EP 2 090 548 A1 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

19.08.2009 Bulletin 2009/34

(21) Application number: 08300083.6

(22) Date of filing: 11.02.2008

(51) Int Cl.:

C02F 1/78 (2006.01) B01F 3/04 (2006.01)

C02F 103/00 (2006.01)

A61L 2/10 (2006.01)

C02F 101/30 (2006.01)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT **RO SE SI SK TR**

Designated Extension States:

AL BA MK RS

(71) Applicant: L'AIR LIQUIDE, Société Anonyme pour l'Etude

et l'Exploitation des Procédés Georges Claude 75007 Paris (FR)

(72) Inventors:

· Ogawa, Satoko Tsukuba Ibaraki 300-4247 (JP)

· Sun, Xulin Tsukuba Ibaraki 300-4247 (JP)

(74) Representative: Conan, Philippe Claude

L'Air Liquide SA, 75 Quai d'Orsay 75321 Paris Cedex 07 (FR)

(54)Foamable wastewater treatment using high concentrated ozonated water

(57)In this invention disclosure, new method to treat foamable wastewater by ozone without foam is showed. By mixing of highly concentrated ozonated water, foamable wastewater, e.g. dialysis wastewater, can be treated without foaming whereas too much stable foam is generated in the case of ozone gas bubbling. No foam formation and effectiveness of ozone of highly concentrated ozonated water were confirmed by chemical and biological experiments.

EP 2 090 548 A1

Description

[0001] The invention relates to a method of treatment of waste water, which contains organic wastes.

[0002] Waste waters namely, industrial waste waters and more specifically waste waters from the food and pharma-ceutical industries, medical waste waters and urban waste waters are known to generate the formation of foam during their post-used treatment, which decreases the productivity of the waste water treatment equipment. Wastewater is often treated by ozone. However in the case of foamable wastewater, foam is easily formed and the foam becomes a problem. The foam causes a problem because the volume of the foam on the surface of the waste water is an ineffective usage of the waste water treatment reactor. The pumping and dispensing of the foamed waste water makes the treatment more difficult. The foam also can not be released to sewage and river due to regulations.

[0003] For example, in the area of haemodialysis waste liquid treatment, Japanese patent Application laid open (KOKAI) 14,947/2001 discloses a waste water treatment system, wherein the wastewater is mixed with ozone water in a treatment tank, I, order to decompose urea and protein using ozone water. Thought high reactivity of ozone water is described, no foam reduction is mentioned. European patent application publication EP 1 386 625 A discloses a dialysis wastewater treatment system using Ozone in order to kill bacteria in water but no mention of foam reduction is made.

[0004] According to one embodiment, the present invention, the invention thus relates to a method to inhibit the foam formation in waste water treatment using highly concentrated ozonated water.

[0005] According to a more specific embodiment, the invention concerns a process to treat foamable waste water comprising the following steps:

A preparation <u>step a</u>) of a highly concentrated ozonated water, wherein ozone is let bubble in water under pressure to form said highly concentrated ozonated water;

A mixing <u>step b)</u> of said highly concentrated ozonated water with said waste water to be treated, under pressure; The process as hereinabove defined improves the waste treatment yield and allows use smaller apparatus, which generates less capital investment.

[0006] In the process as hereinbefore defined, foamable waste water, mainly means industrial waste waters and more specifically waste waters from the food and pharmaceutical industries, medical waste waters such as haemodialysis apparatus waste waters and urban waste waters, which are able to generate foam because of the presence of organic compounds such as surfactants, urea, proteins and/or partially or totally hydrolysed proteins.

[0007] In the process as hereinbefore defined, highly concentrated ozonated water means an ozonated water wherein the concentration of dissolved ozone is greater or equal to 25 mg/L, more specifically greater or equal to 50 mg/L and still more specifically greater or equal to 75 mg/L.

[0008] According to a more specific embodiment, the ozonated water is saturated with ozone and according to a still more specific embodiment the ozonated water is over saturated with ozone.

[0009] In the process as hereinabove defined, under pressure means greater or equal to 0.001 MPA, more specifically greater or equal to 0.1 MPa and still more specifically greater or equal to 0.5 MPa.

[0010] In Step a) of the hereinabove defined process, highly concentrated ozonated water is prepared by using ozone microbubble and pressurized conditions. Microbubble is prepared by combined method of bubble-breaking by pump and gas dissolution under pressure in a pump. Compared with millisize bubbles, highly concentrated ozonated water can be prepared at short times, effectively and by using small set up (short distance). It means that rising speed of microbubbles is much slower than that of millibubbles and that the total surface area of the inter-surface of gas and liquid of microbubbles is larger than that of millibubbles using same amount of gas. Therefore microbubbles can dissolved in water quickly and it does not need higher tank for gas dissolution as before.

[0011] In addition to that, off gas can be decreased thanks to microbubbles high dissolution ability. This saturated or over saturated ozonated water is slight blue colour and it is easy to check the dissolution process by visual observation without measurement of dissolved ozone.

[0012] According to a more specific embodiment, the invention concerns a method of treatment of wastewater coming from haemodialysis apparatus, in order to inhibit foam formation as well as to disinfect said waste water, comprising the following steps:

A preparation <u>step a</u>) of a highly concentrated ozonated water, wherein ozone is let bubble in water under pressure to form said highly concentrated ozonated water;

A mixing step b) of said highly concentrated ozonated water with said waste water to be treated, under pressure.

[0013] In the more specific process as hereinbefore defined, highly concentrated ozonated water means an ozonated water wherein the concentration of ozone is greater or equal to 25 mg/L, more specifically greater or equal to 50 mg/L and still more specifically greater or equal to 75 mg/L.

20

25

30

35

45

50

40

55

EP 2 090 548 A1

[0014] According to a more specific embodiment, the ozonated water is saturated with ozone and according to a still more specific embodiment the ozonated water is over saturated with ozone.

[0015] In the process as hereinabove defined, under pressure means greater or equal to 0.001 MPA, more specifically greater or equal to 0.1 MPa and still more specifically greater or equal to 0.5 MPa.

[0016] According to another embodiment the invention concerns the use of highly concentrated ozonated water to inhibit foam formation during waste water treatment.

[0017] Figures, Experiments and results are hereunder explained.

[0018] Figure 1A is a graphic representation of the dissolved ozone measurement with time. The dot lines represent the saturate dissolved ozone concentration calculated, which is compensated with temperature because the water temperature increased for a batch test (25° C to 35°C in 10 min). The dissolved ozone concentration depends on dosing ozone concentration in gas. The green line (Line 1) represents the change of dissolved ozone concentration with time when the dosing ozone concentration in gas is 200 mg/L, while the blue line (Line 2) represents the change of dissolved ozone concentration with time when the dosing ozone concentration is 100mg/L

[0019] Figure 1B is photography of the pressurized tank, wherein ozone is dissolved in water.

[0020] Figure 2 is a schematic representation of the waste water treatment installation.

[0021] At experiments, two points were confirmed; No foam formation and effectiveness of ozone.

[0022] For these experiments, artificial dialysis wastewater is used as representative of foamable wastewater. The results are the following

1) No foam formation

20

25

30

35

40

[0023] To confirm no foam formation, comparative experiments were conducted. One is by mixing highly concentrated ozonated water and the other is using ozone gas bubbling. In the case of highly concentrated ozonated water mixing, foam is not formed whereas too much foam is formed in the case of ozone gas bubbling (<u>Figure 3</u>). When the concentration of the waste water is double, no foam is also formed.

2) Effectiveness of ozone

[0024] To confirm ozone effectiveness in this new method, chemical and biological experiments were conducted.

i) Chemical validation

[0025] Three kinds of waste water with different concentrations (WW1, WW2, WW3) were prepared. By mixing 250 ml of highly concentrated ozonated water (concentration: 9.03 mg O_3 /litrer) with 500 ml waste water during 10 minutes, COD reduction is measured. The results are shown in the following table:

	WW1	WW2	WW3
Initial COD (Cr) [mg/l]	161	4100	7000
COD value After mixing [mg/l]	106	800	2000
COD reduction value by dilution [mg/l]	107	2700	4700 ⁵
COD reduction value by 03 water [mg/l]	1	1900	2700

[0026] The experimental results show that COD is reduced without dilution and highly concentrated ozonated water works for COD reduction. Moreover the results also show that a sample which has higher COD value is treated more than a sample which has lower COD value. This suggests that in high concentrated wastewater, dissolved zone can react with object substance in a high ratio.

ii) Biological validation

[0027] Two kinds of bacteria contained buffer solutions were prepared and mixed with highly concentrated ozonated water. 250, 125 or 62.5ml of highly concentrated ozonated water is mixed with 500ml of bacteria contained buffer solution at one time (WW4, WW5, WW6; WW7, WW8, WW9). Mixing time is 10 min. A concentration of the highly concentrated ozonated water is around saturation (ca. 9.7mg/l).

[0028] In the case of a 104 cfu/ml bacteria concentration, all bacteria were killed by using 1/2~1/8 amount of highly concentrated ozonated water; the results are shown in the following table:

3

45

50

55

EP 2 090 548 A1

	WW4	WW5	WW6
Amount of O ₃ water [ml]	250	125	62.5
Initial Number of Bacteria [cfu / ml]	1.5~2.0 x 10 ⁴		
Total Number of Bacteria killed [cfu]	1.5~2.0 x 10 ⁴ , LRV=4		
Number of Bacteria killed / 1ml 03 water [cfu]	>80	>160	>320

[0029] In the case of 106 cfu / ml bacteria concentration, the results are shown in the following table:

	WW7	WW8	WW9
Amount of O ₃ water [ml]	250	125	62.5
Initial Number of Bacteria [cfu / ml]	8.0 x 10 ⁶		
Total Number of Bacteria killed [cfu]	7.3x10 ⁶	7.0x10 ⁶	6.3x10 ⁶
Number of Bacteria killed / 1ml 03 water [cfu]	2.9x10 ⁴	5.6x10 ⁴	10x10 ⁴

20

5

10

15

[0030] In any experiments, 104~105 cfu of bacteria can be killed by 1 ml of highly concentrated ozonated water.

[0031] From these results, it is confirmed that highly concentrated ozonated water can treat foamable wastewater without foaming. Since the ozone is mixed with the ozone water, rather than mixed with gas, it is possible that ozone water can be used for the other applications, if necessary during the wastewater treatment, ex. the hygiene of the treated water easily if necessary.

Claims

30 **1.** Process to treat foamable waste water comprising the following steps:

A preparation <u>step a</u>) of a high concentrated ozonated water, wherein ozone is let bubble in water under pressure to form said highly concentrated ozonated water;

A mixing step b) of said high concentrated ozonated water with said waste water to be treated, under pressure.

35

40

- 2. Process according to Claim 1, wherein highly concentrated ozonated water is saturated or over-saturated.
- **3.** Method of treatment of dialysis wastewater coming from haemodialysis apparatus, in order to inhibit foam formation as well as to disinfect said waste water, comprising the following steps:

A preparation <u>step a</u>) of a high concentrated ozonated water, wherein ozone is let bubble in water under pressure to form said highly concentrated ozonated water;

A mixing step b) of said high concentrated ozonated water, with said waste water to be treated, under pressure.

- 45 **4.** Process according to Claim 3, wherein highly concentrated ozonated water is saturated or over-saturated.
 - 5. Use of high concentrated ozonated water to inhibit foam formation during waste water treatment.

50

55

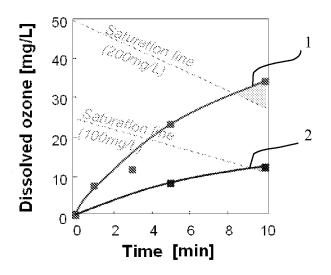


FIGURE 1A: DISSOLVED OZONE MEASUREMENT USING TWO KINDS OF OZONE GAS CONCENTRATIONS.

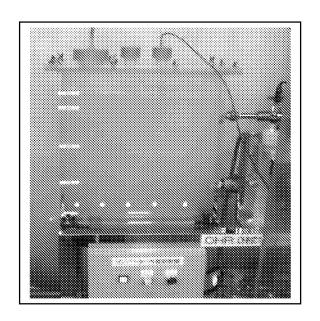
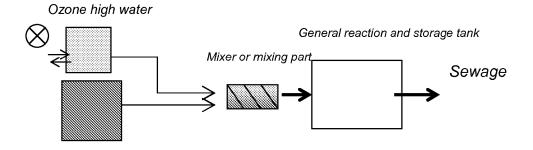



FIGURE 1B: PRESSURED TANK WHEREIN O₃ IS DISSOLVED

FIGURE 2: WASTE WATER TREATMENT APPARATUS

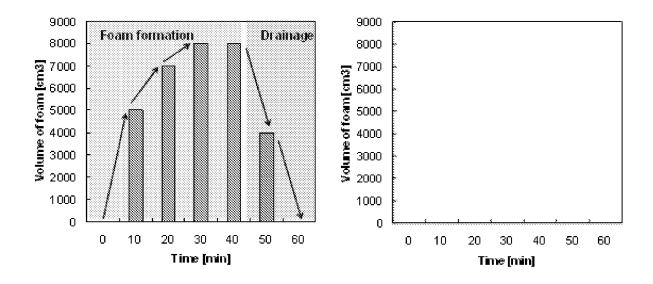


FIGURE 3: COMPARISON OF FOAM FORMATION (Left: Ozone bubbling, Right: Using of ozone high water)

EUROPEAN SEARCH REPORT

Application Number EP 08 30 0083

	DOCUMENTS CONSIDER	ED TO BE RELEVANT			
Category	Citation of document with indica of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)		
Х	JP 2000 117279 A (FUJ 25 April 2000 (2000-0 * abstract; figure 2	4-25)	1-5	INV. C02F1/78 A61L2/10 B01F3/04	
D,X	EP 1 386 625 A (AIR L [FR]) 4 February 2004 * paragraphs [0031],	IQUIDE SANTE INT (2004-02-04) [0032]; claims *	1-5	ADD. C02F101/30 C02F103/00	
				TECHNICAL FIELDS SEARCHED (IPC) C02F A61L B01F	
	The present search report has beer	ı drawn up for all claims			
Place of search		Date of completion of the search		Examiner	
Munich		nich 25 August 2008		Serra, Renato	
X : parti Y : parti docu A : tech	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category nological background		ument, but publise the application rother reasons	shed on, or	
O : non-written disclosure & : member of the same patent P : intermediate document document					

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 08 30 0083

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

25-08-2008

Patent docum cited in search r	ent eport	Publication date		Patent family member(s)	Publication date
JP 2000117	279 A	25-04-2000	NONE		
EP 1386625	Α	04-02-2004	JP US	2004057703 A 2004069718 A1	26-02-2004 15-04-2004
		Official Journal of the Euro			

EP 2 090 548 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2001014947 A [0003]

• EP 1386625 A [0003]