(19)
(11) EP 2 076 481 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Claims EN

(48) Corrigendum issued on:
06.07.2011 Bulletin 2011/27

(45) Mention of the grant of the patent:
09.03.2011 Bulletin 2011/10

(21) Application number: 07816228.6

(22) Date of filing: 02.11.2007
(51) International Patent Classification (IPC): 
C07C 31/135(2006.01)
C11B 9/00(2006.01)
(86) International application number:
PCT/CH2007/000545
(87) International publication number:
WO 2008/052379 (08.05.2008 Gazette 2008/19)

(54)

ORGANIC COMPOUNDS

ORGANISCHE VERBINDUNGEN

COMPOSÉS ORGANIQUES


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30) Priority: 03.11.2006 GB 0621805

(43) Date of publication of application:
08.07.2009 Bulletin 2009/28

(73) Proprietor: Givaudan SA
1214 Vernier (CH)

(72) Inventor:
  • BAJGROWICZ, Jerzy, A.
    CH-8053 Zürich (CH)

(74) Representative: Sievert, Claudia 
Givaudan Schweiz AG Global Patents Überlandstrasse 138
CH-8600 Dübendorf
CH-8600 Dübendorf (CH)


(56) References cited: : 
US-A- 5 929 291
   
  • BAJGROWICZ J A ET AL: "Synthesis and Structure Elucidation of a New Potent Sandalwood-Oil Substitute" HELVETICA CHIMICA ACTA, VERLAG HELVETICA CHIMICA ACTA. BASEL, CH, vol. 81, 1998, pages 1349-1358, XP002362562 ISSN: 0018-019X
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention refers to a novel class of 2,2,3-trimethylcyclopentane derivatives possessing an exceptional natural sandalwood oil odour profile. In addition the present invention refers to fragrance compositions comprising such derivatives.

[0002] Sandalwood oils, in particular East India sandalwood oil, are among the most appreciated but unfortunately also most scarce perfumery raw materials. As a result, effective synthetic substitutes that will give the same natural odour, particularly for use in fine fragrances, have been sought for more than 50 years.

[0003] Compounds based on a saturated ring system, such as 3-methyl-5-(2,2,3-trimethyl-cyclopentyl)pent-3-en-2-ol (A), are described, for example, in EP 0 466 019. According to the description, the odour notes are characterised as being fruity, flowery, with woody (in particular) side notes. According to Ernst-Joachim Brunke et al. (in "Fragrance Chemistry, the Science of the Sense of Smell"; Theimer E.T.; Ed., Academic Press, New York, 1982, pages 424 - 429) saturation of the double bond in the cyclopentene system of 2-methyl-4-(2,2,3-trimethylcyclopent-3-enyl)butan-1-ol (compound B wherein R = H) results in a weak dry-woody smell.



[0004] Brunke also observed that the loss of sandalwood odor is detectable after hydrogenation of 3-methyl-5-(2,2,3-trimethylcyclopent-3-enyl)pentan-2-ol (compound B wherein R is methyl) and of 4-methyl-6-(2,2,3-trimethylcyclopent-3-enyl)hexan-3-ol (compound B wherein R is ethyl).



[0005] Brunke finally stated that to get the fragrance of sandalwood a double bond at C-3 in the ring is necessary, which however can be replaced by a cyclopropane ring, an ether group or an environment with steric hindrance. With other words, the loss of the structural feature that enhances the electronic density in the cyclopropane ring system, which can be either a carbon-carbon double bond or an isolectronic cyclopropane ring is therefore most likely to bring about a loss or reduction of their typical sandalwood odour notes.

[0006] Surprisingly, we have now found that certain 2,2,3-trimethylcyclopentane derivatives, i.e. compounds based on a saturated cyclopentane system, possess an exceptionally natural sandalwood oil odour.

[0007] Accordingly, the present invention refers in one of its aspects to compounds of formula 1

wherein
R1 is methyl or ethyl; and
R2 is hydrogen, methyl or ethyl.

[0008] The compounds of formula 1 may comprise several chiral centres and as such may exist as a mixture of stereoisomers, or they may be resolved as isomerically pure forms. Resolving stereoisomers adds to the complexity of manufacture and purification of these compounds, and so it is preferred to use the compounds as mixtures of their stereoisomers simply for economic reasons. However, if it is desired to prepare individual stereoisomers, this may be achieved according to methods known in the art, e.g. preparative HPLC and GC, crystallization or by departing from chiral starting materials, e.g. starting from enantiomerically pure or enriched raw materials such as terpenoids, and/or by applying stereoselective synthesis.

[0009] Thus, the present invention refers in a further aspect to compounds of formula 1 enriched in either a compound of formula 1R or 1S, preferably in the ratio from about 1:9 to about 9:1 (R/S), e.g. from about 2:3, or about 2:7 to about 6:1, or about 11:1, or pure enantiomers of compounds of formula 1, namely compounds of formula 1R or 1S

wherein R1 and R2 have the same meaning as given for formula 1 above.

[0010] Particularly preferred compounds of formula 1 are [1-ethyl-2-[(2,2,3-trimethylcyclopentyl)methyl]cyclopropyl]methanol, [1-methyl-2-[(2,2,3-trimethylcyclopentyl)methyl]cyclopropyl]methanol and 1-[1-methyl-2-[(2,2,3-trimethylcyclopentyl)methyl]cyclopropyl]ethanol.

[0011] The compounds according to the present invention may be used alone or in combination with known odorant molecules selected from the extensive range of natural and synthetic molecules currently available, such as essential oils and extracts, alcohols, aldehydes and ketones, ethers and acetals, esters and lactones, macrocycles and heterocycles, and/or in admixture with one or more ingredients or excipients conventionally used in conjunction with odorants in fragrance compositions, for example, carrier materials, and other auxiliary agents commonly used in the art.

[0012] The following list comprises examples of known odorant molecules, which may be combined with the compounds of the present invention:
  • essential oils and extracts, e.g. tree moss absolute, basil oil, fruit oils such as bergamot oil and mandarine oil, myrtle oil, palmarose oil, patchouli oil, petitgrain oil, jasmine oil, rose oil, sandalwood oil, wormwood oil, lavender oil or ylang-ylang oil;
  • alcohols, e.g. cinnamic alcohol, cis-3-hexenol, citronellol, Ebanol® (3-methyl-5-(2,2,3-trimethyl-3-cyclopenten-1-yl)-4-penten-2-ol), eugenol, farnesol, geraniol, Super Muguet (6-ethyl-3-methyl-6-octen-1-ol), linalool, menthol, nerol, phenylethyl alcohol, rhodinol, Sandalore® (5-(2,2,3-trimethyl-3-cyclopentenyl)-3-methylpentan-2-ol), terpineol or Timberol® (1-(2,2,6-trimethylcyclohexyl)hexan-3-ol);
  • aldehydes and ketones, e.g. anisaldehyde, α-amylcinnamaldehyde, Georgywood (1-(1,2,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-yl)ethanone), hydroxycitronellal, Iso E Super® (1-(2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-yl)ethanone), Isoraldeine® (4-(2,6,6-trimethyl-2-cyclohexenyl)-3-methyl-3-buten-2-one), Hedione® (methyl (3-oxo-2-pentylcyclopentyl)acetate), Lilial® (3-(4-tert-butylphenyl)-2-methylpropanal), maltol, methyl cedryl ketone, methylionone, verbenone or vanillin;
  • ethers and acetals, e.g. Ambrox® (3a,6,6,9a-tetramethyldodecahydronaphtho[2,1-b]furan), geranyl methyl ether, rose oxide or Spirambrene (2,2,3',7',7'-pentamethylspiro(1,3-dioxan-5,2'-norcarane));
  • esters and lactones, e.g. benzyl acetate, cedryl acetate, γ-decalactone, Helvetolide® (2-[1-(3,3-dimethylcyclohexyl)ethoxy]-2-methylpropan-1-ol propanoate), γ-undecalactone or vetivenyl acetate;
  • macrocycles, e.g. ambrettolide, ethylene brassylate or Exaltolide® (oxacyclohexadecan-2-one);
  • heterocycles, e.g. isobutylquinoline.


[0013] The compounds of the present invention may be used in a broad range of fragrance applications, e.g. in any field of fine and functional perfumery, such as perfumes, household products, laundry products, body care products and cosmetics. The compounds can be employed in widely varying amounts, depending upon the specific application and on the nature and quantity of other odorant ingredients. The proportion is typically from 0.001 to 20 weight percent of the application. In one embodiment, compounds of the present invention may be employed in a fabric softener in an amount of from 0.001 to 0.05 weight percent. In another embodiment, compounds of the present invention may be used in an alcoholic solution in amounts of from 0.1 to 30 weight percent, more preferably between 5 and 20 weight percent. However, these values are given only by way of example, since the experienced perfumer may also achieve effects or may create novel accords with lower or higher concentrations, e.g., up to about 50 weight percent based on the fragrance composition.

[0014] The compounds of the present invention may be employed into the fragrance application simply by directly mixing the fragrance composition with the fragrance application, or they may, in an earlier step, be entrapped with an entrapment material such as polymers, capsules, microcapsules and nanocapsules, liposomes, film formers, absorbents such as carbon or zeolites, cyclic oligosaccharides and mixtures thereof, or they may be chemically bonded to substrates, which are adapted to release the fragrance molecule upon application of an external stimulus such as light, enzyme, or the like, and then mixed with the application.

[0015] Thus, the invention additionally provides a method of manufacturing a fragrance application and consumer products resulting therefrom. The method comprises the incorporation therein of a compound of formula 1 as a fragrance ingredient, either by directly admixing the compound to the application or by admixing a fragrance composition comprising a compound of formula 1, which may then be mixed to a fragrance application, using conventional techniques and methods. Through the addition of an olfactorily acceptable amount of a compound of the present invention, the odor notes of a fragrance application will be improved, enhanced or modified.

[0016] Thus, the invention furthermore provides a method for improving, enhancing or modifying a fragrance application through the addition thereto of an olfactory acceptable amount of a compound of formula 1, or a mixture thereof.

[0017] The invention also provides a fragrance application comprising:
  1. a) as odorant a compound of formula 1 or a mixture thereof; and
  2. b) a consumer product base.


[0018] As used herein, "fragrance application" means any products, such as fine fragrances, e.g. eaux de perfume and eaux de toilette; household products, e.g. detergents for dishwasher, surface cleaner, air freshener; laundry products, e.g. softener, bleach, detergent; body care products, e.g. after-shave lotion, shampoo, shower gel, shower and bath salt, hygiene product; and cosmetics, e.g. deodorants, vanishing creams, comprising an odorant. This list of products is given by way of illustration and is not to be regarded as being in any way limiting.

[0019] As used herein, "fragrance composition" means any composition comprising at least one odorant molecule and a diluent conventionally used in conjunction with odorants in fragrance compositions, such as dipropylenglycol (DPG), isopropylmyristate (IMP), triethylcitrate (TEC) and alcohol (e.g. ethanol).

[0020] The compounds of the present invention may be prepared according to Scheme 1, starting from α-campholenic aldehyde of any enantiomer ratio (pure (R) or (S) or any mixture of both enantiomers) via the corresponding dihydroanalogue (2,2,3-trimethylcyclopentylacetaldehyde; 2), as described for example in EP 0 466 019. The latter may be condensed with an aldehyde or ketone to give the α, β-unsaturated aldehyde or ketone 3. Reduction of 3 to the corresponding alcohols 4, followed by a cyclopropanation (e.g. using the Simmons-Smith reaction or the Yamamoto method) affords [2-[(2,2,3-trimethylcyclopentyl)methyl]cyclopropyl]methanols 1 as mixtures of stereoisomers. They may be separated or enriched in one or several stereoisomers by methodologies known in the art.



[0021] The invention is now further described with reference to the following non-limiting examples. These examples are for the purpose of illustration only and it is understood that variations and modifications can be made by one skilled in the art.

[0022] All products described in the Examples were obtained starting from commercially available qualities of α-campholenic aldehyde of approximately 9:1 or 2:3 (R/S) enantiomer ratios. They were transformed into the corresponding enantiomeric mixtures of known dihydro-α-campholenic aldehyde (2). Flash chromatography: Merck silica gel 60 (230 - 400 mesh).

[0023] The reported NMR spectra were measured in CDCl3; chemical shifts (δ) are reported in ppm downfield from TMS; coupling constants J in Hz.

Example 1: [1-Ethyl-2-[[(1R)-2,2,3-trimethylcyclopentyl]methyl]cyclopropyl]methanol (1a); e. e. (enantiomeric excess) = 80%


a) 2-Ethyl-4-[(1R)-2,2,3-trimethylcyclopentyl]but-2-enal (3a)



[0024] Sodium methylate (0.75 g, 14 mmol) and butanal (21.6 g, 0.30 mol; dropwise during 2 h) were successively added to a stirred solution of (1R)-2,2,3-trimethylcyclopentyl-acetaldehyde (2, e. e. = 80%; 25.0 g, 0.16 mol) in methanol (100 ml) at 5 - 10°C. After additional 18 h stirring at room temperature, acetic acid (3 ml) was added and the reaction mixture was extracted with MTBE (200 ml). The extract was washed with ice-cold brine (5 x 150 ml), dried (MgSO4), concentrated in vacuo and the residue was distilled under reduced pressure to yield unreacted 2 (14 g) and 2-ethyl-4-[(1R)-2,2,3-trimethylcyclopentyl]but-2-enal (3a; 95°C/0.08 mbar) which was further purified by flash chromatography (MTBE/hexane 1:15; 8.7 g, 29% yield, colourless liquid; GC/MS: 2 isomeric pairs of enantiomers 3.5 + 91 %).

[0025] Main isomer:1H NMR: δ 9.35 (s, 1H), 6.45 (t, J= 7.6, 1H), 2.46 (ddd, J= 14.4, 7.4, 3.9, 1H), 2.27 (q, J = 7.6, 2H), 2.12 (ddd, J = 14.7, 10.6, 7.6, 1 H), 1.87-1.72 (m, 2H), 1.60-1.48 (m, 2H), 1.26-1.19 (m, 2H), 0.98 (t, J = 7.6, 3H), 0.93 (s, 3H), 0.86 (d, J = 6.8, 3H), 0.59 (s, 3H). 13C NMR: δ 195.1 (d), 154.9 (d), 145.0 (s), 50.5 (d), 44.9 (d), 42.6 (s), 30.0 (t), 29.9 (t), 28.2 (t), 25.6 (q), 17.3 (t), 14.5 (q), 13.9 (q), 13.3 (q). MS: 208(M+, 1), 193(2), 165(3), 123(27), 111(23), 110(19), 109(88), 98(51), 95(42), 81(16), 69(100), 67(20), 55(10), 41(49).

b) 2-Ethyl-4-[(1R)-2,2,3-trimethylcyclopentyl]but-2-en-1-ol (4a)



[0026] 2-Ethyl-4-[(1R)-2,2,3-trimethylcyclopentyl]but-2-enal (3a; 8.5 g, 41 mmol) was added dropwise within 10 min. to a stirred suspension of sodium borohydride (1.9 g, 50 mmol) in ethanol (100 ml) at 5 - 10°C. After additional 2 h stirring at room temperature, the reaction mixture was poured into an ice-cold 0.1 N HCl solution and extracted with MTBE (200 ml). The extract was washed with ice-cold brine (2 x 100 ml), dried (MgSO4), concentrated in vacuo and the residue was distilled under reduced pressure to give 2-ethyl-4-[(1R)-2,2,3-trimethylcyclopentyl]but-2-en-1-ol (4a) which was further purified by flash chromatography (MTBE/hexane 1:5; 5.8 g, 68% yield, colourless liquid; GC/MS: 2 isomeric pairs of enantiomers 0.5 + 88.5%).

[0027] Main isomer: 1H NMR: δ 7.39 (t, J = 7.2, 1H), 4.04 (q, J = 1.0, 1H), 2.16 (m, 1H), 2.13 (q, J = 7.6, 2H), 1.84-1.68 (m, 3H), 1.55-1.36 (m, 3H), 1.22-1.11 (m, 2H), 1.01 (t, J = 7.6, 3H), 0.89 (s, 3H), 0.83 (d, J = 6.8, 3H), 0.54 (s, 3H). 13C NMR: δ 140.2 (s), 126.4 (d), 67.0 (t), 51.3 (d), 45.1 (d), 42.3 (s), 30.0 (t), 28.3 (2t), 25.7 (q), 21.0 (t), 14.4 (q), 13.9 (q), 13.2 (q). MS: 210(M+, 2), 195(3), 177(5), 123(12), 111(34), 110(29), 109(35), 95(45), 82(19), 69(100), 67(18), 57(28), 55(49), 43(17), 41(36).

c) 1-Ethyl-2-[[(1R)-2,2,3-trimethylcyclopentyl]methyl]cyclopropyl]methanol (1a)



[0028] Dibromomethane (2 ml) and acetyl bromide (1 drop) were added to a suspension of ground mixture of zinc (6.5 g, 0.10 mol) and cuprous bromide (0.86 g, 6 mmol) in diethyl ether (40 ml). The reaction was started by heating the flask with a heat-gun. After 10 min., a solution of 2-ethyl-4-[(1R)-2,2,3-trimethylcyclopentyl]but-2-en-1-ol (4a; 5.0 g, 24 mmol) in diethyl ether (50 ml) was added, followed by more dibromomethane (total 17.4 g, 0.10 mol; during 6 h) dissolved in the same solvent (30 ml). After additional 18 h stirring at room temperature, the reaction mixture was diluted with MTBE (100ml) and filtered over Celite®. The filtrate was washed with cold 1 N HCl (50 ml) and brine (2 x 100 ml), dried (MgSO4), concentrated in vacuo and the residue (4.8 g) was purified by flash chromatography (MTBE/hexane 1:5) to afford 1-ethyl-2-[[(1R)-2,2,3-trimethylcyclopentyl]methyl]cyclopropyl]methanol (1a, 2.9 g, 54% yield, colourless liquid; GC/MS: 2 main diastereomeric pairs of enantiomers 49.5 + 47.5%).

[0029] Main diastereoisomer (first eluted (GC)): 1H NMR: δ 3.43 (d, JAB = 11.1, 1H), 3.31 (d, JAB = 11.1, 1H). 1.96-1.82 (m, 1H), 1.81-1.70 (m, 1H), 1.62-1.29 (m, 5H), 1.28-1.11 (m, 4H), 0.99 (t, J = 7.4, 3H), 0.85 (s, 3H), 0.83 (d, J = 6.8, 3H), 0.71-0.59 (m, 1H), 0.50 (s, 3H), 0.43 (dd, J = 9.0, 4.5, 1 H), -0.08 (dd, J = 5.7, 4.5, 1 H). 13C NMR: δ 69.3 (t), 51.3 (d), 45.2 (d), 42.2 (s), 30.1 (t), 29.1 (t), 28.3 (t), 27.9 (s), 25.6 (q), 22.1 (d), 22.0 (t), 15.6 (t), 14.4 (q), 13.9 (q), 11.2 (q). MS: 224(M+, <1), 209(2), 191(4), 137(23), 123(25), 111(28),110(22), 109(55), 96(22), 95(63), 83(26), 81(36), 72(27), 70(100), 69(93), 67(33), 53(14), 55(63), 43(29), 41(58).

[0030] Second major diastereoisomer: 1H NMR: δ 3.49 (d, JAB = 11.1, 1 H), 3.22 (d, JAB= 11.1, 1H), 1.96-1.82 (m, 1H), 1.81-1.70 (m, 1H), 1.62-1.29 (m, 5H), 1.28-1.11 (m, 3H), 1.03 (ddd, J = 13.3, 11.0, 7.1, 1H), 0.99 (t, J = 7.4, 3H), 0.85 (s, 3H), 0.83 (d, J = 6.8, 3H), 0.71-0.59 (m, 1H), 0.49 (s, 3H), 0.48 (dd, J = 9.0, 4.5, 1H), 0.00 (dd, J = 5.8, 4.5, 1 H). 13C NMR: δ 69.4 (t), 51.8 (d), 45.0 (d), 42.4 (s), 30.2 (t), 29.6 (t), 28.4 (t), 27.0 (s), 25.6 (q), 22.3 (d), 21.4 (t), 16.1 (t), 14.3 (q), 13.9 (q), 11.3 (q). MS: 224(M+, 1), 209(3), 191(4), 137(23), 123(26), 111(28), 110(22), 109(53), 96(24), 95(61), 83(27), 81(35), 72(27), 70(100), 69(93), 67(33), 53(14), 55(62), 43(28), 41(57).

[0031] Odour description: sandalwood, natural, dry.

Example 2: [1-Methyl-2-[[(1R)-2,2,3-trimethylcyclopentyl]methyl]cyclopropyl]methanol (1b); e. e. = 80%



[0032] Prepared starting from known 2-methyl-4-(2,2,3-trimethylcyclopentyl)but-2-en-1-ol (4b) according to the experimental procedure described in Example 1c as colourless liquid; GC/MS: 2 main diastereomeric pairs of enantiomers 47 + 50%.

[0033] 1H NMR: δ 3.35 (d, JAB = 10.9, 1H), 3.34 (d, JAB = 9.9, 1H), 3.32 (d, JAB = 9.9, 1 H), 3.30 (d, JAB = 10.9, 1H), 1.96-1.69 (m, 6H), 1.57-1.37(m, 5H), 1.29-1.05 (m, 7H), 1.14 (s, 3H), 1.13 (s, 3H), 0.86 (2s, 6H), 0.83 (2d, J = 6.8, 6H), 0.67 (m, 2H), 0.55 (m, 2H), 0.50 (s, 3H), 0.49 (s, 3H), 0.00 (dd, J = 5.3, 4.5, 1 H), -0.08 (dd, J = 5.6, 4.2, 1 H). 13C NMR: δ 72.7 (t), 72.6 (t), 51.8 (d), 51.3 (d), 45.1 (d), 45.0 (d), 42.4 (s), 42.1 (s), 30.2 (t), 30.1 (t), 30.0 (t), 29.3 (t), 28.3 (2t), 25.7 (q), 25.6 (q), 22.7 (s), 21.8 (s), 21.4 (d), 21.1 (d), 17.1 (t), 16.5 (t), 15.7 (q), 15.1 (q), 14.4 (q), 14.3 (q), 13.9 (2q). MS: main diastereoisomer (second eluted (GC)): 210(M+, 1), 195(4), 177(4), 153(18), 137(30), 123(26), 111(32), 110(23), 109(56), 96(24), 95(58), 83(28), 82(25), 81(40), 69(100), 67(30), 58(33), 57(32), 55(58), 43(33), 41(57); second major diastereoisomer: 210(M+. 1), 195(5), 177(5), 153(17), 137(29), 123(25), 111(32), 110(24), 109(58), 96(23), 95(59), 83(28), 82(23), 81(41), 69(100), 67(30), 58(33), 57(31), 55(59), 43(34), 41(58).

[0034] Odour description: sandalwood, creamy, very natural, reminiscence of Atlas cedarwood.

Example 3: 1-[1-Methyl-2-[[(1S)-2,2,3-trimethylcyclopentyl]methyl]cyclopropyl]ethanol (1c); e. e. = 25%



[0035] Prepared starting from known 3-methyl-5-(2,2,3-trimethylcyclopentyl)pent-3-en-2-ol (4c) according to the experimental procedure described in Example 1c as colourless liquid; GC/MS: 4 main diastereomeric pairs of enantiomers (19.5 + 21 + 20.5 + 25.5%) separated by flash chromatography (MTBE/hexane 1:5) into 2 x 2 pair fractions.

[0036] 2 first eluted (FC) pairs of enantiomers: 1H NMR: δ 3.04 (q, J = 6.4, 1 H), 3.03 (q, J = 6.4, 1 H), 1.96-1.84 (m, 2H), 1.82-1.70 (m, 2H), 1.57-1.35 (m, 7H), 1.28-1.06 (m, 7H), 1.19 (d, J = 6.4, 3H), 1.19 (d, J = 6.4, 3H), 1.03 (s, 3H), 1.02 (s, 3H), 0.86 (s, 3H), 0.86 (s, 3H), 0.83 (2d, J = 6.8, 3H), 0.67-0.57 (m, 2H), 0.50 (s, 3H), 0.49 (s, 3H), 0.48-0.42 (m, 2H), -0.03 (dd, J = 5.4, 4.6, 1 H), -0.11 (dd, J = 5.5, 4.6, 1 H). 13C NMR: δ 76.4 (d), 76.1 (d), 51.9 (d), 51.4 (d), 45.2 (d), 45.0 (d), 42.4 (s), 42.2 (s), 30.2 (t), 30.1 (t), 30.0 (t), 29.5 (t), 28.4 (t), 28.3 (t), 25.7 (q), 25.7 (s), 25.6 (q), 24.8 (s), 23.0 (d), 22.5 (d), 19.1 (q), 19.1 (q), 17.0 (t), 16.5 (t), 14.4 (q), 14.3 (q), 13.9 (q), 13.9 (q), 12.1 (q), 11.6 (q). MS: 224(M+, <1), 206(1), 191(5), 165(5), 137(12), 123(16), 111(23), 110 (20), 109(43), 96(20), 95(52), 85(22), 82(22), 81(31), 72(63), 70(100), 69(78), 57(24), 55(48), 43(52), 41(48).

[0037] 2 last eluted (FC) pairs of enantiomers: 1H NMR: δ 2.97 (q, J = 6.3, 1H), 2.96 (q, J = 6.3, 1H), 1.95-1.82 (m, 2H), 1.80-1.70 (m, 2H), 1.57-1.29 (m, 7H), 1.28-1.09 (m, 7H), 1.19 (d, J = 6.3, 3H), 1.19 (d, J = 6.3, 3H), 1.04 (s, 3H), 1.03 (s, 3H), 0.86 (s, 3H), 0.85 (s, 3H), 0.83 (2d, J = 6.8, 6H), 0.55-0.50 (m, 4H), 0.50 (s, 3H), 0.48 (s, 3H), -0.01 (m, 1H), -0.07 (m, 1H). 13C NMR: δ 76.5 (d), 76.4 (d), 51.7 (d), 51.3 (d), 45.2 (d), 45.0 (d), 42.4 (s), 42.2 (s), 30.2 (t), 30.1 (t), 29.7 (t), 29.0 (t), 28.4 (t), 28.2 (t), 25.9 (s), 25.7 (q), 25.6 (q), 25.0 (s), 21.2 (d), 20.6 (d), 19.3 (q), 19.2 (q), 18.8 (t), 18.3 (t), 14.4 (q), 14.2 (q), 13.9 (q), 13.9 (q), 12.1 (q), 11.4 (q). 224(M+, <1), 206(1), 191(4), 165(3), 137(12), 123(13), 111(19), 110 (16), 109(36), 96(17), 95(45), 85(18), 82(19), 81(27), 72(48), 70(100), 69(67), 57(20), 55(43), 43(45), 41(42).

[0038] Odour description: sandalwood, woody, balsamic.

Example 4: Floral-woody composition for a feminine fine fragrance



[0039] 
Ingredient parts by weight
Cepionate® (methyl 2-(3-oxo-2-pentylcyclopentyl)acetate) 150
Cosmone ((Z)-3-methylcyclotetradec-5-enone) 20
Cyclohexal (4-(4-hydroxy-4-methylpentyl)cyclohex-3-enecarbaldehyde) 75
Dipropylene glycol 19
Ethylene brassylate 90
Florol® (2-isobutyl-4-methyltetrahydro-2H-pyran-4-ol) 55
Linalyl acetate 45
Myraldene (4-(4-methylpent-3-enyl)cyclohex-3-enecarbaldehyde) 8
Nirvanolide ((Z)-13-methyloxacyclopentadec-10-en-2-one) 100
Peach pure 1
Pepperwood (3,7-dimethylocta-1,6-dien-3-yl dimethylcarbamate) 20
Phenylethyl alcohol 20
Radjanol (2-ethyl-4-(2,2,3-trimethylcyclopent-3-enyl)but-2-en-1-ol) 25
Rose Bulgary oil 2
Sandela® (3-(5,5,6-trimethylbicyclo[2.2.1]hept-2-yl)-cyclohexan-1-ol & isomers) 200
Thibetolide (oxacyclohexadecan-2-one) 40
  870
An addition of 100 parts of [1-methyl-2-[[(1R)-2,2,3-trimethylcyclopentyl]methyl]-cyclopropyl]methanol (1b) to this accord makes it more natural and rounder. It enhances the freshness of the floral rosy accord and helps to develop comfort and sensuality of the fragrance.


Claims

1. A compound of formula 1

wherein
R1 is methyl or ethyl; and
R2 is hydrogen, methyl or ethyl.
 
2. A compound according to claim 1 selected from the group consisting of [1-ethyl-2-[(2,2,3-trimethylcyclopentyl)methyl]cyclopropyl]methanol, [1-methyl-2-[(2,2,3-trimethylcyclopentyl)methyl]cyclopropyl]methanol and 1-[1-methyl-2-[(2,2,3-trimethylcyclopentyl)methyl]cyclopropyl]ethanol.
 
3. A fragrance composition comprising a compound as defined in any one of the preceding claim.
 
4. A fragrance application comprising

a) a compound of formula 1 as defined in claim 1 or 2; and

b) a consumer product base.


 
5. A fragrance application according to claim 4 wherein the consumer product base is selected from the group consisting of fine fragrance, household product, laundry product, body care product and cosmetic.
 
6. The use as fragrance ingredient of a compound as defined in claim 1 or 2.
 
7. A method of manufacturing a fragrance composition, comprising the incorporation of an effective amount of a compound of formula 1 as defined in claim 1 or 2, or a mixture thereof to a base material.
 
8. A method of improving, enhancing or modifying a fragrance of a fragrance composition or fragrance application comprising the step of incorporating an effective amount of a compound of formula 1 as defined in claim 1 or 2, or a mixture thereof to a base material.
 


Ansprüche

1. Verbindung der Formel 1

worin
R1 für Methyl oder Ethyl steht und
R2 für Wasserstoff, Methyl oder Ethyl steht.
 
2. Verbindung nach Anspruch 1, ausgewählt aus der Gruppe bestehend aus [1-Ethyl-2-[(2,2,3-trimethyl-cyclopentyl)methyl]cyclopropyl]methanol, [1-Methyl-2-[(2,2,3-trimethylcyclopentyl)methyl]-cyclopropyl]methanol und 1-[1-Methyl-2-[(2,2,3-trimethylcyclopentyl)methyl]cyclopropyl]ethanol.
 
3. Duftstoffzusammensetzung, umfassend eine Verbindung gemäß einem der vorhergehenden Ansprüche.
 
4. Geruchsanwendung, umfassend

a) eine Verbindung der Formel 1 gemäß Anspruch 1 oder 2 und

b) eine Konsumproduktbasis.


 
5. Geruchsanwendung nach Anspruch 4, wobei die Konsumproduktbasis aus der Gruppe bestehend aus Feinduftstoffen, Haushaltsprodukten, Waschmittelprodukten, Körperpflegeprodukten und Kosmetika ausgewählt ist.
 
6. Verwendung einer Verbindung gemäß Anspruch 1 oder 2 als Duftstoffbestandteil.
 
7. Verfahren zur Herstellung einer Duftstoffzusammensetzung, bei dem man eine wirksame Menge einer Verbindung der Formel 1 gemäß Anspruch 1 oder 2 oder eine Mischung davon in ein Basismaterial einarbeitet.
 
8. Verfahren zur Verbesserung, Verstärkung oder Modifizierung eines Duftstoffs oder einer Duftstoffzusammensetzung oder Duftstoffanwendung, bei dem man eine wirksame Menge einer Verbindung der Formel 1 gemäß Anspruch 1 oder 2 oder eine Mischung davon in ein Basismaterial einarbeitet.
 


Revendications

1. Composé de formule 1

dans laquelle
R1 est méthyle ou éthyle ; et
R2 est hydrogène, méthyle ou éthyle.
 
2. Composé selon la revendication 1, choisi dans le groupe constitué de [1-éthyl-2-[(2,2,3-triméthylcyclopentyl)méthyl]cyclopropyl]méthanol, [1-méthyl-2-[(2,2,3-triméthylcyclopentyl)méthyl]cyclopropyl]méthanol et 1-[1-méthyl-2-[(2,2,3-triméthylcyclopentyl)méthyl]cyclopropyl]éthanol.
 
3. Composition de parfum comprenant un composé tel que défini dans l'une ou l'autre des revendications précédentes.
 
4. Application de parfum comprenant

a) un composé de formule 1 tel que défini dans la revendication 1 ou 2 ; et

b) une base de produit de grande consommation.


 
5. Application de parfum selon la revendication 4, caractérisée en ce que la base de produit de grande consommation est choisie dans le groupe constitué de parfum fin, de produit ménagé, de lessive, de produit d'hygiène corporelle et de produit cosmétique.
 
6. Utilisation, en tant qu'ingrédient de parfum, d'un composé tel que défini dans la revendication 1 ou 2.
 
7. Méthode de fabrication d'une composition de parfum, comprenant l'incorporation d'une quantité efficace d'un composé de formule 1 tel que défini dans la revendication 1 ou 2, ou d'un mélange de celui-ci avec une matière de base.
 
8. Méthode pour améliorer, valoriser ou modifier un parfum ou une composition de parfum ou une application de parfum comprenant l'étape consistant à incorporer une quantité efficace d'un composé de formule 1 tel que défini dans la revendication 1 ou 2, ou un mélange de celui-ci avec une matière de base.
 






Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description