(12) CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:

Corrected version no 1 (W1 B1)
Corrections, see
Claims 3-12

(48) Corrigendum issued on:

22.12.2010 Bulletin 2010/51

(45) Date of publication and mention of the grant of the patent: 15.09.2010 Bulletin 2010/37

(21) Application number: 07859099.9

(22) Date of filing: 18.12.2007

(51) Int Cl.:

C08B 3/12 (2006.01)

C08B 31/04 (2006.01)

(86) International application number:

PCT/IB2007/003980

(87) International publication number:

WO 2008/081257 (10.07.2008 Gazette 2008/28)

(54) POLYSACCHARIDES DERIVATISED WITH CITRIC ACID

MIT CITRONENSÄURE DERIVATISIERTE POLYSACCHARIDE POLYSACCHARIDES DÉRIVÉS AVEC DE L'ACIDE CITRIQUE

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

- (30) Priority: 29.12.2006 EP 06425873
- (43) Date of publication of application: **02.09.2009 Bulletin 2009/36**
- (73) Proprietor: Sigea S.R.L. 34012 Trieste (IT)
- (72) Inventors:
 - BOSCO, Marco
 34072 Gorizia (IT)
 - STUCCHI, Luca 33050 Udine (IT)
 - PICOTTI, Fabrizio 33042 Udine (IT)

- GIANNI, Rita 34016 Trieste (IT)
- (74) Representative: Minoja, Fabrizio Bianchetti Bracco Minoja S.r.I. Via Plinio 63 20129 Milano (IT)
- (56) References cited:

EP-A- 1 702 606 US-A- 2 759 787 US-A- 3 097 051

 GAFFAR M A: "PREPARATION AND UTILIZATION OF NEW CARBOXYL GROUP CONTAINING CATION EXCHANGERS BASED ON STARCH USING A DRY REACTION METHOD" STARKE - STARCH, WILEY-VCH VERLAG, WEINHEIM, DE, vol. 54, no. 5, May 2002 (2002-05), pages 185-192, XP001102117 ISSN: 0038-9056

cited in the application

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

20

[0001] This invention relates to oligo/polysaccharides characterised in that they possess ester or amide bonds with citric acid, are not crosslinked in relation to the starting saccharide, and are soluble in water. The ester or amide bonds involve the carboxyl functions of citric acid and the hydroxyl or amino functions present on the starting oligo/polysaccharide.

1

[0002] In view of the bland, controllable conditions required for their preparation, these derivatives have welldefined, reproducible characteristics and do not present any further structural or molecular-weight modifications compared with the starting oligo/polysaccharide.

[0003] They have a very high hydratability capacity per weight unit and consequently, in the hydrated state, possess a high capacity for hydrating systems external to their contact, such as the skin systems or mucous membranes. These derivatives also manifest a modulatable ability to complex/salify metal ions such as Ag, Zn, Fe, Cu, etc.. In view of these characteristics, and especially their constant composition and reproducibility, the products according to the invention can be advantageously used in the pharmaceutical and cosmetic industries as hydrating agents or constituents of pharmaceutical compositions, or as complexes/salts of metal ions such as Ag, Zn, Fe or Cu in the healing of sores. The complexes/ salts can also be used as bacteriostatic/antibacterial agents.

[0004] The invention also relates to the process for their production in aqueous solution, in water/solvent, or in organic solvent only, but preferably in organic solvent. The reaction conditions, at very mild temperatures, do not degrade the oligo/polysaccharides which are homogenous in terms of degree of substitution. Moreover, the citrate residue can be esterified on the hydroxyl with a C1-C4 linear-chain aliphatic carboxylic acid or with citric acid. The invention is also directed to the obtained esters.

Prior art

[0005] Processes are known wherein starch and cellulose are reacted with citric derivatives (citric acid or citric anhydride). These processes basically comprise the following steps: 1) formation of a paste or suspension of polysaccharide and citric acid, containing little or no water, in the presence of agents potentially able to induce the formation of the intermediate citrate esterifying agent (usually citric anhydride), by mixing for preset periods of time; 2) removal of water until the mixture is dry; 3) heating of the dry product at high temperatures (up to 180°C). These stages, especially drying and heat treatment, are liable to cause extensive degradative structural changes in the initial polysaccharides (demolition of the saccharide chains with reduction of molecular weight, oxidation and elimination) and final polysaccharides (random, uncontrolled intermolecular crosslinking, etc.), and do not guarantee the constant composition and reproducibility

of the final materials. However, as stated below, the use of the products obtained is designed for fields of application in which these requirements are not industrially crucial, or particularly required in regulatory terms, being sufficient meeting average characteristics (e.g. a metalion sequestering capacity, liquid-absorbing capacity, etc.) which are technologically acceptable, even if they vary within wide ranges; above all, they must involve low manufacturing costs, as the applications are designed for markets involving very large quantities but low added value. This latter aspect also explains why citric acid is used rather than citric anhydride, which is by far more expensive, so that its in situ formation from citric acid is preferred (with all the associated problems of composition and reproducibility mentioned above).

[0006] The uses proposed for these products are:

- 1. as food additives, due to their ability to prevent syneresis in frozen foods, or as dietary fibre;
- 2. as a heavy-metal sequestering resin in the treatment of waste water, or simply as a biodegradable ion-exchange resin.

[0007] Thus, for example, US 2,461,139 describes the synthesis of starch derivatives using citric anhydride obtained in situ from citric acid and acetic anhydride; both a dry method and a method in alkaline aqueous suspension are used. The derivatives obtained can be used in the textile, paper and food industries.

[0008] US 2,935,510 describes the synthesis process of acetic and propionic esters of starch in aqueous suspensions, using citric acid as crosslinking agent. These derivatives are used as additives in frozen foods.

[0009] Numerous references describe the process of derivatisation of starch with citric acid by the dry method at the temperature of 110-140°C (Starch, 30, 1978, No. 2, pp. 47-51); these studies demonstrate that the dry process requires very precise control of the reaction parameters (temperature, etc.) to prevent excessive crosslinking (Starch, 48, 1996, No. 7/8, pp. 275-279). The dry process does not involve a high degree of substitution; DS values (the ratio between moles of citrate residues and moles of polysaccharide) of between 12.2% and 14.4% (Starch, 51, 1999, No. 10, pp. 354-361) and 16.0% (Starch, 56, 2004, pp. 364-370) are reported. Due to the persistence of the polysaccharide at high temperatures, the dry process causes partial degradation of the polymer chain and the formation of by-products (Starch, 54, 2002, pp. 185-192).

[0010] Some patents relate to derivatisation of cellulose or wood with citric acid.

[0011] US 2,759,787 describes a dry process for the synthesis of cellulose derivatives which produces a polymer matrix insoluble in water and organic solvents; the product obtained can be used as a resin that sequesters large molecules or ions in aqueous solution. The use of citric acid as a crosslinking agent for other polysaccharides is also reported:

45

20

35

40

45

50

55

1. hydroxypropylmethylcellulose (Carb. Pol, 51, 2003, pp. 265-271) for the production of mechanically resistant films;

2. chitosan cross-linked with wool fibres (J. Appl. Polym. Sci, 94, 2004, pp. 1999-2007) to obtain fabrics with antimicrobial properties;

3. β -cyclodextrins bound to chitosan with a citrate bridge to obtain products with antimicrobial activity.

[0012] Many of the prior art documents imply the formation of citric anhydride, obtained by dehydration of citric acid by the action of heat (in dry processes) or following treatment with suitable desiccant agents.

[0013] EP 282289 reports the synthesis process and cosmetic use of a salt of a citric acid monoester esterified with long-chain aliphatic alcohols. Monoesters of citric acid in which the alcohol derives from carbohydrates (oligo- or polysaccharides) are not cited.

[0014] EP 1 702 606 describes a gel-form cosmetic preparation comprising (a) 5 to 50 wt% surfactants, (b) 5 to 50 wt% oils and/or waxes, (c) 0 to 15 wt% water-soluble polyols, wherein component (a) contains at least 10 wt% in the preparation as a whole of a mixture of citric acid esters of alkoxylated alcohols and a sum of components (a) and (b) in the preparation as a whole is 10 to 70 wt%.

[0015] US 3 097 051 describes a process for producing organic ester anhydrides of native fiber cellulose, which retain the native fiber form, and which are insoluble in the common solvents and contain unreacted cyclic carboxylic anhydride groups.

[0016] In conclusion, derivatives of citric acid with starch and cellulose have already been described, while chitosan has been used to bind cyclodextrins esterified with citric acid, acting as a bifunctional bridge.

[0017] The known products are obtained by the dry method from crude polysaccharide and citric acid at approx. 150-180°C, or in basic aqueous slurries from crude starch, citric acid and the anhydride of an organic acid. However, the products obtained by these methods present a low degree of substitution, as defined above (maximum DS = 16%), and the polymer undergoes degradation effects due to the reduction of molecular weight and the formation of double bonds on the glucose units, or other collateral reactions. These effects are often unimportant for a product designed, for example, as a flocculant/sequestering agent of metal ions in waste water. The synthesis conditions are therefore designed to promote crosslinking, in order to enhance these properties. [0018] Esters of polysaccharides with citric acid are therefore needed which have well-defined, reproducible characteristics, and whose structure is not radically different from the natural polysaccharide, so as to extend

Description of the invention

their application possibilities.

[0019] This invention relates to non-crosslinked, citrat-

ed, water-soluble polysaccharides which possess unexpected hygroscopicity and are useful as constituents of cosmetic or pharmaceutical formulations.

[0020] The polysaccharides according to the invention do not present irreversible structural alterations in the starting oligo/polysaccharide component (the pre-requisite for pharmaceutical and cosmetic applications) as their synthesis involves very mild conditions (ambient temperature, an inert solvent such as formamide or DMF, and activation by triethylamine under apparent pH conditions of between 6.5 and 9.0), which are therefore not degradative.

[0021] The process according to the invention also includes the synthesis and isolation of cyclic citric anhydrides wherein the hydroxyl can be esterified by known methods with C1-C4 linear-chain aliphatic carboxylic acids (formic, acetic, trifluoroacetic, dichloroacetic, trichloroacetic, propionic or butyric acid). These derivatives are then reacted with oligo/polysaccharides to give products characterised by ester or amide bonds with citric acid, absence of crosslinking and solubility in water. The ester or amide bonds involve the carboxyl functions of citric acid and the hydroxyl or amino functions present on the starting oligo/polysaccharide.

[0022] The direct use of cyclic citric anhydride under the mild conditions described allows that only one carboxyl of citric acid is bound to the saccharide residue, while the other two are present in acid or salified form.

[0023] The derivatives according to the invention have the following formula:

wherein:

X is OH, O-M, NH- R_1 , O- R_1 ;

M is an alkaline or alkaline-earth metal, transition metal, or cation containing a quaternary nitrogen atom;

Y is H, R₂;

R1: the residue of an oligo/polysaccharide;

R2: the residue of a C1-C4 linear-chain aliphatic carboxylic acid or citric acid;

with the proviso that one X is NH-R1 or O-R1, while the other two X are present in acid (OH) or salified form (OM).

[0024] The oligo/polysaccharides are selected from

chitosan, pullulan, carrageenan, or a glycosaminoglycan selected from hyaluronan, chondroitin sulphate, heparan sulphate, dermatan sulphate, keratan sulphate, low molecular weight dextrin and soluble derivatives of alkylcellulose (carboxymethylcellulose, hydroxyethylcellulose or hydroxypropylcellulose).

[0025] Said oligo/polysaccharides typically have a molecular weight between 103 and 10⁷ Daltons.

[0026] The process for the preparation of the products according to the invention involves the addition of a solution containing cyclic citric anhydride or cyclic citric anhydride esterified to the hydroxyl with a C1-C4 linear-chain aliphatic carboxylic acid or citric acid, or a mixture of said citric anhydrides and a base with a solution of oligo-polysaccharide in a suitable organic solvent (formamide, dimethylformamide or dimethylsulphoxide).

[0027] Examples of bases are organic bases containing one atom of trisubstituted nitrogen, which may be aliphatic (e.g. triethylamine, DBO, DBU, DABCO or hexamine), aromatic (e.g. imidazole, pyridine or dimethylaminopyridine) or heterocyclic (e.g. pyrrolidine), an inorganic base (e.g. K_3PO_4 , K_2HPO_4 , potassium acetate or M_nCO_3 , with M=alkaline or alkaline-earth metal), or a mixture thereof. Triethylamine is preferred.

[0028] The products according to the invention have a degree of substitution in citrate ester between 0.01 and 1.00 with respect to the repetitive unit of the saccharide, and preferably between 0.16 and 0.50.

[0029] The products according to the invention present the carboxyls in acid form or in the form of alkaline or alkaline-earth metals salts, transition metals (such as Zn, Cu and Ag) or cations with quaternary nitrogen atoms.

[0030] The products according to the invention can be used in pharmaceutical formulations, as additives for moisturising cosmetic formulations, skin care and personal hygiene, or as medical aids with a disinfectant or antibacterial action, etc., possibly suitably formulated with cationic antibiotics or antifungals.

[0031] The following examples illustrate the invention in greater detail.

Examples

[0032] The ¹H NMR analyses are conducted in D_2O by Bruker Avance 400 spectrometer equipped with a 5 mm multinuclear probe with gradient z, at 300°K. The analyses also use diffusion-ordered experiments (DO-SY: Diffusion Ordered Spectroscopy).

Example 1. Synthesis of carboxymethylcellulose citrate ester

[0033] 5.0 g of carboxymethylcellulose sodium salt was solubilised in 165 ml of formamide at 95°C for 5 hours; the temperature was then reduced to 25°C. 3.9 g of citric anhydride, dissolved in 30 ml of formamide, and 15.0 ml of triethylamine were added. The reaction was maintained under agitation for 6 hours at 25°C. 200 ml

of water was then added, and the mixture was purified by ultrafiltration. The aqueous solution was then frozen and freeze-dried. 5.3 g of lyophilisate was recovered.

[0034] 10 mg of lyophilisate was solubilised in 0.7 ml of D_2O and transferred to an NMR analysis tube. A DS value of 23% was obtained from integration of the methylene signals associated with citric acid (at 2.8 ppm).

Example 2. Synthesis of chitosan citrate amide

[0035] 316 mg of chitosan was solubilised in 35 ml of water acidified with trifluoroacetic acid at pH 3, and then freeze-dried. 457 mg of lyophilisate was recovered and redissolved in 23 ml of formamide at ambient temperature. 121 mg of citric anhydride, dissolved in 2 ml of formamide, and 230 μ l of triethylamine were added. The reaction was maintained under agitation for 16 hours at 25°C. 30 ml of water was then added, and the mixture was purified by dialysis. The aqueous solution was then frozen and freeze-dried. 240 mg of lyophilisate was recovered.

[0036] 10 mg of lyophilisate was solubilised in 0.7 ml of D_2O and transferred to an NMR analysis tube. A DS value of 29% was obtained from integration of the methylene signals associated with citric acid (at 2.8 ppm).

Example 3. Synthesis of pullulan citrate ester

[0037] 125 mg of pullulan starch was solubilised in 4 ml of formamide at 80°C for 15 minutes; the temperature was then reduced to 25°C. 121 mg of citric anhydride, dissolved in 1.5 ml of formamide, and 430 μ l of triethylamine were added. The reaction was maintained under agitation for 16 hours at 25°C. 30 ml of water was then added, and the solution was neutralised to pH 7. Finally, the mixture was purified by ultrafiltration. The aqueous solution was then frozen and freeze-dried. 157 mg of lyophilisate was recovered.

[0038] 10 mg of lyophilisate was solubilised in 0.7 ml of D_2O and transferred to an NMR analysis tube. A DS value of 36% was obtained from integration of the methylene signals associated with citric acid (at 2.8 ppm).

Example 4. Synthesis of hyaluronic acid citrate ester

[0039] 200 mg of hyaluronic acid sodium salt was solubilised in 6.6 ml of formamide at 80°C for 4 hours; the temperature was then reduced to 25°C. 87 mg of citric anhydride, dissolved in 1.0 ml of formamide, and 278 pl of triethylamine were added. The reaction was maintained under agitation for 16 hours at 25°C. 100 ml of water was then added, and the solution was neutralised to pH 7. Finally, the mixture was purified by dialysis and ultrafiltration. The aqueous solution was then frozen and freeze-dried. 235 mg of lyophilisate was recovered.

[0040] 10 mg of lyophilisate was solubilised in 0.7 ml of D_2O and transferred to an NMR analysis tube. A DS value of 18% was obtained from integration of the meth-

35

ylene signals associated with citric acid (at 2.8 ppm).

Example 5. Synthesis of dextrin citrate ester

[0041] 105 mg of dextrin 10 was solubilised in 4 ml of formamide at 25°C; 112 g of citric anhydride, dissolved in 1.5 ml of formamide, and 460 μ l of triethylamine were added. The reaction was maintained under agitation for 4 hours at 25°C. The reaction mixture was then acidified with TFA and dropped into acetone under energetic agitation. The precipitate obtained was decanted, centrifuged and washed twice with 10 ml of acetone, centrifuged again, and finally dried.

[0042] 10 mg of dried polysaccharide was solubilised in 0.7 ml of D_2O and transferred to an NMR analysis tube. A DS value of 27% was obtained from integration of the methylene signals associated with citric acid (at 2.8 ppm).

Example 6. Preparation of a moisturizing cream Oil/ Water

[0043] The preparation of a moisturizing cream containing a citrated polysaccharide is reported. The oil/water cream formulation contains the compound prepared in example 1, at 1% w/w concentration as moisturizing agent, mixed with excipients commonly used in dermatological cosmetics as: emulsifiers, thickening, oils, jellying, preservatives, etc..

[0044] Briefly, the preparation is made as detailed below:

[0045] 600 ml of de-ionized water are added in a turboemulsifier (corresponding to about 60% of the total weight of the emulsion) and the oil is added under stirring at about 70°C. The mixture is emulsified and the temperature decreased up to 40°C. The volatile and thermolabile components are then added together with the water solution of CMC citrate ester prepared as described in example 1. The emulsion is left under slow stirring, warming to 25-30°C and the final product is transferred in proper containers.

[0046] A cream with the following composition was prepared (% P/P):

CMC citrate ester (Example 1)	1
Oils (palmitic and caprylic triglycerides)	12
Non-ionic Emulsifiers	6
Cetyl alchool	2
Dimethicone	4
MgAl Silicate	2
Glycerol	3
Xylitol	2
Methyl / ethyl-parabens	0,7
H2O up to a total amount of	100

Example 7. Rheological experiment

[0047] For rheological measurements carboxymethylcellulose (CMC) and citrated CMC (prepared according to example 1) aqueous systems were investigated. The tests were performed on samples dissolved in saline at the concentration of 10% w/w.

[0048] A controlled stress rheometer was used: *Rheostress Haake RS150*. The device was equipped with rough or smooth surfaces sensors, respectively for high or low structured systems; all measurements were done at 25°C, using a specific thermocontroller.

[0049] In order to preliminarily define and compare the rheological behaviour of our systems, continuous/steady state measurements of viscosity over a wide range of shear stress (flow curves) were done.

[0050] In Figure, CMC and citrated CMC (Example 1) flow curves are shown.

[0051] Native CMC profile is peculiar of a structured system, characterized by a medium zero-shear viscosity value, an apparent increase as the applied stress increases, and a viscosity drop when a critical stress is reached. On the contrary, citrated CMC behaves like a solution, showing a low viscosity value over the whole shear stress range and little dependency on applied stress.

Claims

30

35

40

45

50

55

 Non-crosslinked derivatives of oligo/polysaccharides having formula

wherein:

X is OH, O-M, NH-R₁, O-R₁;

M: is an alkaline or alkaline-earth metal, transition metal, or cation containing a quaternary nitrogen atom;

Y is H or R₂;

R1: the residue of an oligo/polysaccharide selected from chitosan, pullulan, carrageenan, or a glycosaminoglycan selected from hyaluronan, chondroitin sulphate, heparan sulphate, dermatan sulphate, keratan sulphate, a dextrin of low molecular weight and soluble derivatives of

alkylcellulose selected from carboxymethylcellulose, hydroxyethylcellulose or hydroxypropylcellulose;

R2: the residue of a C1-C4 linear chain aliphatic carboxylic acid or citric acid;

with the proviso that one X is NH-R1 or O-R1, while the other two X are present in acid (OH) or salified form (OM).

- 2. Derivatives as claimed in claim 1, wherein R1 is a residue of chitosan with different percentages of residual N-acetyl-glucosamine.
- 3. Derivatives according to any of claims 1 to 2, having a molecular weight of between 10^3 and 10^7 Daltons, and preferably between 10^4 and 5×10^5 Daltons.
- 4. Derivatives according to any of claims 1 to 3, having a degree of substitution in citrate ester between 0.01 and 1.00 x N, where N is equal to the number of hydroxyls contained in the repetitive unit of the saccharide.
- **5.** Derivatives as claimed in claim 4, having a degree of substitution in citrate ester between 0.16 and 0.50 with respect to the repetitive unit of the saccharide.
- 6. Derivatives according to any of claims 1 to 5, wherein the carboxyls are present in acid form or in the form of salts of alkaline or alkaline-earth metals, transition metals or cations with atoms of quaternary nitrogen.
- 7. Process for the preparation of the derivatives claimed in claims 1-6, comprising the addition of a solution containing cyclic citric anhydride or cyclic citric anhydride having an hydroxyl esterified with a C1-C4 linear-chain aliphatic carboxylic acid or citric acid, or a mixture of said citric anhydrides and a base with a solution of oligo-polysaccharide in a suitable organic solvent.
- Process as claimed in claim 7, wherein the solvent is formamide.
- 9. Process as claimed in claim 7 or 8, wherein the base is an aliphatic, aromatic or heterocyclic organic base containing one atom of trisubstituted nitrogen, an inorganic base or a mixture thereof.
- **10.** Process as claimed in claim 9, wherein the base is triethylamine.
- **11.** Use of the derivatives claimed in claims 1-6 as additives for the preparation of moisturising cosmetic formulations, skin care and personal hygiene.
- **12.** Pharmaceutical compositions or medical aids comprising the derivatives claimed in claims 1-6, option-

ally mixed with suitable excipients, vehicles or active ingredients.

Patentansprüche

 Nicht quervernetzte Derivate von Oligo/Polysacchariden mit der Formel

worin:

20

35

40

45

50

55

X: OH, O-M, NH-R₁, O-R₁ ist;

M: ein Alkali- oder Erdalkalimetall, ein Übergangsmetal oder ein quaternäres Stickstoffatom enthaltendes Kation ist;

Y: H oder R₂ ist;

R₁: der Rest eines Oligo/Polysaccharids ist, ausgewählt aus Chitosan, Pullulan, Carrageen, oder einem Glycosaminoglycan, ausgewählt aus Hyaluronan, Chondroitinsulfat, Heparansulfat, Dermatansulfat, Keratansulfat, einem Dextran mit niederem Molekulargewicht und löslichen Derivaten von Alkylcellulose, ausgewählt aus Carboxymethylcellulose, Hydroxyethylcellulose oder Hydroxypropylcellulose;

R₂: der Rest einer geradkettigen, aliphatischen C₁-C₄-Carbonsäure oder Citronensäure ist; mit der Maßgabe, dass ein X NH-R₁ oder O-R₁ ist, während die anderen beiden X in Säure-(OH) oder in Salzform (OM) vorliegen.

- Derivate nach Anspruch 1, worin R₁ ein Chitosanrest mit unterschiedlichen prozentualen Anteilen an N-Acetylglucosamin-Resten ist.
 - Derivate nach einem der Ansprüche 1 bis 2 mit einem Molekulargewicht von zwischen 10³ und 10⁷ Dalton, und vorzugsweise zwischen 10⁴ und 5x10⁵ Dalton.
 - 4. Derivate nach einem der Ansprüche 1 bis 3 mit einem Substitutionsgrad als Citratester zwischen 0,01 und 1,00 x N, wobei N gleich der Anzahl der in der sich wiederholenden Einheit des Saccharids enthaltenen Hydroxygruppen ist.
 - 5. Derivate nach Anspruch 4 mit einem Substitutions-

15

20

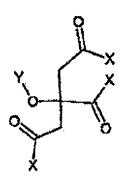
25

35

40

45

50


55

grad als Citratester zwischen 0,16 und 0,50 in Bezug auf die sich wiederholende Einheit des Saccharids.

- 6. Derivate nach einem der Ansprüche 1 bis 5, worin die Carboxyle in Säureform oder in der Form von Salzen von Alkali- oder Erdalkalimetallen, Übergangsmetallen oder Kationen mit quaternäre Stickstoff-Atomen vorliegen.
- 7. Verfahren zur Herstellung der Derivate gemäß der Ansprüche 1-6, umfassend die Zugabe einer Lösung, enthaltend zyklisches Citronensäure-Anhydrid oder zyklisches Citronensäure-Anhydrid mit einer mit einer geradkettigen, aliphatischen C₁-C₄-Carbonsäure oder Citronensäure veresterten Hydroxylgruppe oder eine Mischung der Citronensäure-Anhydride und einer Base mit einer Lösung von Oligo-Polysaccharid in einem geeigneten organischen Lösungsmittel.
- **8.** Verfahren nach Anspruch 7, wobei das Lösungsmittel Formamid ist.
- 9. Verfahren nach Anspruch 7 oder 8, wobei die Base eine aliphatische, aromatische oder heterozyklische organische Base enthaltend ein Atom eines dreifach substituierten Stickstoffs, eine anorganische Base oder eine Mischung davon ist.
- **10.** Verfahren nach Anspruch 9, wobei die Base Triethylamin ist.
- 11. Verwendung der Derivate gemäß der Ansprüche 1-6 als Additive für die Herstellung von Feuchtigkeit spendenden kosmetischen Formulierungen, Hautpflege und Körperpflege.
- 12. Pharmazeutische Zusammensetzungen oder medizinische Hilfsmittel, umfassend die Derivate gemäß der Ansprüche 1-6, optional in Mischung mit geeigneten Exzipienten, Vehikeln oder Wirkstoffen.

Revendications

 Dérivés non réticulés d'oligo/polysaccharides ayant la formule

dans laquelle:

X représente OH, O-M, NH-R₁, O-R₁;

M est un métal alcalin ou alcalino-terreux, un métal de transition, ou un cation contenant un atome d'azote quaternaire ;

Y représente H ou R₂;

R1: le résidu d'un oligo/polysaccharide choisi parmi du chitosane, du pullulane, de la carraghénine, ou d'un glycosaminoglycane choisi parmi du hyaluronane, du chondroïtine sulfate, de l'héparane sulfate, du dermatane sulfate, du kératane sulfate, une dextrine de masse moléculaire faible et des dérivés solubles d'alkylcellulose choisis parmi de la carboxyméthylcellulose, de l'hydroxyéthylcellulose ou de l'hydroxypropylcellulose;

R2: le résidu d'un acide carboxylique ou acide citrique aliphatique à chaîne linéaire en C1-C4; à condition qu'un X représente NH-R1 ou O-R1, tandis que les deux autres X sont présents dans une forme acide (OH) ou salifiée (OM).

- Dérivés selon la revendication 1, dans lesquels R1 représente un résidu de chitosane avec des pourcentages différents de N-acétyl-glucosamine résiduelle.
- 3. Dérivés selon l'une quelconque des revendications 1 à 2, ayant une masse moléculaire comprise entre 10³ et 10⁷ Daltons, et de préférence entre 10⁴ et 5x10⁵ Daltons.
- 4. Dérivés selon l'une quelconque des revendications 1 à 3, possédant un degré de substitution en ester d'acide citrique compris entre 0,01 et 1,00 x N, où N est égal au nombre de groupes hydroxyle contenus dans le motif de répétition du saccharide.
- 5. Dérivés selon la revendication 4, possédant un degré de substitution en ester d'acide citrique compris entre 0,16 et 0,50 par rapport au motif de répétition du saccharide.
- 6. Dérivés selon l'une quelconque des revendications

1 à 5, dans lequel les groupes carboxyle sont présents sous forme acide ou sous forme de sels de métaux alcalins ou alcalino-terreux, de métaux de transition ou de cations avec des atomes d'azote quaternaire.

5

7. Procédé pour la préparation des dérivés selon les revendications 1 à 6, comprenant l'addition d'une solution contenant un anhydride citrique cyclique ou un anhydride citrique cyclique ayant un groupe hydroxyle estérifié avec un acide carboxylique ou acide citrique aliphatique à chaîne linéaire en C1-C4, ou un mélange desdits anhydrides citriques, et d'une base avec une solution d'oligo-polysaccharide, dans un solvant organique approprié.

10

S 15

8. Procédé selon la revendication 7, dans lequel le solvant est du formamide.

9. Procédé selon la revendication 7 ou 8, dans lequel la base est une base organique aliphatique aromatique ou hétérocyclique contenant un atome d'azote trisubstitué, une base inorganique ou un mélange de celles-ci.

20

10. Procédé selon la revendication 9, dans lequel la base est de la triéthylamine.

25

11. Utilisation des dérivés selon les revendications 1 à 6 en tant qu'additifs pour la préparation de formulations cosmétiques hydratantes, les soins de la peau et l'hygiène personnelle.

30

12. Compositions pharmaceutiques ou auxiliaires médicaux comprenant les dérivés selon les revendications 1 à 6, éventuellement mélangés avec des excipients, des véhicules ou des principes actifs appropriés.

J

40

45

50

55

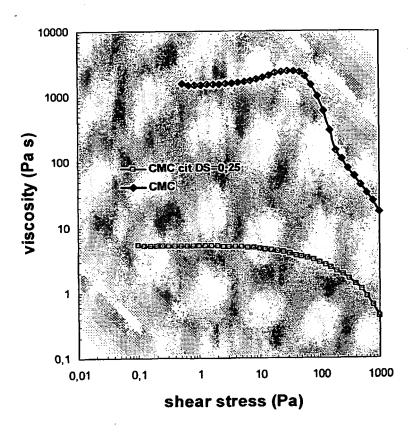


Figure shows as the investigated systems rheological curves drastically differ

EP 2 094 734 B9

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 2461139 A [0007]
- US 2935510 A [0008]
- US 2759787 A [0011]

- EP 282289 A [0013]
- EP 1702606 A [0014]
- US 3097051 A [0015]

Non-patent literature cited in the description

- Starch, 1978, vol. 30 (2), 47-51 [0009]
- Starch, 1996, vol. 48 (7/8), 275-279 [0009]
- Starch, 1999, vol. 51 (10), 354-361 [0009]
- Starch, 2004, vol. 56, 364-370 [0009]
- Starch, 2002, vol. 54, 185-192 [0009]
- Carb. Pol, 2003, vol. 51, 265-271 [0011]
- J. Appl. Polym. Sci, 2004, vol. 94, 1999-2007 [0011]