbar angeordneten Magneten (17) aufweist und dass in dem flüssigkeitsfreien Gehäuseteil mindestens eine Induktionsspule (18) angeordnet ist und dass Mittel (20, 21) zur Signal- und/oder Datenübertragung vom Sensorgehäuse (9) zum Motorgehäuse vorgesehen sind, wobei die Signal- und/oder Datenübertragung mechanisch durch die Welle (20) erfolgt und hierzu sensorgehäuseseitig ein die Welle (20) beaufschlagender elektroakustischer Wandler und motorseitig ein akustoelektrischer Wandler vorgesehen ist.
     
    2. Bohrlochpumpe(1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Sensorgehäuse (9) einen Temperatursensor, einen Vibrationssensor, einen Durchflusssensor und/oder einen Druck- oder Differenzdrucksensor aufweist.
     


    Claims

    1. A bore-hole pump (1) with an electrical drive motor (3) and with a single-stage or multi-stage centrifugal pump (4) which is driven by this motor and which has one or more sensors, said sensors are arranged in a sensor housing (9) through which fluid flows, which is surrounded by fluid and which comprises a fluid-leading housing part (12) and a fluid-free housing part (13), said housing parts being separated from one another by a housing wall (14) which is arranged between the motor (3) and the pump (4), at the end of the pump (4) or within the pump (4), wherein an induction arrangement (17, 18) is provided in the sensor housing (9), with which arrangement electrical energy is produced on operation of the pump (4), characterised in that the induction arrangement (17, 18) comprises at least one magnet (17) which is rotatably arranged in the fluid-leading housing part (12), and that at least one induction coil (18) is arranged in the fluid-free housing part and that means (20, 21) for the signal transmission and/or data transmission from the sensor housing (9) to the motor housing are provided, wherein the signal transmission and/or data transmission is effected mechanically by the shaft (20) and, for this, an electro-acoustic transducer acting upon the shaft (20) is provided at the sensor housing side and an acousto-electrical transducer (21) is provided at the motor side.
     
    2. A bore-hole pump (1) according to one of the preceding claims, characterised in that the sensor housing (9) comprises a temperature sensor, a vibration sensor, a flow sensor and/or a pressure sensor or differential pressure sensor.
     


    Revendications

    1. Pompe de forage (1) comprenant un moteur d'entraînement électrique (3) et une pompe centrifuge (4) à un ou plusieurs étages entraînée par ce moteur et équipée d'un ou de plusieurs capteur(s), qui est ou sont disposé(s) dans un carter de capteur (9) traversé par le liquide et entouré par le liquide, qui présente une partie de carter (12) qui conduit le liquide et une partie de carter libre de liquide (13), lesquelles sont séparées l'une de l'autre par une paroi (14) du carter, lequel carter est disposé entre le moteur (3) et la pompe (4), à l'extrémité de la pompe (4) ou à l'intérieur de la pompe (4), un dispositif à induction (17, 18) étant prévu dans le carter de capteur (9) au moyen duquel de l'énergie électrique est produite pendant le fonctionnement de la pompe (4), caractérisée en ce que le dispositif à induction (17, 18) présente au moins un aimant (17) disposé de façon rotative dans la partie de carter (12) qui conduit le liquide, et en ce qu'au moins une bobine d'induction (18) est disposée dans la partie de carter libre de liquid et en ce qu'il est prévu des moyens (20, 21) pour transmettre des signaux et/ou des données du carter de capteur (9) au carter de moteur, la transmission de signaux et/ou de données s'effectuant par voie mécanique à travers l'arbre (20) et qu'il est prévu à cet effet, sur le côté carter de capteur, un convertisseur électroacoustique qui agit sur l'arbre (20) et, sur le côté moteur, un convertisseur acoustico-électrique (21).
     
    2. Pompe de forage (1) selon l'une des revendecations précédentes, caractérisée en ce que le carter de capteur (9) comporte un capteur de température, un capteur de vibration, un débitmètre et/ou un capteur de pression ou de pression différentielle.
     




    Zeichnung





























    Angeführte Verweise

    IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



    Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

    In der Beschreibung aufgeführte Patentdokumente