(19)
(11) EP 2 086 147 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Description

(48) Corrigendum issued on:
12.11.2014 Bulletin 2014/46

(45) Mention of the grant of the patent:
11.06.2014 Bulletin 2014/24

(21) Application number: 09006756.2

(22) Date of filing: 05.12.2001
(51) International Patent Classification (IPC): 
H04L 1/06(2006.01)
H04B 1/707(2011.01)
H04L 25/02(2006.01)
H04B 7/26(2006.01)

(54)

Simple block space time transmit diversity using multiple spreading codes

Einfache Raum-Zeit-Blocksendediversität unter Verwendung mehrerer Spreizcodes

Diversité de transmission de l'espace-temps de bloc simple utilisant plusieurs codes de diffusion


(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

(30) Priority: 07.12.2000 US 254013 P

(43) Date of publication of application:
05.08.2009 Bulletin 2009/32

(60) Divisional application:
14171776.9 / 2779507

(62) Application number of the earlier application in accordance with Art. 76 EPC:
04015676.2 / 1463227
01996123.4 / 1340334

(73) Proprietor: InterDigital Technology Corporation
Wilmington DE 19801 (US)

(72) Inventors:
  • Kim, Younglok
    Fort Lee, NJ 07024 (US)
  • Zeira, Ariela
    Huntington, NY 11743 (US)

(74) Representative: Heinze, Ekkehard et al
Meissner, Bolte & Partner GbR Widenmayerstrasse 47
80538 München
80538 München (DE)


(56) References cited: : 
EP-A- 0 957 604
WO-A-00/64073
EP-A2- 0 993 129
   
  • YE (GEOFFREY) LI ET AL: "Channel Estimation for OFDM Systems with Transmitter Diversity in Mobile Wireless Channels", IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, US, vol. 17, no. 3, 1 March 1999 (1999-03-01), XP011054927, ISSN: 0733-8716
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND



[0001] The present invention relates to communications systems imploring code division multiple access (CDMA) techniques. More particularly, the present invention relates to a transmission diversity scheme which can be applied to a CDMA communication system

[0002] Spacial diversity has been proposed for support of very high data rate users within third generation wide band code division multiple access systems such as CDMA. Using multiple antennas, the systems achieve better gains and link quality, which results in increased system capacity. Classically, diversity has been exploited through the use of either beam steering or through diversity combining.

[0003] More recently, it has been realized that coordinated use of diversity can be achieved through the use of space-time codes. Such systems can theoretically increase capacity by up to a factor equaling the number of transmit and receive antennas in the array. Space-time block codes operate on a block of input symbols producing a matrix output over antennas and time.

[0004] In the past, space-time transmit diversity systems have transmitted consecutive symbols simultaneously with their complex conjugates. This type of system, though may result in symbol overlap at the receiving end, with the amount of overlap being dependent on the length of the impulse response of the propagation channel. In time division duplex (TDD) mode, this symbol overlap will have to be accounted for in the joint detection receiver. The joint detector will have to estimate the transmitted symbols and their conjugates, resulting in an increase in complexity of the joint detection.

[0005] In order to alleviate this increase in joint detection, systems have been created which transmit two similar but different data fields. The first data field, having a first portion, D1, and a second portion, D2, is transmitted by the first antenna. A second data field is produced by modifying the first data field. The negation of the conjugate of D2, -D2*, is the first portion of the second data field and the conjugate of D 1, D1*, is the second portion. The second data field is simultaneously transmitted by the second antenna. This type of system results in the joint detection implemented at the receiver needing only to estimate the same amount of symbols as in the case of a single transmit antenna. A block diagram of this system is illustrated in Figure 1.

[0006] Although the above system reduces the complexity of joint detection for a single data block, joint detection requires the use of two joint detectors at the receiver in a system employing two transmit diversity antennas. Each joint detection device estimates the data from one of the antennas. The estimated data is combined to produce the original data. Therefore, the receiver in such a system has a high complexity resulting in higher receiver expense.

[0007] A prior art diversity transmission system is described in WO 00/64073 A1. In the system described therein, alternate symbols are spread using different Walsh codes and respective PN spreaders before transmission from respective antennas. Further transmission systems are described in EP 0 993 129 A2 and EP 0 957 604 A1.

[0008] Accordingly, there exists a need for a transmit diversity system requiring less complexity and receiver expense.

SUMMARY



[0009] The present invention provides a user equipment using a diversity scheme in a code division multiple access telecommunications system according to claim 1.

[0010] Further preferred aspects of the invention are recited in the dependent claims.

[0011] Embodiments that do not fall under the scope of the claims are useful for understanding the invention.

BRIEF DESCRIPTION OF THE DRAWINGS



[0012] 

Figure 1 is a block diagram of a prior art communication system employing space-time transmit diversity.

Figure 2 is a block diagram of a transmitter and receiver in a communication system in accordance with the preferred embodiment of the present invention.

Figure 3 is a flow diagram of the transmit diversity system of the present invention.

Figure 4 is a graph of the performance of the transmit diversity system of the present invention.

Figure 5 is a block diagram of a transmitter and receiver in a communication system in accordance with an alternative embodiment of the present invention.

Figure 6 is a flow diagram of an alternative transmit diversity system of the present invention.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



[0013] Figure 2 is a block diagram of a transmitter 10, preferably located at a base station, and a receiver 20, preferably located at a user equipment (UE), in a CDMA communication system in accordance with the preferred embodiment of the present invention. Although it is preferable to have the transmitter located at a base station and the receiver located at the UE, the receiver and transmitter may switch locations and the present invention operate on an uplink communication. The transmitter 10 comprises a block encoder 11, a plurality of channelization devices 8, 9, a plurality of spreading sequence insertion devices 12, 13, and a plurality of antennas 15, 16. Although Figure 1 illustrates a transmitter comprising two (2) antennas, it should be apparent to those having skill in the art that more than two (2) antennas may be used, such as N antennas.

[0014] A typical communication burst has two data fields separated by a midamble sequence. Preferably, the same encoding procedure, as discussed in the following, for one data field is also performed on the other data field. Data to be transmitted by the transmitter 10 is produced by a data generator (not shown). The resulting data symbols (S1, S2, ...SN/2), (SN/2+1, SN/2+2, ..., SN) of the first data field, which can be represented by sub-data fields D 1 and D2, are input into the block encoder 11, preferably a block space-time transmit diversity (BSTTD) encoder. The block encoder 11 encodes the input symbols and generates the complex conjugate of D 1 and the negation of the conjugate of D2: D1*, -D2*. The encoder 11 also changes the order of the symbols so that -D2* is ahead of D1*. Preferably, an analogous encoding of the second data field is also performed.

[0015] In accordance with the preferred embodiment of the present invention, the data fields, D1, D2 and -D2*, D1* are forwarded to a first and second channelization device 8, 9, respectively. The first channelization device 8 spreads the data blocks D1, D2 by a first channelization code, and -D2*, D1* by the second channelization device 9 using a second different channelization code. Each of the spread data blocks from the first and second channelization devices 8, 9 are then scrambled by the scrambling code associated with the transmitter 10.

[0016] Once the symbols D1, D2, -D2*, D1* have been scrambled, they are mixed with a first and second midamble through training sequence insertion devices 12, 13, producing two communication bursts 17, 18. The two bursts 17, 18 are modulated and simultaneously transmitted to the receiver 20 over antenna 15 and diversity antenna 16, respectively.

[0017] The receiver 20 comprises a joint detection device (JD) 24, a BSTTD decoder 22, a channel estimation device 23 and an antenna 26. The antenna 26 of the UE receives various RF signals including the communication bursts 17, 18 from the transmitter 10. The RF signals are then demodulated to produce a baseband signal.

[0018] The baseband signal is then forwarded to the joint detection device 24 and the channel estimation device 23. As those skilled in the art know, the channel estimation device 23 provides channel information, such as channel impulse responses, to the joint detection device 24.

[0019] The joint detection device 24, coupled to the channel estimation device 23 and BSTTD decoder 22, utilizes the channel information and the channelization codes to detect the soft data symbols d1, d2, -d2*, d1* in the received signal. The channel impulse response for each burst is determined using that burst's midamble sequence. Since each burst was transmitted using a different spreading code, the joint detection device 24 treats each burst as being transmitted by a different user. As a result, any joint detection device which can recover data from different transmitter sites may be used. Such joint detection devices include zero forcing block linear equalizers, detection devices using Cholesky or approximate Cholesky decomposition, as well as many others. The joint detection device 24 estimates the data symbols of each of the bursts 17, 18 output by the transmitter antennas 15, 16 and forwards the estimates to the BSTTD decoder 22.

[0020] The BSTTD decoder 22, coupled to the joint detection device 24, receives the estimated soft data symbols d1, d2 and -d2*, d1* corresponding to the antennas 15, 16 and decodes the symbols to yield a single data field's soft symbols, dSTTD.

[0021] The flow diagram of the present invention is illustrated in Figure 3. A data generator generates data to be transmitted to the receiver 20 (step 301). Each data field is separated into two sub-data fields D1, D2 (step 3 02). The sub-data fields D1, D2 are forwarded to the block encoder 11 and the first channelization device 8 (step 303). The sub-data fields forwarded to the block encoder 11 are encoded (step 304) and forwarded to the second channelization device 9 (step 305). Each channelization device 8, 9 spreads their respective data input using a separate channelization code associated with a respective antenna 15, 16 (step 306). The two spread signals are then scrambled, using the scrambling code associated with the base station (step 307) and transmitted to the receiver 20 over diversity antennas 15, 16 (step 308).

[0022] The receiver 20 receives a RF communication signal including the two spread signals from the diversity antennas 15, 16 (step 309), demodulates the signal and forwards the demodulated signal to the channel estimation device 23 and joint detection device 24 (step 310). The received signal is processed by the channel estimation device 23 (step 311) and the channel information applied by the joint detection device 24 along with the channelization codes, to estimate the transmit symbols from the diversity antennas 15, 16 (step 312). The detected sub-data fields, corresponding to each diversity antenna 15, 16, are forwarded to the BSTTD decoder (step 313), which decodes the soft symbol sub-fields to yield a single data field's soft symbols, dSTTD (step 314).

[0023] Similar to the preferred embodiment disclosed above, Figure 5 is a block diagram of an alternative transmitter 40, preferably located at a base station, and a receiver 50, preferably located a user equipment (UE) in a communication system. The transmitter 40 comprises a plurality of channelization devices 48, 49, a plurality of spreading sequence insertion devices 42, 43, and a plurality of antennas 45, 46.

[0024] Data to be transmitted by the transmitter 40 is produced by a data generator (not shown). The resulting data symbols (S1, S2, ...SN/2), (SN/2+1, SN/2+2, ..., SN) of the first data field, which can be represented by sub-data fields D 1 and D2, are input to a first and second channelization device 48, 49, respectively. The first channelization device 8 spreads the data blocks D1, D2 by a first channelization code, and the second channelization device 49 spreads the data blocks D1, D2 by a second different channelization code. Each of the spread data blocks from the first and second channelization devices 48, 49 are scrambled by the scrambling code associated with the transmitter 40.

[0025] Once the symbols have been scrambled, they are mixed with a first and second midamble through training sequence insertion devices 42, 43, producing two communication bursts 44, 5. The two bursts 44,45 are modulated and simultaneously transmitted to the receiver 50 over antenna 46 and diversity antenna 47, respectively.

[0026] The receiver 50 comprises a joint detection device (JD) 54, a decoder 22, a channel estimation device 53 and an antenna 51. The antenna 51 of the UE receives various RF signals including the communication bursts 44, 45 from the transmitter 40. The RF signals are then demodulated to produce a baseband signal.

[0027] The baseband signal is then forwarded to the joint detection device 54 and the channel estimation device 53. The joint detection device 54, coupled to the channel estimation device 53 and decoder 52, utilizes the channel information and the channelization codes to detect the soft data symbols d1, d2, in the received signal. The channel impulse response for each burst is determined using that burst's midamble sequence. Since each burst was transmitted using a different spreading code, the joint detection device 54 treats each burst as being transmitted by a different user. The joint detection device 54 estimates the data symbols of each of the signals 44,45 output by the transmitter antennas 46, 47 and forwards the estimates to the decoder 52.

[0028] The decoder 52, coupled to the joint detection device 54, receives the estimated soft data symbols d1, d2 corresponding to the antennas 46, 47 and decodes the symbols to yield a single data field's soft symbols, d.

[0029] The flow diagram of the alternative embodiment is illustrated in Figure 6. A data generator generates data to be transmitted to the receiver 40 (step 601). Each data field is separated into two sub-data fields D1, D2 (step 602). The sub-data fields D1, D2 are forwarded to the first channelization device 48 and to the second channelization device 49 (step 603). Each channelization device 48, 49 spreads their respective data input using a separate channelization code associated with each antenna 46, 47 (step 604). The two spread signals are then scrambled, using the scrambling code associated with the base station (step 605) and transmitted to the receiver 50 over diversity antennas 46, 47 (step 606).

[0030] The receiver 50 receives a RF communication signal including the two spread signals from the diversity antennas 46, 47 (step 607), demodulates the signal and forwards the demodulated signal to the channel estimation device 53 and joint detection device 54 (step 608). The received signal is processed by the channel estimation device 53 (step 609) and the channel information applied by the joint detection device 54 along with the channelization codes, to estimate the transmit symbols from the diversity antennas 46, 47 (step 610). The detected sub-data fields, corresponding to each diversity antenna 46, 47, are forwarded to the decoder 52 (step 611), which decodes the soft symbol sub-fields to yield a single data field's soft symbols, dSTTD (step 612).

[0031] By using additional channelization codes, the above approaches can be applied to an antenna array having any number of antennas. Each antenna has its own associated channelization code and midamble. If a block encoder is used, the data field transmitted by each of the antennas has a unique encoding, allowing the use of a single joint detector at the receiver.

[0032] The BSTTD transmitter with two channelization codes of the present invention allows for the use of a cheaper and simpler method of transmit diversity. The use of different channelization codes per transmit antenna requires only one joint detection device at the receiver resulting in a less complex receiver system than those of the prior art. Figure 4 is a graph showing the raw BER of various block STTD decoders. The model is based on all the receivers using a block linear equalizer (BLE) based approach to JD. NTD means the single antenna case, i.e., no transmit diversity. STTD with 1 code is the traditional block STTD JD. STTD with 2 code is the disclosed block STTD transmitter. Simple STTD with 2 code is the transmission system disclosed in the alternative embodiment. As illustrated, the benefit of 2 codes for STTD can be summarized as follows: 1) there is up to a 0.5 dB gain at 0.01 raw Bit error rate over 1 code STTD; and 2) by eliminating the encoding block in simple STTD with 2 code, the performance degradation is only 0.2 dB at 0.1 raw BER and no degradation at 0.01 raw BER. The performance improvement over NTD is still 1.0 dB and 2.7 dB at 0.1 and 0.01 raw BER.


Claims

1. A user equipment using a diversity scheme in a code division multiple access, CDMA, telecommunication system comprising:

receiving means (26) for receiving data being spatially transmitted including a first communication burst transmitted by a first transmitting means and a second communication burst transmitted by a second transmitting means, wherein the same data have been provided for the first and second communication bursts, said data comprising two data fields, the first and the second communication burst having been produced using a first and second channelization code on said data fields, respectively, each channelization code being uniquely associated with one of said first and second transmitting means, the first and second communication bursts being transmitted from a same base station in a same time slot and each of the first and second communication bursts having an inserted, associated whith the transmitting means, midamble training sequence used for estimating a channel response, and a scrambling code associated with the transmitting base station;

detecting means (24) for detecting the symbols of said first and second communication burst by using the first and second channelization code;

decoding means (22) for decoding said detected symbols of the first and second communication burst to generate a single data field of symbols; and

estimating means (23) for estimating the channel response of the first communication burst as a first channel response by using the midamble of the first communication burst and for estimating the channel response of the second communication burst as a second channel response by using the midamble of the second communication burst, and

wherein the first and second channelization codes are different from one another and the first channelization code is utilized exclusively for transmission on the first transmitting means and the second channelization code is utilized exclusively for transmission on the second transmitting means.


 
2. The user equipment of claim 1, wherein the detecting means (24) is adapted for detecting the symbols of the first and second communication burst by using the first and second channel response.
 
3. The user equipment of one of the preceding claims, wherein the detecting means (24) comprises a joint detector.
 
4. The user of equipment of one of the preceding claims, wherein detecting means (24) comprises zero forcing block linear equalizers, BLE.
 
5. The user equipment of one of the preceding claims, wherein the decoding means (22) comprises a block space-time transmit diversity, BSTTD, decoder.
 
6. The user equipment of one of the preceding claims, wherein the estimating means (23) provides channel impulse responses of the first and the second communication burst.
 
7. The user equipment of one of the preceding claims, further comprising demodulating means for producing a baseband signal from the received signal.
 


Ansprüche

1. Benutzergerät, das sich eines Diversitätsschemas in einem Codemultiplex-Vielfachzugriffs-CDMA-Telekommunikationssystem bedient, Folgendes umfassend:

eine Empfangseinrichtung (26) zum Empfangen von Daten, die einschließlich eines ersten Kommunikationsdatenblocks, der durch eine erste Sendeeinrichtung übertragen wird, und eines zweiten Kommunikationsdatenblocks, der durch eine zweite Sendeeinrichtung übertragen wird, räumlich übertragen werden, wobei dieselben Daten für den ersten und zweiten Kommunikationsdatenblock bereitgestellt wurden, wobei die Daten zwei Datenfelder umfassen, wobei der erste und zweite Kommunikationsdatenblock unter Verwendung jeweils eines ersten und zweiten Kanalisierungscodes an den Datenfeldern erzeugt wurden, wobei jeder Kanalisierungscode eindeutig mit der ersten oder zweiten Sendeeinrichtung assoziiert ist, wobei der erste und zweite Kommunikationsdatenblock in einem gleichen Zeitschlitz von einer gleichen Basisstation übertragen werden, und der erste und zweite Kommunikationsdatenblock jeweils eine eingefügte, mit der Sendeeinrichtung assoziierte Zwischenspanntrainingssequenz, die zum Schätzen einer Kanalantwort verwendet wird, und einen Verwürfelungscode besitzt, der mit der übertragenden Basisstation assoziiert ist;

eine Erfassungseinrichtung (24) zum Erfassen der Symbole des ersten und zweiten Kommunikationsdatenblocks, indem der erste und zweite Kanalisierungscode verwendet werden;

eine Decodiereinrichtung (22) zum Decodieren der erfassten Symbole des ersten und zweiten Kommunikationsdatenblocks, um ein einzelnes Datenfeld aus Symbolen zu generieren; und

eine Schätzeinrichtung (23) zum Schätzen der Kanalantwort des ersten Kommunikationsdatenblocks als erste Kanalantwort, indem der Zwischenspann des ersten Kommunikationsdatenblocks verwendet wird, und zum Schätzen der Kanalantwort des zweiten Kommunikationsdatenblocks als zweite Kanalantwort, indem der Zwischenspann des zweiten Kommunikationsdatenblocks verwendet wird, und

wobei sich der erste und zweite Kanalisierungscode voneinander unterscheiden, und der erste Kanalisierungscode ausschließlich zum Übertragen auf der ersten Sendeeinrichtung genutzt wird, und der zweite Kanalisierungscode ausschließlich zum Übertragen auf der zweiten Sendeeinrichtung genutzt wird.


 
2. Benutzergerät nach Anspruch 1, wobei die Erfassungseinrichtung (24) zum Erfassen der Symbole des ersten und zweiten Kommunikationsdatenblocks angepasst ist, indem die erste und zweite Kanalantwort verwendet wird.
 
3. Benutzergerät nach einem der vorhergehenden Ansprüche, wobei die Erfassungseinrichtung (24) einen Gemeinschaftsdetektor (joint detector) umfasst.
 
4. Benutzergerät nach einem der vorhergehenden Ansprüche, wobei die Erfassungseinrichtung (24) Nullerzwingungsblock-Linearentzerrer (zero forcing block linear equalizers) BLE umfasst.
 
5. Benutzergerät nach einem der vorhergehenden Ansprüche, wobei die Decodiereinrichtung (22) einen Block-Raum/Zeit-Übertragungsdiversitäts-BSTTD-Decodierer umfasst.
 
6. Benutzergerät nach einem der vorhergehenden Ansprüche, wobei die Schätzeinrichtung (23) Kanalimpulsantworten des ersten und des zweiten Kommunikationsdatenblocks bereitstellt.
 
7. Benutzergerät nach einem der vorhergehenden Ansprüche, darüber hinaus eine Demoduliereinrichtung umfassend, um ein Basisbandsignal aus dem Empfangssignal zu erzeugen.
 


Revendications

1. Équipement d'utilisateur utilisant un schéma de diversité dans un système de télécommunication à accès multiple par répartition en code (AMRC) comprenant :

des moyens de réception (26) destinés à recevoir des données qui sont émises spatialement, comprenant une première salve de communication émise par un premier moyen d'émission et une deuxième salve de communication émise par un deuxième moyen d'émission, sachant que les mêmes données ont été fournies pour la première et la deuxième salve de communication, lesdites données comprenant deux champs de données, la première et la deuxième salve de communication ayant été produites au moyen d'un premier et d'un deuxième code de canalisation sur lesdits champs de données, respectivement, chaque code de canalisation étant associé de manière unique à un desdits premier et deuxième moyens d'émission, la première et la deuxième salve de communication étant émises depuis une même station de base dans une même tranche de temps et chacune de la première et de la deuxième salve de communication présentant une séquence d'apprentissage de midambule insérée, associée aux moyens d'émission, utilisée pour estimer une réponse de canal, et un code d'embrouillage associé à la station de base émettrice ;

des moyens de détection (24) destinés à détecter les symboles de ladite première et de ladite deuxième salve de communication au moyen du premier et du deuxième code de canalisation ;

des moyens de décodage (22) destinés à décoder lesdits symboles détectés de la première et de la deuxième salve de communication pour générer un seul champ de données de symboles ; et

des moyens d'estimation (23) destinés à estimer la réponse de canal de la première salve de communication comme première réponse de canal au moyen du midambule de la première salve de communication et à estimer la réponse de canal de la deuxième salve de communication comme deuxième réponse de canal au moyen du midambule de la deuxième salve de communication, et

sachant que le premier et le deuxième code de canalisation sont différents l'un de l'autre et le premier code de canalisation est utilisé exclusivement pour l'émission sur le premier moyen d'émission et le deuxième code de canalisation est utilisé exclusivement pour l'émission sur le deuxième moyen d'émission.


 
2. L'équipement d'utilisateur de la revendication 1, dans lequel les moyens de détection (24) sont aptes à détecter les symboles de la première et de la deuxième salve de communication au moyen de la première et de la deuxième réponse de canal.
 
3. L'équipement d'utilisateur de l'une des revendications précédentes, dans lequel les moyens de détection (24) comprennent un détecteur commun (joint detector).
 
4. L'équipement d'utilisateur de l'une des revendications précédentes, dans lequel les moyens de détection (24) comprennent des égalisateurs linéaires de blocs à forçage de zéro (zero forcing block linear equalizers) (BLE).
 
5. L'équipement d'utilisateur de l'une des revendications précédentes, dans lequel les moyens de décodage (22) comprennent un décodeur à diversité d'émission spatio-temporelle de blocs (BSTTD).
 
6. L'équipement d'utilisateur de l'une des revendications précédentes, dans lequel les moyens d'estimation (23) fournissent des réponses impulsionnelles de canal de la première et de la deuxième salve de communication.
 
7. L'équipement d'utilisateur de l'une des revendications précédentes, comprenant en outre des moyens de démodulation destinés à produire un signal de bande de base à partir du signal reçu.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description