

(11) EP 2 075 441 A8

(12) CORRECTED EUROPEAN PATENT APPLICATION

(15) Correction information:
Corrected version no 1 (W1 A1)
Corrections, see
Bibliography INID code(s) 54

(51) Int Cl.:
F02D 11/10 (2006.01) **F02D 9/10 (2006.01)**

(48) Corrigendum issued on:
30.09.2009 Bulletin 2009/40

(43) Date of publication:
01.07.2009 Bulletin 2009/27

(21) Application number: **07425753.6**

(22) Date of filing: **28.11.2007**

(84) Designated Contracting States:
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
 HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE
 SI SK TR**
 Designated Extension States:
AL BA HR MK RS

- **Giuliani, Gabriele**
40054 Budrio (IT)
- **Marconi, Mario**
40124 Bologna (IT)
- **Peciarolo, Alessandro**
40133 Bologna (IT)

(71) Applicant: **Magneti Marelli S.p.A.**
Corbetta (MI) (IT)

(74) Representative: **Jorio, Paolo et al**
STUDIO TORTA
Via Viotti 9
10121 Torino (IT)

(72) Inventors:

- **Sciuto, Marcello**
40017 S. Giovanni in Persiceto (IT)

(54) **Method of manufacturing and controlling a butterfly valve for an internal combustion engine**

(57) A method of manufacturing and controlling a butterfly valve (1) for an internal combustion engine; the manufacturing and control method includes the steps of: establishing a maximum gaseous flow rate value (V_{max}) which may flow through the feeding pipe (4) when the butterfly plate (5) is in the closing position; determining a conventional closing position at which the gaseous flow rate which flows through the feeding pipe (4) is essentially equal to the maximum gaseous flow rate value (V_{max}); driving an actuator device so as not to normally pass the conventional closing position; and dimensioning the position of a catch element (34), so that when a rotational shaft (6) abuts against the catch element (34) the gaseous flow rate which flows through the feeding pipe (4) is essentially lower than the maximum gaseous flow rate value (V_{max}).

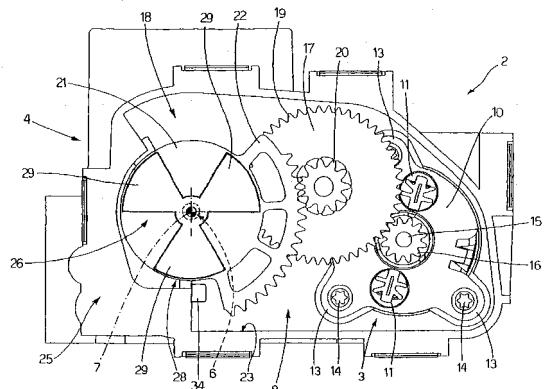


Fig.2