BACKGROUND
[0001] The present invention relates to communications systems imploring code division multiple
access (CDMA) techniques. More particularly, the present invention relates to a transmission
diversity scheme which can be applied to a CDMA communication system
[0002] Spacial diversity has been proposed for support of very high data rate users within
third generation wide band code division multiple access systems such as CDMA. Using
multiple antennas, the systems achieve better gains and link quality, which results
in increased system capacity. Classically, diversity has been exploited through the
use of either beam steering or through diversity combining.
[0003] More recently, it has been realized that coordinated use of diversity can be achieved
through the use of space-time codes. Such systems can theoretically increase capacity
by up to a factor equaling the number of transmit and receive antennas in the array.
Space-time block codes operate on a block of input symbols producing a matrix output
over antennas and time.
[0004] In the past, space-time transmit diversity systems have transmitted consecutive symbols
simultaneously with their complex conjugates. This type of system, though may result
in symbol overlap at the receiving end, with the amount of overlap being dependent
on the length of the impulse response of the propagation channel. In time division
duplex (TDD) mode, this symbol overlap will have to be accounted for in the joint
detection receiver. The joint detector will have to estimate the transmitted symbols
and their conjugates, resulting in an increase in complexity of the joint detection.
[0005] In order to alleviate this increase in joint detection, systems have been created
which transmit two similar but different data fields. The first data field, having
a first portion, D
1, and a second portion, D
2, is transmitted by the first antenna. A second data field is produced by modifying
the first data field. The negation of the conjugate of D
2, -D
2*, is the first portion of the second data field and the conjugate of D
1, D
1*, is the second portion. The second data field is simultaneously transmitted by the
second antenna. This type of system results in the joint detection implemented at
the receiver needing only to estimate the same amount of symbols as in the case of
a single transmit antenna. A block diagram of this system is illustrated in Figure
1.
[0006] Although the above system reduces the complexity of joint detection for a single
data block, joint detection requires the use of two joint detectors at the receiver
in a system employing two transmit diversity antennas. Each joint detection device
estimates the data from one of the antennas. The estimated data is combined to produce
the original data. Therefore, the receiver in such a system has a high complexity
resulting in higher receiver expense.
[0007] A prior art diversity transmission system is described in
WO 00/64073 A1. In the system described therein, alternate symbols are spread using different Walsh
codes and respective PN spreaders before transmission from respective antennas. Further
transmission systems are described in
EP 0 993 129 A2 and
EP 0 957 604 A1.
[0008] Accordingly, there exists a need for a transmit diversity system requiring less complexity
and receiver expense.
SUMMARY
[0009] The present invention provides a user equipment using a diversity scheme in a code
division multiple access telecommunications system according to claim 1.
[0010] Further preferred aspects of the invention are recited in the dependent claims.
[0011] Embodiments that do not fall under the scope of the claims are useful for understanding
the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012]
Figure 1 is a block diagram of a prior art communication system employing space-time
transmit diversity.
Figure 2 is a block diagram of a transmitter and receiver in a communication system
in accordance with the preferred embodiment of the present invention.
Figure 3 is a flow diagram of the transmit diversity system of the present invention.
Figure 4 is a graph of the performance of the transmit diversity system of the present
invention.
Figure 5 is a block diagram of a transmitter and receiver in a communication system
in accordance with an alternative embodiment of the present invention.
Figure 6 is a flow diagram of an alternative transmit diversity system of the present
invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0013] Figure 2 is a block diagram of a transmitter 10, preferably located at a base station,
and a receiver 20, preferably located at a user equipment (UE), in a CDMA communication
system in accordance with the preferred embodiment of the present invention. Although
it is preferable to have the transmitter located at a base station and the receiver
located at the UE, the receiver and transmitter may switch locations and the present
invention operate on an uplink communication. The transmitter 10 comprises a block
encoder 11, a plurality of channelization devices 8, 9, a plurality of spreading sequence
insertion devices 12, 13, and a plurality of antennas 15, 16. Although Figure 1 illustrates
a transmitter comprising two (2) antennas, it should be apparent to those having skill
in the art that more than two (2) antennas may be used, such as N antennas.
[0014] A typical communication burst has two data fields separated by a midamble sequence.
Preferably, the same encoding procedure, as discussed in the following, for one data
field is also performed on the other data field. Data to be transmitted by the transmitter
10 is produced by a data generator (not shown). The resulting data symbols (S
1, S
2, ...S
N/2), (S
N/2+1, S
N/2+2, ..., S
N) of the first data field, which can be represented by sub-data fields D
1 and D
2, are input into the block encoder 11, preferably a block space-time transmit diversity
(BSTTD) encoder. The block encoder 11 encodes the input symbols and generates the
complex conjugate of D
1 and the negation of the conjugate of D
2: D
1*, -D
2*. The encoder 11 also changes the order of the symbols so that -D
2* is ahead of D
1*. Preferably, an analogous encoding of the second data field is also performed.
[0015] In accordance with the preferred embodiment of the present invention, the data fields,
D
1, D
2 and -D
2*, D
1* are forwarded to a first and second channelization device 8, 9, respectively. The
first channelization device 8 spreads the data blocks D
1, D
2 by a first channelization code, and -D
2*, D
1* by the second channelization device 9 using a second different channelization code.
Each of the spread data blocks from the first and second channelization devices 8,
9 are then scrambled by the scrambling code associated with the transmitter 10.
[0016] Once the symbols D
1, D
2, -D
2*, D
1* have been scrambled, they are mixed with a first and second midamble through training
sequence insertion devices 12, 13, producing two communication bursts 17, 18. The
two bursts 17, 18 are modulated and simultaneously transmitted to the receiver 20
over antenna 15 and diversity antenna 16, respectively.
[0017] The receiver 20 comprises a joint detection device (JD) 24, a BSTTD decoder 22, a
channel estimation device 23 and an antenna 26. The antenna 26 of the UE receives
various RF signals including the communication bursts 17, 18 from the transmitter
10. The RF signals are then demodulated to produce a baseband signal.
[0018] The baseband signal is then forwarded to the joint detection device 24 and the channel
estimation device 23. As those skilled in the art know, the channel estimation device
23 provides channel information, such as channel impulse responses, to the joint detection
device 24.
[0019] The joint detection device 24, coupled to the channel estimation device 23 and BSTTD
decoder 22, utilizes the channel information and the channelization codes to detect
the soft data symbols d
1, d
2, -d
2*, d
1* in the received signal. The channel impulse response for each burst is determined
using that burst's midamble sequence. Since each burst was transmitted using a different
spreading code, the joint detection device 24 treats each burst as being transmitted
by a different user. As a result, any joint detection device which can recover data
from different transmitter sites may be used. Such joint detection devices include
zero forcing block linear equalizers, detection devices using Cholesky or approximate
Cholesky decomposition, as well as many others. The joint detection device 24 estimates
the data symbols of each of the bursts 17, 18 output by the transmitter antennas 15,
16 and forwards the estimates to the BSTTD decoder 22.
[0020] The BSTTD decoder 22, coupled to the joint detection device 24, receives the estimated
soft data symbols d
1, d
2 and -d
2*, d
1* corresponding to the antennas 15, 16 and decodes the symbols to yield a single data
field's soft symbols, d
STTD.
[0021] The flow diagram of the present invention is illustrated in Figure 3. A data generator
generates data to be transmitted to the receiver 20 (step 301). Each data field is
separated into two sub-data fields D
1, D
2 (step 3 02). The sub-data fields D
1, D
2 are forwarded to the block encoder 11 and the first channelization device 8 (step
303). The sub-data fields forwarded to the block encoder 11 are encoded (step 304)
and forwarded to the second channelization device 9 (step 305). Each channelization
device 8, 9 spreads their respective data input using a separate channelization code
associated with a respective antenna 15, 16 (step 306). The two spread signals are
then scrambled, using the scrambling code associated with the base station (step 307)
and transmitted to the receiver 20 over diversity antennas 15, 16 (step 308).
[0022] The receiver 20 receives a RF communication signal including the two spread signals
from the diversity antennas 15, 16 (step 309), demodulates the signal and forwards
the demodulated signal to the channel estimation device 23 and joint detection device
24 (step 310). The received signal is processed by the channel estimation device 23
(step 311) and the channel information applied by the joint detection device 24 along
with the channelization codes, to estimate the transmit symbols from the diversity
antennas 15, 16 (step 312). The detected sub-data fields, corresponding to each diversity
antenna 15, 16, are forwarded to the BSTTD decoder (step 313), which decodes the soft
symbol sub-fields to yield a single data field's soft symbols, d
STTD (step 314).
[0023] Similar to the preferred embodiment disclosed above, Figure 5 is a block diagram
of an alternative transmitter 40, preferably located at a base station, and a receiver
50, preferably located a user equipment (UE) in a communication system. The transmitter
40 comprises a plurality of channelization devices 48, 49, a plurality of spreading
sequence insertion devices 42, 43, and a plurality of antennas 45, 46.
[0024] Data to be transmitted by the transmitter 40 is produced by a data generator (not
shown). The resulting data symbols (S
1, S
2, ...S
N/2), (S
N/2+1, S
N/2+2, ..., S
N) of the first data field, which can be represented by sub-data fields D
1 and D
2, are input to a first and second channelization device 48, 49, respectively. The
first channelization device 8 spreads the data blocks D
1, D
2 by a first channelization code, and the second channelization device 49 spreads the
data blocks D
1, D
2 by a second different channelization code. Each of the spread data blocks from the
first and second channelization devices 48, 49 are scrambled by the scrambling code
associated with the transmitter 40.
[0025] Once the symbols have been scrambled, they are mixed with a first and second midamble
through training sequence insertion devices 42, 43, producing two communication bursts
44, 5. The two bursts 44,45 are modulated and simultaneously transmitted to the receiver
50 over antenna 46 and diversity antenna 47, respectively.
[0026] The receiver 50 comprises a joint detection device (JD) 54, a decoder 22, a channel
estimation device 53 and an antenna 51. The antenna 51 of the UE receives various
RF signals including the communication bursts 44, 45 from the transmitter 40. The
RF signals are then demodulated to produce a baseband signal.
[0027] The baseband signal is then forwarded to the joint detection device 54 and the channel
estimation device 53. The joint detection device 54, coupled to the channel estimation
device 53 and decoder 52, utilizes the channel information and the channelization
codes to detect the soft data symbols d
1, d
2, in the received signal. The channel impulse response for each burst is determined
using that burst's midamble sequence. Since each burst was transmitted using a different
spreading code, the joint detection device 54 treats each burst as being transmitted
by a different user. The joint detection device 54 estimates the data symbols of each
of the signals 44,45 output by the transmitter antennas 46, 47 and forwards the estimates
to the decoder 52.
[0028] The decoder 52, coupled to the joint detection device 54, receives the estimated
soft data symbols d
1, d
2 corresponding to the antennas 46, 47 and decodes the symbols to yield a single data
field's soft symbols, d.
[0029] The flow diagram of the alternative embodiment is illustrated in Figure 6. A data
generator generates data to be transmitted to the receiver 40 (step 601). Each data
field is separated into two sub-data fields D
1, D
2 (step 602). The sub-data fields D
1, D
2 are forwarded to the first channelization device 48 and to the second channelization
device 49 (step 603). Each channelization device 48, 49 spreads their respective data
input using a separate channelization code associated with each antenna 46, 47 (step
604). The two spread signals are then scrambled, using the scrambling code associated
with the base station (step 605) and transmitted to the receiver 50 over diversity
antennas 46, 47 (step 606).
[0030] The receiver 50 receives a RF communication signal including the two spread signals
from the diversity antennas 46, 47 (step 607), demodulates the signal and forwards
the demodulated signal to the channel estimation device 53 and joint detection device
54 (step 608). The received signal is processed by the channel estimation device 53
(step 609) and the channel information applied by the joint detection device 54 along
with the channelization codes, to estimate the transmit symbols from the diversity
antennas 46, 47 (step 610). The detected sub-data fields, corresponding to each diversity
antenna 46, 47, are forwarded to the decoder 52 (step 611), which decodes the soft
symbol sub-fields to yield a single data field's soft symbols, d
STTD (step 612).
[0031] By using additional channelization codes, the above approaches can be applied to
an antenna array having any number of antennas. Each antenna has its own associated
channelization code and midamble. If a block encoder is used, the data field transmitted
by each of the antennas has a unique encoding, allowing the use of a single joint
detector at the receiver.
[0032] The BSTTD transmitter with two channelization codes of the present invention allows
for the use of a cheaper and simpler method of transmit diversity. The use of different
channelization codes per transmit antenna requires only one joint detection device
at the receiver resulting in a less complex receiver system than those of the prior
art. Figure 4 is a graph showing the raw BER of various block STTD decoders. The model
is based on all the receivers using a block linear equalizer (BLE) based approach
to JD. NTD means the single antenna case, i.e., no transmit diversity. STTD with 1
code is the traditional block STTD JD. STTD with 2 code is the disclosed block STTD
transmitter. Simple STTD with 2 code is the transmission system disclosed in the alternative
embodiment. As illustrated, the benefit of 2 codes for STTD can be summarized as follows:
1) there is up to a 0.5 dB gain at 0.01 raw Bit error rate over 1 code STTD; and 2)
by eliminating the encoding block in simple STTD with 2 code, the performance degradation
is only 0.2 dB at 0.1 raw BER and no degradation at 0.01 raw BER. The performance
improvement over NTD is still 1.0 dB and 2.7 dB at 0.1 and 0.01 raw BER.
1. A user equipment using a diversity scheme in a code division multiple access, CDMA,
telecommunication system comprising:
receiving means (26) for receiving data being spatially transmitted including a first
communication burst transmitted by a first transmitting means and a second communication
burst transmitted by a second transmitting means, wherein the same data have been
provided for the first and second communication bursts, said data comprising two data
fields, the first and the second communication burst having been produced using a
first and second channelization code on said data fields, respectively, each channelization
code being uniquely associated with one of said first and second transmitting means,
the first and second communication bursts being transmitted from a same base station
in a same time slot and each of the first and second communication bursts having an
inserted, associated whith the transmitting means, midamble training sequence used
for estimating a channel response, and a scrambling code associated with the transmitting
base station;
detecting means (24) for detecting the symbols of said first and second communication
burst by using the first and second channelization code;
decoding means (22) for decoding said detected symbols of the first and second communication
burst to generate a single data field of symbols; and
estimating means (23) for estimating the channel response of the first communication
burst as a first channel response by using the midamble of the first communication
burst and for estimating the channel response of the second communication burst as
a second channel response by using the midamble of the second communication burst,
and
wherein the first and second channelization codes are different from one another and
the first channelization code is utilized exclusively for transmission on the first
transmitting means and the second channelization code is utilized exclusively for
transmission on the second transmitting means.
2. The user equipment of claim 1, wherein the detecting means (24) is adapted for detecting
the symbols of the first and second communication burst by using the first and second
channel response.
3. The user equipment of one of the preceding claims, wherein the detecting means (24)
comprises a joint detector.
4. The user of equipment of one of the preceding claims, wherein detecting means (24)
comprises zero forcing block linear equalizers, BLE.
5. The user equipment of one of the preceding claims, wherein the decoding means (22)
comprises a block space-time transmit diversity, BSTTD, decoder.
6. The user equipment of one of the preceding claims, wherein the estimating means (23)
provides channel impulse responses of the first and the second communication burst.
7. The user equipment of one of the preceding claims, further comprising demodulating
means for producing a baseband signal from the received signal.
1. Benutzergerät, das sich eines Diversitätsschemas in einem Codemultiplex-Vielfachzugriffs-CDMA-Telekommunikationssystem
bedient, Folgendes umfassend:
eine Empfangseinrichtung (26) zum Empfangen von Daten, die einschließlich eines ersten
Kommunikationsdatenblocks, der durch eine erste Sendeeinrichtung übertragen wird,
und eines zweiten Kommunikationsdatenblocks, der durch eine zweite Sendeeinrichtung
übertragen wird, räumlich übertragen werden, wobei dieselben Daten für den ersten
und zweiten Kommunikationsdatenblock bereitgestellt wurden, wobei die Daten zwei Datenfelder
umfassen, wobei der erste und zweite Kommunikationsdatenblock unter Verwendung jeweils
eines ersten und zweiten Kanalisierungscodes an den Datenfeldern erzeugt wurden, wobei
jeder Kanalisierungscode eindeutig mit der ersten oder zweiten Sendeeinrichtung assoziiert
ist, wobei der erste und zweite Kommunikationsdatenblock in einem gleichen Zeitschlitz
von einer gleichen Basisstation übertragen werden, und der erste und zweite Kommunikationsdatenblock
jeweils eine eingefügte, mit der Sendeeinrichtung assoziierte Zwischenspanntrainingssequenz,
die zum Schätzen einer Kanalantwort verwendet wird, und einen Verwürfelungscode besitzt,
der mit der übertragenden Basisstation assoziiert ist;
eine Erfassungseinrichtung (24) zum Erfassen der Symbole des ersten und zweiten Kommunikationsdatenblocks,
indem der erste und zweite Kanalisierungscode verwendet werden;
eine Decodiereinrichtung (22) zum Decodieren der erfassten Symbole des ersten und
zweiten Kommunikationsdatenblocks, um ein einzelnes Datenfeld aus Symbolen zu generieren;
und
eine Schätzeinrichtung (23) zum Schätzen der Kanalantwort des ersten Kommunikationsdatenblocks
als erste Kanalantwort, indem der Zwischenspann des ersten Kommunikationsdatenblocks
verwendet wird, und zum Schätzen der Kanalantwort des zweiten Kommunikationsdatenblocks
als zweite Kanalantwort, indem der Zwischenspann des zweiten Kommunikationsdatenblocks
verwendet wird, und
wobei sich der erste und zweite Kanalisierungscode voneinander unterscheiden, und
der erste Kanalisierungscode ausschließlich zum Übertragen auf der ersten Sendeeinrichtung
genutzt wird, und der zweite Kanalisierungscode ausschließlich zum Übertragen auf
der zweiten Sendeeinrichtung genutzt wird.
2. Benutzergerät nach Anspruch 1, wobei die Erfassungseinrichtung (24) zum Erfassen der
Symbole des ersten und zweiten Kommunikationsdatenblocks angepasst ist, indem die
erste und zweite Kanalantwort verwendet wird.
3. Benutzergerät nach einem der vorhergehenden Ansprüche, wobei die Erfassungseinrichtung
(24) einen Gemeinschaftsdetektor (joint detector) umfasst.
4. Benutzergerät nach einem der vorhergehenden Ansprüche, wobei die Erfassungseinrichtung
(24) Nullerzwingungsblock-Linearentzerrer (zero forcing block linear equalizers) BLE
umfasst.
5. Benutzergerät nach einem der vorhergehenden Ansprüche, wobei die Decodiereinrichtung
(22) einen Block-Raum/Zeit-Übertragungsdiversitäts-BSTTD-Decodierer umfasst.
6. Benutzergerät nach einem der vorhergehenden Ansprüche, wobei die Schätzeinrichtung
(23) Kanalimpulsantworten des ersten und des zweiten Kommunikationsdatenblocks bereitstellt.
7. Benutzergerät nach einem der vorhergehenden Ansprüche, darüber hinaus eine Demoduliereinrichtung
umfassend, um ein Basisbandsignal aus dem Empfangssignal zu erzeugen.
1. Équipement d'utilisateur utilisant un schéma de diversité dans un système de télécommunication
à accès multiple par répartition en code (AMRC) comprenant :
des moyens de réception (26) destinés à recevoir des données qui sont émises spatialement,
comprenant une première salve de communication émise par un premier moyen d'émission
et une deuxième salve de communication émise par un deuxième moyen d'émission, sachant
que les mêmes données ont été fournies pour la première et la deuxième salve de communication,
lesdites données comprenant deux champs de données, la première et la deuxième salve
de communication ayant été produites au moyen d'un premier et d'un deuxième code de
canalisation sur lesdits champs de données, respectivement, chaque code de canalisation
étant associé de manière unique à un desdits premier et deuxième moyens d'émission,
la première et la deuxième salve de communication étant émises depuis une même station
de base dans une même tranche de temps et chacune de la première et de la deuxième
salve de communication présentant une séquence d'apprentissage de midambule insérée,
associée aux moyens d'émission, utilisée pour estimer une réponse de canal, et un
code d'embrouillage associé à la station de base émettrice ;
des moyens de détection (24) destinés à détecter les symboles de ladite première et
de ladite deuxième salve de communication au moyen du premier et du deuxième code
de canalisation ;
des moyens de décodage (22) destinés à décoder lesdits symboles détectés de la première
et de la deuxième salve de communication pour générer un seul champ de données de
symboles ; et
des moyens d'estimation (23) destinés à estimer la réponse de canal de la première
salve de communication comme première réponse de canal au moyen du midambule de la
première salve de communication et à estimer la réponse de canal de la deuxième salve
de communication comme deuxième réponse de canal au moyen du midambule de la deuxième
salve de communication, et
sachant que le premier et le deuxième code de canalisation sont différents l'un de
l'autre et le premier code de canalisation est utilisé exclusivement pour l'émission
sur le premier moyen d'émission et le deuxième code de canalisation est utilisé exclusivement
pour l'émission sur le deuxième moyen d'émission.
2. L'équipement d'utilisateur de la revendication 1, dans lequel les moyens de détection
(24) sont aptes à détecter les symboles de la première et de la deuxième salve de
communication au moyen de la première et de la deuxième réponse de canal.
3. L'équipement d'utilisateur de l'une des revendications précédentes, dans lequel les
moyens de détection (24) comprennent un détecteur commun (joint detector).
4. L'équipement d'utilisateur de l'une des revendications précédentes, dans lequel les
moyens de détection (24) comprennent des égalisateurs linéaires de blocs à forçage
de zéro (zero forcing block linear equalizers) (BLE).
5. L'équipement d'utilisateur de l'une des revendications précédentes, dans lequel les
moyens de décodage (22) comprennent un décodeur à diversité d'émission spatio-temporelle
de blocs (BSTTD).
6. L'équipement d'utilisateur de l'une des revendications précédentes, dans lequel les
moyens d'estimation (23) fournissent des réponses impulsionnelles de canal de la première
et de la deuxième salve de communication.
7. L'équipement d'utilisateur de l'une des revendications précédentes, comprenant en
outre des moyens de démodulation destinés à produire un signal de bande de base à
partir du signal reçu.