
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

09
6

54
4

A
2

��&��
�������
�
(11) EP 2 096 544 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
02.09.2009 Bulletin 2009/36

(21) Application number: 09151447.1

(22) Date of filing: 27.01.2009

(51) Int Cl.:
G06F 11/14 (2006.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL
PT RO SE SI SK TR
Designated Extension States:
AL BA RS

(30) Priority: 04.02.2008 US 25660

(71) Applicant: Honeywell International Inc.
Morristown, NJ 07962 (US)

(72) Inventors:
• Ramegowda, Yogesha Aralakuppe

Morristown, NJ 07962-2245 (US)
• Dangeti, Srinivasa R.

Morristown, NJ 07962-2245 (US)
• Chopra, Puja

Morristown, NJ 07962-2245 (US)
• Pesala, Narasimha Rao

Morristown, NJ 07962-2245 (US)

• Gautam, Puri
Morristown, NJ 07962-2245 (US)

• Kop, Shruti
Morristown, NJ 07962-2245 (US)

• Raj, Darshan
Morristown, NJ 07962-2245 (US)

• Sivaraman, Mani
Morristown, NJ 07962-2245 (US)

• Puppala, Yugandhar Kumar
Morristown, NJ 07962-2245 (US)

• Muthusamy, Kaarthikeyan
Morristown, NJ 07962-2245 (US)

• Jethe, Sachin
Morristown, NJ 07962-2245 (US)

• Suresh, Mugdalbetta Rajesh
Morristown, NJ 07962-2245 (US)

(74) Representative: Buckley, Guy Julian
Patent Outsourcing Limited
1 King Street
Bakewell
Derbyshire DE45 1DZ (GB)

(54) System and method for detection and prevention of flash corruption

(57) A non-volatile memory device comprises an ap-
plication code sector of sufficient size to store a first copy
of an application code and a second copy of the applica-
tion code; and a boot sector having a boot loader code
embodied therein. The boot loader code is configured to
cause a processor to check the integrity of both the first
and second copies of the application code; if the first copy
is corrupted, overwrite the first copy of the application
code with the second copy; and if the second copy is
corrupted, overwrite the second copy of the application
code with the first copy.

EP 2 096 544 A2

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

[0001] Microcontrollers in an embedded system typi-
cally include a central processing unit (CPU), non-volatile
memory (such as EEPROM or flash memory), interfaces,
random access memory (RAM), and other peripherals
integrated onto a single integrated circuit. Hence, the
number of chips, wires, and space needed is reduced
compared to using separate chips. In addition, unlike
general purpose microprocessors, microcontrollers are
typically designed to carry out specific functions which
increases their cost-effectiveness.
[0002] However, microcontrollers are vulnerable to da-
ta corruption such as corruption due to code run-away.
Code run-away can be caused by faulty code, operating
the Micro-Controller Unit (MCU) outside its specification
or by a major electromagnetic interference (EMI) or elec-
trical noise event. By definition, it is not well defined what
will happen during code run-away, but it is caused by the
out-of-specification operating environment effectively
corrupting the program counter resulting in the MCU be-
having unpredictably. A corrupted program counter could
lead to a jump to programming code that performs the
flash erase or write operation, resulting in accidental cor-
ruption of flash memory data that contains application
code. Once the application code is corrupted, it is typically
not possible to recover until the correct application code
is programmed again.
[0003] For the reasons stated above, and for other rea-
sons stated below which will become apparent to those
skilled in the art upon reading and understanding the
present specification, there is a need in the art for a sys-
tem and method to detect and recover from flash corrup-
tion.

SUMMARY

[0004] The above mentioned problems and other prob-
lems are resolved by the present invention and will be
understood by reading and studying the following spec-
ification.
[0005] In one embodiment, a non-volatile memory de-
vice is provided. The non-volatile memory device com-
prises an application code sector of sufficient size to store
a first copy of an application code and a second copy of
the application code; and a boot sector having a boot
loader code embodied therein. The boot loader code is
configured to cause a processor to
check the integrity of both the first and second copies of
the application code; if the first copy is corrupted, over-
write the first copy of the application code with the second
copy; and if the second copy is corrupted, overwrite the
second copy of the application code with the first copy.

DRAWINGS

[0006] Features of the present invention will become
apparent to those skilled in the art from the following de-
scription with reference to the drawings. Understanding
that the drawings depict only typical embodiments of the
invention and are not therefore to be considered limiting
in scope, the invention will be described with additional
specificity and detail through the use of the accompany-
ing drawings, in which:

Figure 1 is a block diagram of a non-volatile memory
device according to one embodiment of the present
invention.

Figure 2 is a block diagram of a microcontroller ac-
cording to one embodiment of the present invention.

Figure 3 is a flow chart of a method of detecting and
recovering from corrupted data in a non-volatile
memory device according to one embodiment of the
present invention.

Figure 4 is a flow chart of a method of implementing
a non-volatile memory device to prevent data cor-
ruption according to one embodiment of the present
invention.

[0007] In accordance with common practice, the vari-
ous described features are not drawn to scale but are
drawn to emphasize specific features relevant to the
present invention. Like reference numbers and designa-
tions in the various drawings indicate like elements.

DETAILED DESCRIPTION

[0008] In the following detailed description, reference
is made to the accompanying drawings that form a part
hereof, and in which is shown by way of illustration spe-
cific illustrative embodiments in which the invention may
be practiced. These embodiments are described in suf-
ficient detail to enable those skilled in the art to practice
the invention, and it is to be understood that other em-
bodiments may be utilized and that logical, mechanical,
and electrical changes may be made without departing
from the scope of the present invention. Furthermore,
the method presented in the drawing figures or the spec-
ification is not to be construed as limiting the order in
which the individual steps may be performed. The follow-
ing detailed description is, therefore, not to be taken in a
limiting sense.
[0009] Embodiments of the present invention enable
the detection and recovery of corrupted data in a non-
volatile memory device, such as a Flash memory. In par-
ticular, embodiments of the present invention enable
more robust detection and recovery mechanism of cor-
rupted application code than conventional non-volatile
memory devices through the use of multiple copies of

1 2

EP 2 096 544 A2

3

5

10

15

20

25

30

35

40

45

50

55

the application code and modified functionality of a boot
loader code also stored on the non-volatile memory de-
vice.
[0010] Figure 1 is a block diagram of a non-volatile
memory device 102 according to one embodiment of the
present invention. Examples of non-volatile memory de-
vices include, but not limited to, EEPROM and Flash
memory devices. Device 102 comprises a boot sector
104 and an application code sector 108. A boot sector is
defined, as used herein, as a section of memory device
102 used for storing a boot loader code. Hence, boot
sector 104 contains boot loader code 106. Similarly, an
application code sector 108 is defined, as used herein,
as a section of memory device 102 used for storing an
application code. Application code is a program which
directly applies the capabilities of a microcontroller to per-
form a specific task. In embodiments of the present in-
vention, application code sector 108 is of sufficient size
to store two complete copies of an application code.
Hence, application code sector 108 contains a first copy
110 of an application code and a second copy 112 of the
same application code.
[0011] Boot loader code 106 stored on boot sector 104
is configured to cause a processor, such as processor
214 described below, executing the boot loader code 106
to check the integrity of first copy 110 and second copy
112 of the application code. In particular, the integrity of
the first copy 110 and the second copy 112 is checked
on each hardware and/or software reset. Hardware re-
sets (also known as hard boots) involve removing power
from memory device 102 and subsequently restoring
power (e.g. a power cycle). Additionally, hardware resets
also include resets in which a system is restarted without
performing any shut-down procedures. A software reset
(also referred to as a soft boot or warm boot) is a reset
under software control without completely removing pow-
er from non-volatile memory device 102. Software resets
typically include an ordered restart procedure. When ei-
ther type of reset occurs, control of the processor is
passed back to boot loader code 106. Boot loader code
106 then causes the processor to again check the integ-
rity of the first copy 110 and the second copy 112.
[0012] In some embodiments, checking the integrity of
the first copy 110 and the second copy 112 includes per-
forming a Cyclic Redundancy Check (CRC) on the first
copy 110 and second copy 112. However, it is to be un-
derstood that other known techniques of checking integ-
rity can be used in other embodiments. If the first copy
110 fails the integrity check but the second copy 112
passes, boot loader code 106 causes the processor to
overwrite the first copy 110 with the second copy 112.
Similarly, if the second copy 112 fails the integrity check
but the first copy 110 passes, boot loader code 106 caus-
es the processor to overwrite the second copy 112 with
the first copy 110. In this manner, errors in either copy
are corrected with the other good copy. In some embod-
iments, boot loader code 106 performs an additional in-
tegrity check if either copy was overwritten to ensure the

copy was overwritten successfully. Boot loader code 106
then transfers control to one of the copies.
[0013] In the event that both the first copy 110 and the
second copy 112 fail the integrity check, boot loader code
106 does not cause the processor to transfer control to
either copy. Instead, boot loader code 106 logs a CRC
fault and retains control while waiting for an external com-
mand. Discuss - Integrity check to be performed on the
overwritten copy before transferring the control.
[0014] If both first copy 110 and second copy 112 pass
the integrity check, boot loader code 106 causes the proc-
essor to transfer control to one of the copies based on a
pre-determined default. For example, in one embodi-
ment, if both copies pass the integrity check, control is
transferred to first copy 110 by default. If only one of the
copies passes the integrity check, control is transferred
to the copy which passed the integrity check. In some
embodiments, both first copy 110 and second copy 112
are configured to cause the processor to continue to per-
form integrity checks as a background process along with
its normal functionality. The integrity checks are run on
both copies, in some embodiments, regardless of which
copy is currently being executed by the processor. In
other embodiments, the integrity check is only performed
on the copy with control. If the copy with control fails the
integrity check, the copy logs the fault and forces a soft-
ware reset. The software reset results in transferring con-
trol back to boot loader code 106 which again checks the
integrity of first copy 110 and second copy 112 as de-
scribed above.
[0015] Figure 2 is a block diagram of a microcontroller
200 which implements a non-volatile memory device 202
according to embodiments of the present invention. De-
vice 202 is similar to device 102 described above. Micro-
controller 200 microcontroller 200 is integrated onto a
single chip and also comprises a random access memory
(RAM) 216, a processor 214, and input/output ports 218.
Microcontroller 200 may also contain other peripherals
220, such as a timer module, analog-to-digital converter,
etc. as known to one of skill in the art.
[0016] Input/output ports 218 provide signals from/to
other devices to/from microcontroller 200, such as user
input devices, sensors, etc. Processor 214 processes
signals received over input/output ports 218. In process-
ing signals, processor 214 uses RAM 216 to store dy-
namic data used by processor 214, such as data received
from input/output ports 218 and code from non-volatile
memory 202.
[0017] In operation, on each hardware or software re-
set, processor 200 executes a boot loader code (such
as boot loader code 106 in Fig. 1). The boot loader code
causes the processor to check the integrity of a first copy
and a second copy of application code stored on the non-
volatile device 202 as described above. Thus, prior to
execution of the application code, the integrity of each
copy is checked and corrected. Such action prevents
faulty application code from being executed on startup
or after a reset. In addition, each copy of the application

3 4

EP 2 096 544 A2

4

5

10

15

20

25

30

35

40

45

50

55

code is also configured to cause processor 214 to con-
tinue to check the integrity of the first and second copies
as a background process. As described above, if the copy
being executed does not pass the integrity check, a soft-
ware reset is forced to pass control back to the boot loader
code.
[0018] Figure 3 is a flow chart depicting a method 300
of detecting and recovering from corrupted data in a non-
volatile memory device, such as memory device 102, ac-
cording to one embodiment of the present invention. At
302, the integrity check of a first copy and a second copy
of an application code is performed. In particular, in this
example a CRC is performed on both the first and second
copies, as described above. In embodiments of the
present invention, the initial integrity check occurs prior
to transferring control of a processor to one of the first
and second copies. As described above, a boot loader
code is used in some embodiments to cause the proc-
essor to perform the integrity check.
[0019] At 304, it is determined if the first copy passed
the integrity check. If the first copy did not pass the in-
tegrity check, it is determined at 306 if the second copy
passed the integrity check. If the second copy did not
pass the integrity check at 306, control is retained by the
boot loader code, at 308, to wait for an external command
as described above. For example, an external command
is a command from a user or other device. If the second
copy does pass the integrity check at 306, the faulty first
copy is overwritten with the second copy at 312.
[0020] If the first copy does pass the integrity check at
304, it is determined if the second copy passed the in-
tegrity check at 310. If the second copy did not pass the
integrity check at 310, the faulty second copy is overwrit-
ten with the first copy at 312. If the second copy also
passed the integrity check at 310, control is transferred
to one of the copies at 314. If both copies passed the
integrity check, control is transferred to one of the copies
as a default. For example, in one embodiment, by default,
control is transferred to the first copy if both copies
passed the integrity check.
[0021] If one of the copies is overwritten at 312, an
optional integrity check is performed at 313 to determine
if the overwrite was successful and to ensure that the
copies pass the integrity check before transferring con-
trol. If the copies do not pass the integrity check at 313,
control is retained at 308 as described above. If the cop-
ies do pass the integrity check at 313, control is trans-
ferred to one of the copies at 314. For example, in one
embodiment, control is transferred to the second copy if
the first copy was overwritten with the second copy
passed at 312. Alternatively, control is passed to the first
copy if the second copy did not pass the integrity check
at 310.
[0022] Once control is transferred to one of the copies
at 314, an integrity check is performed as a background
process during execution of the copy with control at 316.
In particular, each of the first copy and the second copy
are configured to cause the processor to perform an in-

tegrity check on each copy. If the copy with control passes
the integrity check at 318, method 300 returns to 316
where the integrity continues to be checked as a back-
ground process. If the copy with control did not pass the
integrity check at 318, the processor logs the fault at 320
and forces a software reset at 322. The software reset
will cause control to be returned to the boot loader code
which again checks the integrity of the first and second
copies at 302. Therefore, errors or corruption in either
copy of the application code is detected and corrected
through method 300. In addition to the detection and cor-
rection provided by method 300, in some embodiments,
the boot loader code is locked or secured to prevent flash
corruption. Locking or securing the boot loader code pre-
vents changes to the boot loader code using normal write
or erase commands. One manner of locking the boot
loader code is described in fig. 4.
[0023] Figure 4 is a flow chart depicting a method of
implementing a non-volatile memory device, such as de-
vice 102, to prevent data corruption according to one
embodiment of the present invention. At 402, boot loader
code is loaded onto boot sector of the non-volatile mem-
ory device. In particular, the boot loader code is loaded
as part of the manufacturing process. At 404, the boot
loader code is secured by setting bits in the protection
register which correspond to the boot loader code. For
example, in one embodiment, the protection register bits
are set by an external system which loads the boot loader
code onto the non-volatile memory device. In another
embodiment, the boot loader code is configured to set
the bits when executed.
[0024] At 406, the first and second copies of the appli-
cation code are loaded onto the application code sector
of the non-volatile memory device. At 408, it is periodi-
cally determined if a new baseline or released version of
the boot loader code is available. If a new version is avail-
able, the boot loader code is unsecured, at 410, by eras-
ing the memory using one of a Background Debug Mod-
ule (BDM), JTAG or chip erase commands. Method 400
then returns to 402 where the new version of the boot
loader code is loaded onto the boot sector of the non-
volatile memory device. If a new version of the boot loader
code is not available at 408, method 400 ends at 412.
[0025] Although specific embodiments have been il-
lustrated and described herein, it will be appreciated by
those of ordinary skill in the art that any arrangement,
which is calculated to achieve the same purpose, may
be substituted for the specific embodiment shown. For
example, although the exemplary embodiments de-
scribed above discuss two copies of the application code,
it is to be understood that additional copies can be used
in other embodiments. This application is intended to cov-
er any adaptations or variations of the present invention.
Therefore, it is manifestly intended that this invention be
limited only by the claims and the equivalents thereof.

5 6

EP 2 096 544 A2

5

5

10

15

20

25

30

35

40

45

50

55

Claims

1. A method (300) of detecting and recovering from cor-
rupted data in a non-volatile memory device, the
method comprising:

checking the integrity of a first copy of an appli-
cation code stored in the non-volatile memory
device (302);
checking the integrity of a second copy of the
application code stored in the non-volatile mem-
ory device (302);
if the first copy fails the integrity check and the
second copy passes the integrity check, over-
writing the first copy with the second copy (304,
306, 312) and transferring control of a processor
from a boot loader code to the second copy
(314); and
if the first copy passes the integrity check and
the second copy fails the integrity check, over-
writing the second copy with the first copy (304,
310, 312) and transferring control of the proces-
sor from the boot loader code to the first copy
(314).

2. The method of claim 1, wherein checking the integrity
of the first and second copies comprises performing
a Cyclic Redundancy Check (CRC) on the first and
second copies (302).

3. The method of claim 1, further comprising:

if both the first and second copies fail the integrity
check, maintaining control of the processor with
the boot loader code (304, 306, 308).

4. The method of claim 1, further comprising:

setting one or more bits in a protection register
corresponding to the boot loader code to prevent
changes to the boot loader code (404).

5. The method of claim 1, further comprising
checking the integrity of the first and second copies
after transferring control to one of the first and second
copies (316); and
if the copy with control of the processor fails the in-
tegrity check, forcing a software reset to transfer con-
trol back to the boot loader code (322).

6. The method of claim 1, wherein checking the integrity
of the first and second copies comprises checking
the integrity of the first and second copies on every
hardware and software reset (302, and paragraph
[0021]).

7 8

EP 2 096 544 A2

6

EP 2 096 544 A2

7

EP 2 096 544 A2

8

EP 2 096 544 A2

9

	bibliography
	description
	claims
	drawings

