(19)
(11) EP 2 085 571 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
25.09.2019 Bulletin 2019/39

(21) Application number: 09250175.8

(22) Date of filing: 22.01.2009
(51) International Patent Classification (IPC): 
E21B 43/112(2006.01)
E21B 43/12(2006.01)

(54)

Single trip tubing punch and setting tool

Ein-Arbeitsgang Steigrohrstanz- und Einbauwerkzeug

Poinçon de tubes et outil de réglage en une seule manoeuvre


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30) Priority: 31.01.2008 GB 0801730

(43) Date of publication of application:
05.08.2009 Bulletin 2009/32

(73) Proprietor: Halliburton Manufacturing & Services Limited
Leatherhead KT22 7LU (GB)

(72) Inventors:
  • Burnett, William Stephen
    Aberdeen AB30 1HN (GB)
  • Brown, Irvine Cardno
    Cults, Aberdeen AB15 9RP (GB)

(74) Representative: Hoffmann Eitle 
Patent- und Rechtsanwälte PartmbB Arabellastraße 30
81925 München
81925 München (DE)


(56) References cited: : 
US-A- 2 328 782
US-A- 3 720 262
US-A- 5 467 819
US-A1- 2007 277 980
US-A- 2 381 929
US-A- 5 195 588
US-A1- 2003 213 590
US-B1- 6 554 062
   
  • J.Y. JULIAN: "Rigless tubing repair using permanent and retrievable patches at Prudhoe Bay, Alaska - Continued analysis and current applications, SPE paper 107069", 2007 SPE PRODUCTION AND OPERATIONS SYMPOSIUM, OKLAHOMA, USA, vol. 31, 3 March 2007 (2007-03-03), XP055340259,
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention generally relates to well intervention and more particularly to a single trip system for the placement of a bridge plug, packer or anchoring mechanism in the wellbore and for punching communication holes through the production tubing.

[0002] Currently, when communication is required through the production tubing, and a sliding sleeve arrangement cannot be used, a tubing puncher is run into the desired depth. A tubing puncher is a tool which typically has a mechanical punch driven by a jarring tool or hydraulic ram. The penetration is controlled so that it punches holes in the inner tubing string without damaging the outer casing or well bore formation. This is in contrast to perforating guns. Perforating guns use an explosive charge to blast through the tubing, typically to access the formation. Their action is not controlled as the hole produced does not have defined dimensions as for a punched hole. By punching holes through the tubing string controlled circulation is achieved between the tubing and the annulus. Once the holes are punched, the tubing puncher is then retrieved from the well.

[0003] During well intervention or a work over, such hole punching requires a dedicated separate trip into the well which is both time consuming and costly. The tubing puncher trip follows the trip to install bridge plugs or packers below the desired punched hole position. Further trips are then required to provide pressure isolation or to install intervention tools such as a gas lift straddle.

[0004] A further disadvantage in this multiple run approach is in the associated inaccuracy of wireline to record the precise depth location at which the holes have been punched. As a result any tool intended to locate below the punched hole has to be run deeper into the well to ensure that it is not located over or above the punched holes. This increases the tool string length, increasing the time and cost of intervention. For tools designed to locate across the punched holes, such as a gas lift straddle, these tools must be made at great lengths to ensure the packer elements set on either side of the holes. Typical lengths can be 6,1 - 9,14 m (20 to 30 ft) between packing elements. The increased tool length makes handling on the rig difficult, while the increased weight provides a greater risk of breaking the wireline during run-in.

[0005] Julian et. al., Rigless Tubing Repair Using Permanent and Retrievable Patches at Prudhoe Bay, Alaska relates to non-rigged tubing repairs which have become a viable alternative to rig workovers. The paper discusses the history of conventional tubing patches and recommended pre-patched diagnostics.

[0006] US 2007/0277980 A1 relates to a downhole perforator assembly for establishing communication between the interior of a tubular string and a surrounding annulus which downhole perforators assembly includes a downhole power unit having a power unit housing and a movable shaft and a downhole perforator having a perforator housing. It fails to disclose, however, a tubing punch and setting tool capable of setting a reference tool in a tubing string. It further fails to disclose that an actuation means triggers a power supply module to power the setting tool to set the reference to against the tubing and triggers the power delivery module to power the punch tool.

[0007] US 3,720,262 relates to laterally directed deformation force being applied to a structure at a selected location in a longitudinal bore hole through use of a tool that comprises a pressure responsive actuator having a laterally displaceable plunger. It fails to disclose, however, a tubing punch and setting tool for setting a reference tool in a tubing string as well as an actuation means which actuation means triggers the power delivery module to power the setting tool to set a reference tool against the tubing.

[0008] US 2003/0213590 A1 relates to a method and a tool for preparing a well for the production of hydrocarbons. It is aimed at perforating a casing portion and working surrounding sediment in a channel-forming manner. It fails to disclose however a tubing punch and setting tool for setting a reference tool in a tubing string as well as an actuation means located between the ends wherein the actuation means triggers the power delivery module to power the setting tool to set a reference tool against a tubing.

[0009] US 2,381,929 relates to cutting tools and more particularly to an improved fluid well-perforated. It fails to disclose a tubing punch and setting tool.

[0010] US 5,195,588 relates to an apparatus for perforating, testing and repairing casing in an earth borehole. It fails to disclose tubing punch and setting tool for setting a reference tool in a tubing string and it further fails to disclose an actuation means which triggers the power supply module to power the setting tool to set a reference tool against the tubing. US 6,554,062 B1 discloses a well reference apparatus and method including an anchor member with an orientation member preferably permanently installed within the borehole at a preferred depth and orientation in one trip into the well. It fails to disclose, however a tubing punch and setting tool for punching at least one hole in the tubing string. It further fails to disclose an actuation means which triggers a power delivery module to power the punch tool to punch at least one hole in the tubing.

[0011] US 5,467,819 relates to an anchor which is secured in a case well bore by a setting tool having a latch that releasably secures with the anchor. It fails to disclose however a tubing punch and setting tool for punching at least one hole in the tubing string and an actuation means which triggers the power delivery module to power the punch tool to punch at least one hole in the tubing.

[0012] It is therefore an object to provide a method and apparatus for running and setting a tool in a tubing string in the same trip as punching at least one hole in the tubing string.

[0013] It is a further object to provide a tubing punch and setting tool for running and setting a reference tool in a tubing string and for punching at least one hole in the tubing string at a known location above the reference tool on a single trip.

[0014] It is a further object to provide a tubing punch and setting tool which can be pre-programmed so that no signaling is required from surface to operate.

[0015] It is a yet further object to provide a tubing punch and setting tool which can be run on wireline or electric line (e-line).

[0016] It is also an object to provide a method of setting a tool and punching at least one hole in a tubing string on a single trip wherein the set tool acts as a reference point to accurately determine the position of the punched hole(s).

[0017] It is a further object to provide a method of retrofitting a gas lift straddle.

[0018] According to a first aspect there is provided a tubing punch and setting tool (TPST) for running and setting a reference tool in a tubing string in a well bore and for punching at least one hole in the tubing string on a single trip in the well bore, the TPST comprising: a substantially cylindrical body having a first end adapted for connection to conveyancing means; a setting tool with means to connect to the reference tool at a second end; a punch tool; at least one power delivery module; and, an actuation means located between the ends; wherein the actuation means triggers the power delivery module to power the setting tool to set the reference tool against the tubing and triggers the power delivery module to power the punch tool to punch at least one hole in the tubing.

[0019] In this way, the TPST provides for a reference tool to be run and set in a wellbore on the same trip as providing a punched hole through the tubing string for communication.

[0020] Preferably, the actuation means first triggers the power delivery module to power the setting tool to set the reference tool against the tubing and thereafter triggers the power delivery module to power the punch tool to punch at least one hole in the tubing. In this way, the distance between the punched holes and the reference tool can be accurately determined.

[0021] Preferably, the TPST includes detachment means to release from the reference tool and return to surface. The TPST may detach before or after the hole punch tool has operated.

[0022] Preferably, the setting tool is of the type which transmits a compressive force to set a tool.

[0023] In this way, the TPST provides a reference point in the tubing string at the reference tool from which the position of the punched hole(s) is accurately distanced from. When the TPST is pulled from the tubing, any other tools can be accurately sized such that when they are run in the tubing and landed on the reference tool, the punched holes are located at known positions in relation to these other tools.

[0024] Preferably the conveyancing means is wireline, e-line or coiled tubing. The use of a non-rigid conveyancing means for fast deployment and reduced running costs.

[0025] Preferably, a first power delivery module is located adjacent the setting tool and a second power delivery module is located adjacent the punch tool. Alternatively, one power delivery module can be used to operate both tools. By locating a single power delivery module between the setting tool and the punch tool, a relatively short distance can be achieved between the reference tool and the punched holes.

[0026] Preferably the punch tool comprises a substantially cylindrical body including at least two punch assemblies arranged perpendicularly to a central axis of the body, a hydraulic fluid chamber including a boost piston to compress the fluid and a fluid pathway, from the chamber, to deliver the compressed fluid to the punch assemblies and thereby operate the punch assemblies. Advantageously, the boost piston is powered from the second power delivery module.

[0027] Preferably each assembly comprises a cylindrical recess on an outer surface of the body; a piston arranged in the recess to provide a moveable seal between a lower end of the recess and an upper end of the recess, and a punch formed from a stem; elastic means located around the stem of the piston and abutted at a first end by a base of the piston and a second end by a piston cap arranged around the stem; and a shearing means to release the cap from engagement to the recess when sufficient hydraulic fluid pressure has entered the lower end of the recess and acted on the base of the piston.

[0028] In this way, hydraulic pressure drives the punch from the recess to punch a hole in the tubing. The elastic means may be a spring, elastomer or the like.

[0029] Advantageously, the punch tool includes a vent to allow for the exit of hydraulic fluid in the flow path from the tool at a predetermined pressure. Preferably the predetermined pressure is selected to be greater than the pressure required to punch the holes in the tubing. In this way, the vent can be used to release the punches and allow them to be retracted into the recesses.

[0030] Preferably, the punch tool includes emergency release means in the event that the punch tool becomes stuck. The emergency release means may comprise a shaped stem on the punch piston, the shape providing a weak point at an end of the stem. The shape may be formed from a relieved groove around the stem. By creating a weak point on the end of the stem, if the stem becomes stuck in the tubing wall, pulling on the punch tool will provide a transverse force sufficient to break the end of the stem and allow release of the tool. Preferably the shaped stem comprises a hole drilled into the distal end of the stem. In this way, when the stem is broken on release, the sheared stub left in the tubing provides a hole so that communication is established through the tubing to allow loss of hydraulic pressure or provide circulation.

[0031] Alternatively, or additionally, the emergency release means may comprise a mechanical release to separate the TPST at a location above the punch assemblies and allow the wireline carrying the TPST to be pulled out of the hole. Preferably, the mechanical release is by jarring down on the tool to desupport a collet and allow it to release. Advantageously the collet is protected by a sleeve on run-in so that the tool can be jarred without releasing the collet. Preferably the sleeve is moved when the punch tool is operated. Advantageously, a fishing neck is mounted within the punch tool which is left exposed following emergency release.

[0032] Preferably, the actuation means comprises an electronic processor, the processor being programmed to trigger and sequence the setting of the reference tool and the punching of the holes. The actuation means may also comprise one or more sensors. The TPST can thus be pre-programmed to operate on a timer or by reaction to conditions monitored by the sensor(s).

[0033] In this way, the holes cannot be punched until the reference tool is set to ensure the relative distance between each is known. The sensors advantageously allow the actuation sensor to be pre-programmed and operate remotely and independently from the surface.

[0034] Preferably, the power delivery module(s) comprise energy storage means, a separator piston and a hydraulic power transmission assembly. Such arrangements are as known in the art and may take the form of a pyrotechnic charge with electronic lighter, a differential atmospheric chamber, mechanical ball screw mechanism or a hydraulic pump.

[0035] Preferably the reference tool is an anchor. More preferably the reference tool is a packer or bridge plug. In this way, the reference tool is fixed in the well bore and can be used as a datum point to locate the exact relative position of the punched holes.

[0036] Preferably, the anchor is adapted to latch to the setting tool and a gas lift straddle wherein a first length from a latching end of the setting tool to a punch of the punch tool is approximately equal to a second length from a latching end of the straddle to a point midway between packer elements of the straddle.

[0037] In this way, the straddle is advantageously kept relatively short, with a typical distance between the packer elements of two feet rather than twenty feet in the prior art.

[0038] Preferably, the gas lift straddle comprises a tubular body having a through bore, first and second packer elements at first and second ends of the body, at least one port located through the body between the packer elements, and a gas head located on the body, the gas head having an inlet through which fluid from the port enters a check valve to ensure the fluid can only travel from the port to the bore.

[0039] Preferably, the gas head is releasably attached to the body of the straddle.

[0040] According to a second aspect there is provided a single trip well intervention method, comprising;
  1. (a) locating a reference tool on a setting tool of a TPST according to the first aspect;
  2. (b) running the TPST into a tubing string until the punch tool is at a desired depth to locate a punched hole through the tubing;
  3. (c) triggering a power delivery module to set the reference tool against a wall of the tubing using the setting tool; and
  4. (d) triggering a power delivery module to punch at least one hole in the tubing using the punch tool.


[0041] In this way, a tool such as an anchor tool in the form of a packer or bridge plug can be run in and set on the same tool string which carries in the punch tool. This provides a single trip into the well and gives a datum point to locate the exact relative position of the punched holes.

[0042] The method may include the step of detaching the TPST from the reference tool and moving the TPST relative to the reference tool, between steps (c) and (d). In this way, any desired separation between the reference tool and the punched holes can be achieved.

[0043] Preferably, the actuation means is pre-programmed at surface to initiate the trigger and sequencing to set the reference tool and punch the holes. By pre-programming the actuation means, control to the surface of the well is not required and the TPST can operate autonomously. Alternatively, the actuation means may be operated via an e-line if used.

[0044] Preferably the actuation means initiates the triggering when a specific set of downhole criteria is fulfilled. The downhole criteria may comprise variations in the group comprising downhole pressure; line tension, time duration in the well and the like. Preferably an electronic signal is sent from the actuation means to a power module to trigger the power module.

[0045] Preferably, the step of triggering a power delivery module comprises creating high pressure gas via a pyrotechnic charge and directing the gas formed on detonation onto one side of a piston, and via the piston, compressing hydraulic fluid to power the respective tool.

[0046] Preferably the step of setting the reference tool comprises using the compressed hydraulic fluid from the power delivery model to provide a compressive force to set the tool. Setting tools using a compressive force for setting packers, bridge plugs and the like are known in the industry.

[0047] Preferably the actuation means, senses that the reference tool is set and then sends an electronic signal to trigger the power delivery module to operate the punch tool. The step of sensing that the reference tool is set may be by applying an overpull on the TPST. Alternatively, the step of sensing the reference tool is set may be by sensing pressure in the tubing. Optionally, the step of sensing the reference tool is set may be by using a time delay following triggering of the power delivery module. Alternatively the setting tool may detach from the reference tool and the triggering of the power delivery module to operate the punch tool may be programmed by other well or time conditions.

[0048] Preferably the step of punching a hole comprises using the compressed hydraulic fluid from the power delivery module to provide a compressive force to the boost piston of the punch tool.

[0049] Preferably the step of punching at least one hole in the tubing comprises punching two holes approximately 180 degrees apart.

[0050] Preferably, excess pressure generated on punching the holes is vented from the punch tool and the punch pistons are retracted as the TPST is retrieved from the well bore.

[0051] Advantageously, if the stem sticks in the tubing, the method may include the step of pulling on the tool string to shear the stem and leave a portion of the stem within the tubing wall. More preferably the portion of stem left in the tubing includes an aperture to allow for communication through the tubing.

[0052] Advantageously also, if the punch tool becomes stuck, the method may include the step of jarring the TPST to cause a mechanical release to operate in the punch tool to remove parts of the TPST above the punched holes. The method may then further include the step of using a fishing tool to retrieve the remaining parts of the punch tool and the setting tool.

[0053] The method may further include the step of running in a tool to locate at the reference tool and use the communication paths now created through the tubing to operate.

[0054] The method may also include the steps of:

(e) unlatching the setting tool from an anchor tool;

(f) retrieving the TPST;

(g) running a gas lift straddle and latching it to the anchor tool;

(h) setting the packing elements on the straddle; and

(i) commencing gas injection through the punched holes.



[0055] By providing a reference point in the form of the anchor adjacent to the punched hole, advantageously, a relatively short straddle can be installed. The shortened straddle removes the risk in breaking the wireline and ensures it may be used on any rig area. This is all achieved without requiring any additional runs into the well.

[0056] Preferably the step of setting the anchor comprises actuating slips in the anchor to bite into the tubing. More preferably the slips are set to be actuated at a fixed time interval after the TPST has reached a predetermined depth in the well.

[0057] Advantageously the method includes the step of taking a first overpull to ensure the anchor is set and using the overpull to actuate the punch tool.

[0058] Advantageously also, the method includes the step of taking a second overpull on the straddle to ensure the straddle has latched to the anchor.

[0059] Preferably the method includes the step of disconnecting a setting tool from the straddle when the straddle is latched to the anchor.

[0060] Advantageously the step of disconnecting can be controlled from the second overpull. The step of disconnecting may be timed to occur if a second overpull of a fixed pressure is applied for fixed time duration. Optionally the step of disconnecting may occur if a second overpull is repeated a given number of times in a fixed time interval. Alternatively, the step of disconnecting may occur at a fixed time interval from the time the running tool is below a predetermined depth of the well.

[0061] Advantageously the method may include the additional step of retrieving a gas head of the straddle. Preferably the method includes the step of redeploying the gas head to the straddle.

[0062] Embodiments of the present invention will now be described, by way of example only, with reference to accompanying drawings of which:

Figure 1 is a schematic illustration of a TPST according to an embodiment of the present invention, following setting of a reference tool and punching holes in a tubing string;

Figures 2(a) and 2(b) are a cross-sectional view through an upper portion of the TPST illustrating the punch tool in a run in configuration; and

Figures 3(a) to 3(d) are illustrations of a gas lift straddle being installed in a tubular according to progressive steps in a method according to an embodiment of the present invention.



[0063] Reference is initially made to Figure 1 of the drawings which illustrates a tubing punch and setting tool (TPST), generally indicated by reference numeral 10, in accordance with an embodiment of the present invention. TPST has an upper end 12 and a lower end 14. We will generally refer to these as upper and lower, but it will be appreciated that when the TPST is located in a deviated wellbore, upper will refer to downstream i.e. closer to the well surface and lower will refer to upstream i.e. deeper in the well.

[0064] At the upper end 12 there is arranged a wireline connector 16 as is known in the art. The connector 16 may also be any other non-rigid connector such as an e-line or coiled tubing. Arranged below the wireline connector, in a sequential order, is an actuation sensor 18; a second power delivery module 26; a punch tool 32; a first power delivery module 28 and a setting tool 44.

[0065] Adjacent to the wireline connector 16 is the actuation sensor 18. The actuation sensor 18 is a module used to trigger and sequence operation of the TPST 10. The actuation sensor comprises a cylindrical body 20 which houses a processor and sensory equipment. The processor is preprogrammed to send out electrical signals on one of two actuation lines 22,24, when predetermined conditions are met. These conditions are selected by the user at surface and are programmed into the processor. Such criteria may be that a downhole pressure value has been reached, a time has elapsed since a previous event or a tension value has been reached on the wireline. Sensors within the actuation sensor 18 measure the variables being monitored. When the criteria are met an electrical signal is sent down one of the actuation lines 22,24 which connect the actuation sensor 18 to the first and second power delivery modules 26,28. A further wireline connection is made between the parts, shown at 34 and 42.

[0066] Located adjacent to the actuation sensor 18 is the second power delivery module 26. This module has a similar cylindrical body 30 and stores the energy that will be used to deliver hydraulic pressure to the punch tool 32. Inside the module 26 is a pyrotechnic charge with an electronic igniter. Such an arrangement is typical of a power delivery module but it may also take the form of a differential atmospheric chamber or mechanical ball screw mechanism. The electronic signal in the actuation line 22 ignites the igniter which in turn detonates the charge. The detonation is entirely contained within the body 30 producing a high pressure gas. The gas acts against one side of a separator piston, the opposite side of which is exposed to hydraulic fluid, thus transferring energy from the pyrotechnics into hydraulic pressure and subsequently into hydraulic power transmission.

[0067] The pressurised hydraulic fluid operates the punch tool 32 located below the second power delivery module 26. The punch tool 32 may be of any design operated from a compressed fluid source. Preferably, the punch tool 32 is as described in detail hereinafter with reference to Figure 2(b). The punch tool 32 primarily has a cylindrical body 36, through which are located punch assemblies. Though not illustrated as such, the assemblies 38,40 are used to punch two holes through the wall of the production tubing at 180 degrees to each other.

[0068] Below the punch tool 32 is located the first power delivery module 28. This first power delivery module is substantially the same as the second power delivery module 26, described above, excepting that the hydraulic power transmission is now used for a setting tool 44, located adjacent to the power delivery module 28, at the lower end 14 of the TPST 10.

[0069] The setting tool 44 at the lower end 14, is a standard setting tool as known in the industry. It can be used to set a tool such as an anchor by compressive force, the compressive force being used to set the anchors slips and seal element to the tubing against which it is set.

[0070] In use, the TPST 10 is assembled at surface with the actuation sensor 18 programmed to activate each of the power delivery modules 26,28 at desired criteria. Variables are set as a trigger for setting and punch initiation as described above. A packer 46 is attached to the setting tool 44 and the tool 10 is suspended from a wireline 48 and run into a tubing string. In this example, see Figure 1, the tubing string is a production tubing 50 located within a casing 52 of a well bore 54.

[0071] The tool 10 is run to a depth, generally marked at 'A', where it is required to punch holes 56, through the production tubing 50 in order to provide communication between the casing annulus 58 and the bore 60 of the production tubing 50. The depth is calculated via the amount of wireline run into the well bore 54. At depth, the actuation sensor 18 senses one of the variables, for example, the time lapsed since entering the well bore 54, and an electronic signal is sent down the actuation line 24 to trigger the first power delivery module 28. The module 28 will detonate sending compressed hydraulic fluid to the setting tool 44. The setting tool 44 then sets the packer 46, by expanding a sealing element 62 and engaging slips 64 against the inner wall 66 of the production tubing 50.

[0072] An overpull is taken against the packer 46 to ensure it is set. This overpull is sensed as a change in line tension at the actuation sensor 18. This is the criteria set for triggering the second power delivery module 26. An electronic signal is therefore sent down the actuation line 22, to ignite the charge in the second power delivery module 26. Thus with the packer 44 set as a reference point in the well and the TPST still attached to the packer, compressed hydraulic fluid now operates the punch tool 32. Holes 56 are punched through the tubing 50. The casing 52 is not affected by the action of the punch tool 32.

[0073] Following the punching of the holes, the hydraulic pressure is vented and the punch assemblies 38,40 retracted, as will described hereinafter. By upward jarring on the TPST 10, the setting tool 44 will release from the packer 46 and the TPST can be removed from the well bore 54.

[0074] The packer 46 now acts as a reference point in the well bore which is spaced at a known distance from the punched holes 56. This has been achieved on a single trip into the well bore 54 running on a wireline.

[0075] Reference is now made to the punch tool 32 and to the operation thereof.

[0076] Figures 2(a) and 2(b) illustrate a portion of the TPST 10. Illustrated is a lower portion of the second power delivery module 26 and the punch tool 32. The parts 26,32 are shown within the production tubing 50 to aid interpretation.

[0077] At an upper end 72 of the punch tool 32 is a connector 74 used to fasten the punch tool 32 to the power delivery module 26. Connector 74 terminates at stepped element 76 arranged centrally through the TPST 10 connecting to a tubular element 78. Located around the stepped element 76 and the tubular element 78 is a sleeve 80. Between the stepped element 76 and the sleeve 80 is a boost piston 82 which slides over the stepped element 76. A chamber 84 is created between the piston 82 and the element 76. The chamber 84 contains hydraulic fluid 86.

[0078] An orifice 88 in the stepped element 76 provides a hydraulic fluid pathway leading to an inner bore 90 in the tool 32 which extends through a majority of the tubular element 78, and is similarly diverted out through an orifice 92 at its base. The hydraulic fluid pathway is then routed through an off-axis bore 94 in a bottom sub 96 where the punch assemblies 38,40 are located. The off-axis bore 94 has an exit 98 to the first punch assembly 38 and then travels transversely across the central axis of the sub 96 to an oppositely arranged off-axis bore 100 which has an exit 102 to the second punch assembly 40, a vent 104 and an inlet 106. The inlet 106 is the point for introducing hydraulic fluid into the punch tool 32 and is thus sealed in operation by a plug 108 which may be a connector to the first power delivery module 28 located below.

[0079] Thus movement of the boost piston 82 compresses the hydraulic fluid 86 in the chamber 84 and the compressed fluid passes through the bores 94 and 100 to operate the punch assemblies 38,40. The boost piston 82 is moved under force from an outer sleeve 110 of the power delivery module 26. The force is created by the detonation within the power delivery module 26 with the compressed gas acting on a separator piston 112 which is directly connected to the outer sleeve 110 at a cross-over 25. On movement of the sleeve 110 downwards, the stepped element 76 is held against movement via the connector 74. In this way, movement of the sleeve 110 shifts the boost piston 82 relative to the stepped element 76 and consequently the chamber 84 is reduced in size to compress the hydraulic fluid.

[0080] Now considering the punch assemblies 38,40. These are identical and are located in the sub 96. Each assembly 38,40 comprises a recess 150 in which is located a piston 116 with a stem 120 and a base 118. A set of disc springs 122, and a punch cap 124 are arranged on the stem. The assemblies 38,40 are arranged side by side in the sub 96 to allow the diameter of the sub 96 to remain small enough to fit within production tubing 50 while providing a maximum distance for the piston 116 to travel to punch the production tubing.

[0081] When the charge in the module 26 has been ignited and the detonation has just occurred, the separator piston 112 and the outer sleeve 110 are forced downwards acting on the boost piston 82 and thereby decreasing the size of chamber 84. This compresses the hydraulic fluid 86 through the pathway with the result that fluid is injected through the exits 98,102 into the recesses of the piston assemblies 38,40.

[0082] The injection of fluid into each recess 114, pushes against the base of the piston 116, and the cap 124, springs 122 and stem 120 will move outwardly. The stem 120 will be sitting proud of the cap 124 and will contact the wall of the production tubing 50. As the stem 120 is circular it will punch a circular aperture through the tubing 50 to create a hole 56. A slug of tubing material will fall away into the annulus 58.

[0083] When the separator piston 112 has moved so that the chamber 84 is closed and holes 56 are punched in the tubing 50, the excess hydraulic pressure now found in the flow path will be expelled through the vent 104. This release of hydraulic pressure will allow piston 116 to move the back into the recess 114, so that the assemblies 38,40 lie clear of the tubing wall 50 when upward jarring of the TPST 10 is performed to allow the setting tool 44 to separate from the packer 46 or other anchor, and the TSPT to be pulled out of the well bore to the surface.

[0084] In an alternative embodiment, the stem 120 has at its end a section with a fixed size aperture axially therethrough. The section is created by machining a weak point in the form of a recessed groove around the top of the stem. In case the stem 120 fails to retract fully from the production tubing, the weakened end of the stem will break when the upward jarring action takes place. The portion left in the tubing will have an aperture and thus fluids can circulate or hydraulic fluid can vent through this hole.

[0085] For the situation in which the punch tool 32 becomes stuck in the well bore, the TPST 10 can be equipped with an emergency release mechanism, generally indicated by reference numeral 126. Referring to Figure 2(b), the release mechanism 126 is arranged around the tubular element 78 and comprises a collet 128 and a series of locking keys 129 which are held in place by an interlock sleeve 127. When pressurised fluid acts to operate the punch tool 32, sleeve 127 is moved via a shear pin 131. This movement uncovers the keys 129. If the punching of the holes is successful and the TPST 10 is pulled from the well bore, the collet 128 is held closed and lifting of the tool 10 to the surface can be achieved. If, however, the TPST 10 sticks for any reason and cannot be removed, a user will create a downward jarring action on the TPST 10. This downward jarring action causes the now exposed collet 128 to be desupported, releasing the keys 129. An upper end of the TPST can then be removed leaving the sub 96. Advantageously, the upper end of the sub 96, terminates in an internal fishing neck 130. Thus while a lower section of the TPST 10 is left in-situ, means are provided in the fishing neck 130 to assist in its retrieval. Additionally as the hydraulic fluid pathway is now open via the break in the connection at the end of the bore 92 and the off-axis bore 94, all the hydraulic pressure is positively vented.

[0086] An embodiment of the present invention will now be described for the installation of a retrofit gas lift straddle. Gas lift straddles are used when an artificial lift system is required in a well where a gas lift was either never in the original well design or the side pocket mandrels for gas lift are located in an undesirable position. Reference is now made to Figure 3(a) of the drawings which illustrates the TPST 10 of Figure 2 latched to an anchor tool 140 being run in a well requiring a gas lift straddle. The well bore 54 is lined with casing 52. Located within the casing 52 is the completion string 50 being a tubing 142 having a through bore 144 in which the oil 146 can travel. Between the surface wall 148 of the tubing 142 and the inner surface 150 of the casing 52 is an annulus 58. The annulus 58 provides a passageway for gas 152 to be injected into the oil 146 as long as communication can be established through the tubing 142 for the passage of the gas 152.

[0087] Prior to running a gas lift straddle, a wireline Casing Collar Location (CCL) with a combined drift run is typically undertaken to establish the location of the collars, control line clamps etc in the vicinity of the intended location of the ports in the tubing 142. This is as known in the art and is used to verify that there are no obstructions prior to running the anchor tool 140.

[0088] The TPST 10 and anchor tool 140 are connected to 2,34 cm (0.92") or 0.125 slickline 154, so that the entire assembly can be run to the desired depth in the completion string 50. The desired depth is the position in the well bore 54 at which the gas injection is required.

[0089] On reaching the desired position the anchor tool 140 is set. This is achieved via the setting tool in the TPST 10, for example, the setting tool 44 will switch on when the hydrostatic pressure or depth is at 194,09 bar (2,815 psi) or 1981,2 m (6,500 ft) TVD, respectively. Once the setting tool 42 has been lowered below the desired depth for a period of time e.g. 30 minutes, the setting tool 42 will fire and set the anchor tool 140. In this regard, the slips 156 are pushed into the inner surface 158 of the tubing 142. The anchor tool 140 is thus anchored to the completion string 50 to provide a fixed reference point in the well bore 54. It will be appreciated that if the anchor tool 140 is raised above the desired depth, the timer on the setting tool can be re-set so that the tool 140 can be prevented from being anchored if it is decided not to proceed once the slickline 154 is run in the well bore 54.

[0090] With the slips 156 engaged, the punch tool 32 is operated by applying an overpull on the assembly. A suggested overpull load required and time the overpull load should be applied to initiate the punch tool could be 453,6 kg (1,000 lbs) for 10 mins. Thus once the anchor tool 140 has been set we apply the preset overpull (453,6 kg (1,000 lbs)) on the anchor 140, initially, to verify that it has set and is holding load. The overpull is then applied for the pre-determined time (10 mins). This will actuate the punch tool 32 as described with reference to Figures 2(a) and 2(b).

[0091] If possible slight annulus 58 pressure applied before the punch would give an indication that the punch has performed satisfactorily. Once the tubing 142 has been punched, upward jarring on the punch tool 32 will release the latch from the anchor tool 140 and allow the TPST 10 to be retrieved to the surface. The shear load to achieve release of the latch is adjustable but nominally set at a 3401,9 kg (7,500 lb) load across six shear screws. The arrangement in the well bore 54 is now as illustrated in Figure 3(b) showing the anchor tool 140 remaining at a fixed reference point in the well bore 54 and the ports 160a,b made through the tubing 142 of the completion string 50.

[0092] The gas lift straddle 162 is run on a slickline 154 as is illustrated in Figure 3(c). The straddle 162 comprises a latch at the base which can be stabbed into the anchor tool 140; first 164 and second 166 packer elements being spaced apart over apertures 168 being gas inlet ports; and a gas head 170 located at the upper end which houses the check valve. A setting tool 172 is located between the straddle 162 and the slickline 154. The straddle 162 is as known in the art except in that the distance between the packer elements 164,166 is reduced by approximately an order of magnitude. For example, a typical 20 foot (6.1 meter) straddle is reduced in length to approximately 8 to 10 feet (2,4 - 3,0 meter). More importantly, the distance from the latching end of the punch tool to a punch 40 in the punch tool 32 is approximately equal to the distance between the latching end (nearest the anchor tool 140) of the straddle 162 to a point midway between the packer elements 164,166 of the straddle 162. The midway point can be at the location of the apertures 168.

[0093] The straddle 162 is run to depth and stabbed into the top of the anchor tool 140. An over pull of 453,6 kg (1,000 lbs), for example, should be applied to check the straddle 162 is in the correct location and this will in turn activate the setting tool 172 as described with reference to the punch tool 32 previously. During the over pull, as the setting tool 172 strokes out to apply load to the straddle 162, a support sleeve is sheared out which in turn slides under the collet linking the straddle 162 to the anchor tool 140. This locks the straddle 162 to the anchor tool 140.

[0094] As the load from the setting tool 172 increases the straddle packing elements 164,166 are set. Thus a seal is created between the tubing 142 and the straddle 162 on either side of the punched holes 56.

[0095] At a predetermined load a shear ring parts and the setting tool 172 is released from the straddle 162. The setting tool is then pulled from the well.

[0096] With the straddle 162, now arranged in the well bore 54 as illustrated in Figure 3(d), a pressure test can be applied to the annulus 58 to verify that the packing elements 164,166 have set properly. At a pre-determined test value (say 34,47 bar (500 psi)) a test mechanism in the straddle 162 shears out allowing communication from the annulus 58 to tubing 142 via the ports 56, apertures 168 and the check valves in the gas head 170.

[0097] By injecting gas 152 down the annulus 58 from the surface, the oil 146 is mixed with the gas 152 in the gas head 170 assisting in providing the necessary lift to the oil 146 to raise it to the surface. This is illustrated by the arrows in Figure 3(d).

[0098] If the check valve needs to be replaced i.e. for repair or a change in injection rate or volume is required, the gas head 170 can be removed without having to release the straddle 162. The gas head 170 is retrieved by running in with a running/pulling tool and latching into the top of the gas head 170. Upward jarring will shear out the shear screws in the latch locking the gas head 170 to the straddle 162. Once the gas head 170 is re-dressed it can be re-run by latching it to the running/pulling tool. The gas head 170 is then run to depth and stabbed into the top of the straddle 162. Further downward jarring will shear out the running/pulling tool, allowing it to be pulled back to the surface on the slickline 154.

[0099] Additionally, both the straddle 162 and the anchor tool 140 can also be retrieved if full access to the through bore 144 is required. Initially the straddle 162, in combination with the gas head, is removed. For this option a pulling tool is used in conjunction with a No-Go. These are as known in the art. This is located into the top of the gas head 170. An over pull can be taken to ensure it is engaged properly. Downward jarring will then slide the No-Go into the release sleeve located at the bottom of the straddle 162. This sleeve is jarred down to de-support the collet locking the straddle to the anchor tool 140. Once this sleeve has been shifted, upward jarring will release the gas head 170 and straddle 162 from the anchor tool 140.

[0100] With the straddle 162 removed a pulling tool is run inside of the anchor tool 140. Once the pulling tool has engaged the profile in the release sleeve, upward jarring will shift this sleeve de-supporting a set of dogs. With the dogs de-supported this allows the upward jarring to stroke out the slips. A C-ring pops into a groove holding the release sleeve in the up position and therefore preventing the slips from being re-supported on the way out of the hole. This technique for releasing the anchor tool 140 is as known in the art.

[0101] The principal advantage of the present invention is that it provides a tubing punch and setting tool for running and setting a tool in a tubing string and for punching at least one hole in the tubing string at a known location above the tool on a single trip. The hole positions are known relative to the set tool with a high accuracy.

[0102] A further advantage of at least one embodiment of the present invention is that it provides a tubing punch and setting tool which can be preprogrammed so that no electronic or telemetry signalling is required from surface to operate. By preprogramming the tool can be set to initiate at any desired parameter or combination of parameters.

[0103] A still further advantage of at least one embodiment of the present invention is that it provides a tubing punch and setting tool which vents all excess pressure after the setting and punching functions are complete.

[0104] A further advantage of at least one embodiment of the present invention is that by creating a reference point in the well bore, a gas lift straddle can be fitted where the straddle can be made much shorter as the formed hole position is known very accurately. Further the gas head, or the gas head and straddle together, can be pulled for re-dress. The anchor remains in situ maintaining the reference distance between the anchor tool and the punched hole. This makes locating the hole easier for the re-running of the straddle and gas head. Yet further, any impact loads which occur when running in or pulling out of the hole are routed through to the setting tool 172, therefore preventing premature setting of the anchor tool 140 during run in/out of the hole.

[0105] It will be apparent to those skilled in the art that various modifications may be made to the invention described herein without departing from the scope thereof. For example, the power delivery modules and the punch tool could be arranged on the TPST in any order. Two holes are illustrated and described as being punched in the tubing but any number of punch assemblies may be used. Additionally any punch tool and setting tool can be used, though those operated by compressed fluid are preferred. While punching production tubing in casing is described, the TPST can be used within any walled tubing string with or without external casing or other tubular present.


Claims

1. A tubing punch and setting tool (TPST, 10) for running and setting a reference tool (46; 140) in a tubing string (52) in a well bore (54) and for punching at least one hole in the tubing string (52) on a single trip in the well bore (54), the TPST comprising: a substantially cylindrical body having a first end adapted for connection to conveyancing means; a setting tool (42; 44) with means to connect to the reference tool (46; 140) at a second end; a punch tool (32) comprising a substantially cylindrical body including at least two punch assemblies (38, 40) arranged perpendicularly to a central axis of the body, a hydraulic fluid chamber (84) including a boost piston (82) to compress the fluid (86) and a fluid pathway, from the chamber (84), to deliver the compressed fluid (86)to the punch assemblies (38, 40) and thereby operate the punch assemblies (38, 40); at least one power delivery module (26, 28); and, an actuation means located between the ends; wherein the actuation means triggers the power delivery module (28) to power the setting tool (42; 44) to set the reference tool (46; 140) against the tubing and triggers the power delivery module (26) to power the punch tool (32) to punch at least one hole in the tubing.
 
2. The TPST according to claim 1 wherein the conveyancing means is selected from a group comprising: wireline (48), e-line and coiled tubing and/or
a first power delivery module (28) is located adjacent the setting tool and a second power delivery module (26) is located adjacent the punch tool (32).
 
3. The TPST according to claim 1 wherein the boost piston (82) is powered from a second power delivery module (26) and/or
the punch tool (32) includes a vent to allow for the exit of hydraulic fluid in the flow path from the tool at a predetermined pressure and/or
the punch tool includes an emergency release mechanism (126) in the event that the punch tool becomes stuck, the emergency release mechanism comprising a mechanical release to separate the TPST at a location above the punch assemblies and allow the conveyancing means carrying the TPST to be pulled out of the well bore.
 
4. The TPST according to claims 1 or 2 wherein the punch tool (32) includes emergency release means in the event that the punch tool (32) becomes stuck, the means comprising a weakened portion at the end of the pistons (116) of the punch tool which shears off leaving a portion of the pistons in the tubing with an aperture therethrough.
 
5. The TPST according to any preceding claim wherein the reference tool (46; 140) is an anchor.
 
6. The TPST according to claim 5 wherein the anchor is adapted to latch to the setting tool (42; 44) and a gas lift straddle wherein a first length from a latching end of the setting tool (42; 44) to a punch of the punch tool (32) is approximately equal to a second length from a latching end of the straddle to a point midway between packer elements of the straddle.
 
7. The TPST according to claim 6 wherein the gas lift straddle comprises a tubular body having a through bore (54), first and second packer elements (164, 166) at first and second ends of the body, at least one port located through the body between the packer elements (164, 166), and a gas head located on the body, the gas head having an inlet through which fluid from the port enters a check valve to ensure the fluid can only travel from the port to the bore (54).
 
8. A single trip well intervention method, comprising;

(a) locating a reference tool (46; 140) on a setting tool (42, 44) of a tubing punch and setting tool (TPST), the TPST comprising: a substantially cylindrical body having a first end adapted for connection to conveyancing means; a setting tool (42, 44) with means to connect to the reference tool (46; 140) at a second end; a punch tool (32) comprising a substantially cylindrical body including at least two punch assemblies (38, 40) arranged perpendicularly to a central axis of the body, a hydraulic fluid chamber (84) including a boost piston (82) to compress the fluid (86) and a fluid pathway, from the chamber (84), to deliver the compressed fluid (86)to the punch assemblies (38, 40) and thereby operate the punch assemblies (38, 40); at least one power delivery module (26, 28); and, an actuation means located between the ends; wherein the actuation means triggers the power delivery module (28) to power the setting tool (42; 44) to set the reference tool (46; 140) against the tubing and triggers the power delivery module (26) to power the punch tool (32) to punch at least one hole in the tubing;

(b) running the TPST into a tubing string (52) until the tool is at a desired depth to locate a punched hole through the tubing;

(c) triggering the power delivery module (28) to set the reference tool (46; 140) against a wall of the tubing using the setting tool (42; 44); and

(d) triggering the power delivery module (26) to punch at least one hole in the tubing using the punch tool (32) .


 
9. The single trip well intervention method according to claim 8, wherein the method includes the step of detaching the TPST from the reference tool (46; 140) and moving the TPST relative to the reference tool (46; 140), between steps (c) and (d).
 
10. The single trip well intervention method according to claim 8 or claim 9 wherein the triggering is controlled via actuation means which is pre-programmed at surface to initiate the trigger and sequencing to set the reference tool (46; 140) and punch the holes.
 
11. The single trip well intervention method according to any one of claims 8 to 10 wherein the triggering is controlled via actuation means which initiates the triggering when a specific set of downhole criteria is fulfilled.
 
12. The single trip well intervention method according to any one of claims 8 to 11 wherein the step of triggering the power delivery module (26, 28) comprises creating high pressure gas via a pyrotechnic charge and directing the gas formed on detonation onto one side of a piston, and via the piston, compressing hydraulic fluid to power the respective tool.
 
13. The single trip well intervention method according to claim 11 or claim 12 wherein the actuation means senses that the reference tool (46; 140) is set and then sends an electronic signal to trigger the power delivery module (26) to operate the punch tool (32).
 
14. The single trip well intervention method according to any one of claims 8 to 13 wherein the method includes the step of running in a tool to locate at the reference tool (46; 140) and using the communication paths now created through the tubing to operate.
 
15. A single trip well intervention method according to any one of claims 8 to 13 wherein the reference tool comprises an anchor tool (140) and wherein the method includes the steps of:

(e) unlatching the setting tool (42; 44) from the anchor tool;

(f) retrieving the TPST;

(g) running a gas lift straddle and latching it to the anchor tool;

(h) setting the packing elements on the straddle; and

(i) commencing gas injection through the punched holes preferably also including the step of taking a first overpull to ensure the anchor tool is set and using the overpull to actuate the punch tool and/or preferably including the step of disconnecting the straddle setting tool (172) from the straddle when the straddle is latched to the anchor tool.


 


Ansprüche

1. Rohrstanz- und Einbauwerkzeug (TPST, 10) zum Einführen und Einbauen eines Referenzwerkzeugs (46; 140) in einen Rohrstrang (52) in einem Bohrloch (54) und zum Stanzen mindestens eines Lochs in den Rohrstrang (52) bei einem einzelnen Arbeitsgang in dem Bohrloch (54), wobei das TPST Folgendes umfasst: einen im Wesentlichen zylindrischen Körper, der ein erstes Ende aufweist, das zur Verbindung mit einem Fördermittel ausgelegt ist; ein Einbauwerkzeug (42; 44) mit Mitteln, um es mit einem Referenzwerkzeug (46; 140) an einem zweiten Ende zu verbinden; ein Stanzwerkzeug (32), das einen im Wesentlichen zylindrischen Körper umfasst, der mindestens zwei Stanzanordnungen (38, 40), die senkrecht zu einer Mittelachse des Körpers angeordnet sind, eine Hydraulikfluidkammer (84), die einen Ladekolben (82) beinhaltet, um das Fluid (86) zusammenzudrücken, und einen Fluidweg von der Kammer (84), um das zusammengedrückte Fluid (86) an die Stanzanordnungen (38, 40) zu liefern und somit die Stanzanordnungen (38, 40) zu betreiben, beinhaltet; mindestens ein Leistungsabgabemodul (26, 28); und ein Betätigungsmittel, das zwischen den Enden angeordnet ist; wobei das Betätigungsmittel das Leistungsabgabemodul (28) auslöst, um das Einbauwerkzeug (42; 44) mit Energie zu versorgen, um das Referenzwerkzeug (46; 140) an das Rohr einzubauen, und das Leistungsabgabemodul (26) auslöst, um das Stanzwerkzeug (32) mit Energie zu versorgen, um mindestens ein Loch in das Rohr zu stanzen.
 
2. TPST nach Anspruch 1, wobei das Fördermittel aus einer Gruppe ausgewählt ist, die Folgendes umfasst: Wireline (48), E-Line und aufgerollte Rohre, und/oder
ein erstes Leistungsabgabemodul (28) angrenzend an das Einbauwerkzeug angeordnet ist und ein zweites Leistungsabgabemodul (26) angrenzend an das Stanzwerkzeug (32) angeordnet ist.
 
3. TPST nach Anspruch 1, wobei der Ladekolben (82) von einem zweiten Leistungsabgabemodul (26) mit Strom versorgt wird, und/oder
das Stanzwerkzeug (32) eine Öffnung beinhaltet, um das Austreten von Hydraulikfluid in den Strömungsweg von dem Werkzeug bei einem vorgegebenen Druck zu ermöglichen, und/oder das Stanzwerkzeug einen Notentriegelungsmechanismus (126) beinhaltet für den Fall, dass das Stanzwerkzeug stecken bleibt, wobei der Notentriegelungsmechanismus eine mechanische Entriegelung umfasst, um das TPST an einer Stelle oberhalb der Stanzanordnungen abzutrennen und es dem Fördermittel, das das TPST trägt, zu ermöglichen, aus dem Bohrloch herausgezogen zu werden.
 
4. TPST nach den Ansprüchen 1 oder 2, wobei das Stanzwerkzeug (32) ein Notentriegelungsmittel für den Fall beinhaltet, dass das Stanzwerkzeug (32) stecken bleibt, wobei das Mittel einen geschwächten Abschnitt an dem Ende der Kolben (116) des Stanzwerkzeugs umfasst, der abbricht, wobei er einen Abschnitt der Kolben in dem Rohr mit einer Öffnung dadurch hinterlässt.
 
5. TPST nach einem der vorstehenden Ansprüche, wobei das Referenzwerkzeug (46; 140) ein Anker ist.
 
6. TPST nach Anspruch 5, wobei der Anker dazu ausgelegt ist, um in das Einbauwerkzeug (42; 44) und ein Gaslift-Straddle einzurasten, wobei eine erste Länge von einem Einrastende des Einbauwerkzeugs (42; 44) zu einer Stanze des Stanzwerkzeugs (32) in etwa genauso lang ist wie eine zweite Länge von einem Einrastende des Straddle bis zu einem Punkt auf halbem Wege zwischen Packerelementen des Straddle ist.
 
7. TPST nach Anspruch 6, wobei der Gaslift-Straddle einen röhrenförmigen Körper umfasst, der eine Durchgangsbohrung (54), ein erstes und ein zweites Packerelement (164, 166) am ersten und am zweiten Ende des Körpers, mindestens eine Öffnung, die durch den Körper zwischen den Packerelementen (164, 166) angeordnet ist, und einen Gaskopf, der an dem Körper angeordnet ist, aufweist, wobei der Gaskopf einen Einlass aufweist, durch den Fluid von der Öffnung in ein Rückschlagventil eintritt, um sicherzustellen, dass sich das Fluid nur von der Öffnung zu der Bohrung (54) bewegen kann.
 
8. Bohrlocheingriffsverfahren in einem Arbeitsgang, umfassend;

(a) Anordnen eines Referenzwerkzeugs (46; 140) an einem Einbauwerkzeug (42, 44) eines Rohrstanz- und Einbauwerkzeugs (TPST), wobei das TPST Folgendes umfasst: einen im Wesentlichen zylindrischen Körper, der ein erstes Ende aufweist, das zur Verbindung mit einem Fördermittel ausgelegt ist; ein Einbauwerkzeug (42; 44) mit Mitteln, um es mit einem Referenzwerkzeug (46; 140) an einem zweiten Ende zu verbinden; ein Stanzwerkzeug (32), das einen im Wesentlichen zylindrischen Körper umfasst, der mindestens zwei Stanzanordnungen (38, 40), die senkrecht zu einer Mittelachse des Körpers angeordnet sind, eine Hydraulikfluidkammer (84), die einen Ladekolben (82) beinhaltet, um das Fluid (86) zusammenzudrücken, und einen Fluidweg von der Kammer (84), um das zusammengedrückte Fluid (86) an die Stanzanordnungen (38, 40) zu liefern und somit die Stanzanordnungen (38, 40) zu betreiben, beinhaltet; mindestens ein Leistungsabgabemodul (26, 28); und ein Betätigungsmittel, das zwischen den Enden angeordnet ist; wobei das Betätigungsmittel das Leistungsabgabemodul (28) auslöst, um das Einbauwerkzeug (42; 44) mit Energie zu versorgen, um das Referenzwerkzeug (46; 140) an das Rohr einzubauen, und das Leistungsabgabemodul (26) auslöst, um das Stanzwerkzeug (32) mit Energie zu versorgen, um mindestens ein Loch in das Rohr zu stanzen;

(b) Einführen des TPST in einen Rohrstrang (52), bis sich das Werkzeug an einer erwünschten Tiefe befindet, um ein gestanztes Loch durch das Rohr zu positionieren;

(c) Auslösen des Leistungsabgabemoduls (28), um das Referenzwerkzeug (46; 140) an eine Wand des Rohrs unter Verwendung des Einbauwerkzeugs (42; 44) einzubauen; und

(d) Auslösen des Leistungsabgabemoduls (26), um mindestens ein Loch in das Rohr unter Verwendung des Stanzwerkzeugs (32) zu stanzen.


 
9. Bohrlocheingriffsverfahren in einem Arbeitsgang nach Anspruch 8, wobei das Verfahren die Schritte des Ablösens des TPST von dem Referenzwerkzeug (46; 140) und des Bewegens des TPST relativ zum Referenzwerkzeug (46; 140) zwischen den Schritten (c) und (d) beinhaltet.
 
10. Bohrlocheingriffsverfahren in einem Arbeitsgang nach Anspruch 8 oder Anspruch 9, wobei das Auslösen über ein Betätigungsmittel gesteuert wird, das an der Oberfläche vorprogrammiert wird, um das Auslösen und die Ablaufsteuerung einzuleiten, um das Referenzwerkzeug (46; 140) einzubauen und die Löcher zu stanzen.
 
11. Bohrlocheingriffsverfahren in einem Arbeitsgang nach einem der Ansprüche 8 bis 10, wobei das Auslösen über ein Betätigungsmittel gesteuert wird, das das Auslösen einleitet, wenn ein bestimmter Satz von Kriterien im Bohrloch erfüllt ist.
 
12. Bohrlocheingriffsverfahren in einem Arbeitsgang nach einem der Ansprüche 8 bis 11, wobei der Schritt des Auslösens des Leistungsabgabemoduls (26, 28) das Erzeugen von Hochdruckgas über eine pyrotechnische Ladung und das Leiten des bei der Detonation gebildeten Gases auf eine Seite eines Kolbens und über den Kolben das Zusammendrücken des Hydraulikfluids, um das entsprechende Werkzeug mit Energie zu versorgen, umfasst.
 
13. Bohrlocheingriffsverfahren in einem Arbeitsgang nach Anspruch 11 oder Anspruch 12, wobei das Betätigungsmittel erfasst, dass das Referenzwerkzeug (46; 140) eingebaut ist, und dann ein elektronisches Signal aussendet, um das Leistungsabgabemodul (26) auszulösen, um das Stanzwerkzeug (32) zu betätigen.
 
14. Bohrlocheingriffsverfahren in einem Arbeitsgang nach einem der Ansprüche 8 bis 13, wobei das Verfahren den Schritt des Einführens eines Werkzeugs, um es an dem Referenzwerkzeug (46; 140) zu positionieren, und das Verwenden der nun durch das Rohr erzeugten Kommunikationswege zum Betätigen umfasst.
 
15. Bohrlocheingriffsverfahren in einem Arbeitsgang nach einem der Ansprüche 8 bis 13, wobei das Referenzwerkzeug ein Ankerwerkzeug (140) umfasst und wobei das Verfahren ferner die folgenden Schritte umfasst:

(e) Lösen des Einbauwerkzeugs (42; 44) von dem Ankerwerkzeug;

(f) Ziehen des TPST;

(g) Einführen eines Gaslift-Straddle und Einrastenlassen am Ankerwerkzeug;

(h) Einbauen der Packelemente am Straddle; und

(i) Beginnen der Gasinjektion durch die gestanzten Löcher, vorzugsweise weiter beinhaltend den Schritt des Vornehmens einer ersten Überlast, um sicherzustellen, dass das Ankerwerkzeug eingebaut ist, und Verwenden der Überlast, um das Stanzwerkzeug zu betätigen, und/oder vorzugsweise weiter beinhaltend den Schritt des Lösens des Straddle-Einbauwerkzeugs (172) vom Straddle, wenn der Straddle am Ankerwerkzeug eingerastet ist.


 


Revendications

1. Poinçon de tubes et outil de réglage (TPST, 10) pour faire fonctionner et régler un outil de référence (46 ; 140) dans une colonne de production (52) dans un puits de forage (54) et pour le poinçonnage d'au moins un trou dans la colonne de production (52) en une seule manoeuvre dans le puits de forage (54), le TPST comprenant : un corps sensiblement cylindrique ayant une première extrémité adaptée pour être reliée à un organe porteur ; un outil de réglage (42 ; 44) avec des organes de raccordement à l'outil de référence (46 ; 140) au niveau d'une seconde extrémité ; un outil de poinçonnage (32) comprenant un corps sensiblement cylindrique incluant au moins deux ensembles poinçon (38, 40) disposés perpendiculairement à un axe central du corps, une chambre de fluide hydraulique (84) incluant un piston de renfort (82) pour comprimer le fluide (86) et un trajet de fluide, depuis la chambre (84), pour distribuer le fluide comprimé (86) aux ensembles poinçon (38, 40) et ainsi faire fonctionner les ensembles poinçon (38, 40) ; au moins un module de distribution d'énergie (26, 28); et un organe d'actionnement situé entre les extrémités ; dans lequel l'organe d'actionnement déclenche le module de distribution d'énergie (28) pour alimenter l'outil de réglage (42 ; 44) afin de fixer l'outil de référence (46 ; 140) contre le tube et déclenche le module de distribution d'énergie (26) pour alimenter l'outil de poinçonnage (32) pour faire au moins un trou dans le tube.
 
2. TPST selon la revendication 1, dans lequel l'organe porteur est sélectionné dans un groupe comprenant : un câble métallique (48), une conduite électrique et un tube spiralé et/ou un premier module de distribution d'énergie (28) situé à côté de l'outil de réglage et un second module de distribution d'énergie (26) est situé à côté de l'outil de poinçonnage (32) .
 
3. TPST selon la revendication 1, dans lequel le piston de renfort (82) est alimenté par un second module de distribution d'énergie (26) et/ou l'outil de poinçonnage (32) inclut un évent pour permettre la sortie du fluide hydraulique dans le trajet d'écoulement de l'outil à une pression prédéterminée et/ou l'outil de poinçonnage comprend un mécanisme de libération d'urgence (126) en cas de blocage de l'outil de poinçonnage, le mécanisme de libération d'urgence comprenant une libération mécanique pour séparer le TPST à un emplacement situé au-dessus des ensembles poinçon et permettre à l'organe porteur portant le TPST d'être retiré du puits de forage.
 
4. TPST selon la revendication 1 ou 2, dans lequel l'outil de poinçonnage (32) comprend un organe de libération d'urgence en cas de blocage de l'outil de poinçonnage (32), l'organe comprenant une partie affaiblie à l'extrémité des pistons (116) de l'outil de poinçonnage qui se détache laissant une partie des pistons dans le tube muni d'une ouverture traversante.
 
5. TPST selon une quelconque revendication précédente, dans lequel l'outil de référence (46 ; 140) est une ancre.
 
6. TPST selon la revendication 5, dans lequel l'ancre est adaptée pour se verrouiller à l'outil de réglage (42 ; 44) et un chariot élévateur d'extraction au gaz dans lequel une première longueur s'étend depuis une extrémité de verrouillage de l'outil de réglage (42 ; 44) jusqu'à un poinçon de l'outil de poinçonnage (32) est approximativement égale à une seconde longueur depuis une extrémité de verrouillage du chariot élévateur jusqu'à un point situé à mi-distance entre les éléments de garniture d'étanchéité du chariot élévateur.
 
7. TPST selon la revendication 6, caractérisé en ce que le chariot élévateur d'extraction au gaz comprend un corps tubulaire ayant un alésage traversant (54), des premier et second éléments de garniture d'étanchéité (164, 166) au niveau des première et seconde extrémité du corps, au moins un orifice situé au travers du corps entre les éléments de garniture d'étanchéité (164, 166) et une tête de gaz située sur le corps, la tête de gaz ayant une entrée à travers laquelle le fluide provenant de l'orifice pénètre dans un clapet anti-retour pour garantir que le fluide ne peut circuler que de l'orifice à l'alésage (54).
 
8. Procédé d'intervention de puits en une seule manoeuvre comprenant :

(a) le placement d'un outil de référence (46 ; 140) sur un outil de réglage (42, 44) d'un poinçon de tubes et d'un outil de réglage (TPST), le TPST comprenant : un corps sensiblement cylindrique ayant une première extrémité adaptée pour être reliée à un organe porteur ; un outil de réglage (42, 44) avec un organe pour être relié à l'outil de référence (46 ; 140) au niveau d'une seconde extrémité ; un outil de poinçonnage (32) comprenant un corps sensiblement cylindrique comprenant au moins deux ensembles poinçon (38, 40) disposés perpendiculairement à un axe central du corps, une chambre de fluide hydraulique (84) incluant un piston de renfort (82) pour comprimer le fluide (86) et un trajet de fluide, depuis la chambre (84), afin de distribuer le fluide comprimé (86) aux ensembles poinçon (38, 40) et ainsi faire fonctionner les ensembles poinçon (38, 40) ; au moins un module de distribution d'énergie (26, 28) ; et, un organe d'actionnement situé entre les extrémités ; dans lequel l'organe d'actionnement déclenche le module de distribution d'énergie (28) pour alimenter l'outil de réglage (42 ; 44) afin de fixer l'outil de référence (46 ; 140) contre le tube et déclenche le module de distribution d'énergie (26) pour alimenter l'outil de poinçonnage (32) afin de poinçonner au moins un trou dans le tube ;

(b) le fonctionnement du TPST dans une colonne de production (52) jusqu'à ce que l'outil se trouve à une profondeur souhaitée pour localiser un trou poinçonné à travers le tube ;

(c) le déclenchement du module de distribution d'énergie (28) pour fixer l'outil de référence (46 ; 140) contre une paroi du tube à l'aide de l'outil de réglage (42 ; 44) ; et

(d) le déclenchement du module de distribution d'énergie (26) pour poinçonner au moins un trou dans le tube à l'aide de l'outil de poinçonnage (32).


 
9. Procédé d'intervention en une seule manoeuvre selon la revendication 8, dans lequel le procédé inclut l'étape de détachement du TPST de l'outil de référence (46 ; 140) et le déplacement du TPST par rapport à l'outil de référence (46 ; 140), entre les étapes (c) et (d).
 
10. Procédé d'intervention de puits en une seule manoeuvre selon la revendication 8 ou la revendication 9, dans lequel le déclenchement est commandé par un organe d'actionnement préprogrammé en surface pour amorcer le déclenchement et le séquençage afin de régler l'outil de référence (46 ; 140) et de poinçonner les trous.
 
11. Procédé d'intervention de puits en une seule manoeuvre selon l'une quelconque des revendications 8 à 10, dans lequel le déclenchement est commandé par un organe d'actionnement qui amorce le déclenchement lorsqu'un ensemble spécifique de critères de fond de puits est rempli.
 
12. Procédé d'intervention de puits en une seule manoeuvre selon l'une quelconque des revendications 8 à 11, dans lequel l'étape de déclenchement du module de distribution d'énergie (26, 28) comprend la création d'un gaz à haute pression par une charge pyrotechnique et la direction du gaz formé lors de la détonation sur un côté d'un piston, et par le piston, la compression du fluide hydraulique pour alimenter l'outil respectif.
 
13. Procédé d'intervention de puits en une seule manoeuvre selon la revendication 11 ou 12, dans lequel l'organe d'actionnement détecte que l'outil de référence (46 ; 140) est réglé puis envoie ensuite un signal électronique pour déclencher le module de distribution d'énergie (26) afin de faire fonctionner l'outil de poinçonnage (32).
 
14. Procédé d'intervention de puits en une seule manoeuvre selon l'une quelconque des revendications 8 à 13, dans lequel le procédé inclut l'étape d'exécution dans un outil pour une localisation au niveau de l'outil de référence (46 ; 140) et d'utilisation des trajets de communication qui viennent d'être créés dans le tube à exploiter.
 
15. Procédé d'intervention de puits en une seule manoeuvre selon l'une quelconque des revendications 8 à 13, dans lequel l'outil de référence comprend un outil d'ancrage (140) et dans lequel le procédé inclut les étapes de :

(e) déverrouillage de l'outil de réglage (42 ; 44) par rapport à l'outil d'ancrage ;

(f) récupération du TPST ;

(g) fonctionnement d'un chariot élévateur d'extraction au gaz et son verrouillage sur l'outil d'ancrage ;

(h) réglage des éléments de garniture sur le chariot élévateur ; et

(i) commencement de l'injection de gaz à travers les trous poinçonnés, incluant de préférence également l'étape de prise d'une première traction excessive pour s'assurer que l'outil d'ancrage est réglé et l'utilisation de la traction excessive pour actionner l'outil de poinçonnage et/ou, de préférence, incluant l'étape de déconnexion de l'outil de réglage de chariot élévateur (172) depuis le chariot élévateur lorsque le chariot élévateur est verrouillé sur l'outil d'ancrage.


 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description