(11) EP 2 100 617 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: **16.09.2009 Bulletin 2009/38**

(21) Application number: 09163830.4

(22) Date of filing: 13.03.2003

(51) Int Cl.:

A61K 39/395 (2006.01) A61P 35/00 (2006.01) G01N 33/53 (2006.01) **A61P 37/00** (2006.01) **A61P 31/00** (2006.01) C07K 16/28 (2006.01)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

(30) Priority: 15.03.2002 US 364513 P

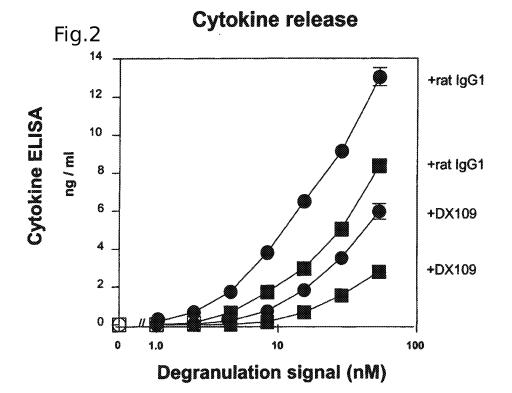
(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 03716515.6 / 1 482 973

(71) Applicant: Schering Corporation Kenilworth, NJ 07033-0530 (US)

(72) Inventors:

Cherwinski, Holly M.
 Boulder Creek, CA 95006 (US)

- Phillips, Joseph H.
 Palo Alto, CA 94303 (US)
- Sedgwick, Jonathon D. Indianapolis, IN 46205 (US)
- Bigler, Michael E.
 Redwood City, CA 94062 (US)
- (74) Representative: Naylor, Kathryn May et al Mathys & Squire LLP 120 Holborn London EC1N 2SQ (GB)


Remarks:

This application was filed on 25-06-2009 as a divisional application to the application mentioned under INID code 62.

(54) Methods of modulating CD200 receptors

(57) Provided are methods for modulating activity of the immune system using agonists or antagonists of a

CD200 receptor. Also provided are methods of treatment and diagnosis of immune disorders.

Description

5

10

20

30

35

40

45

50

55

FIELD OF THE INVENTION

[0001] The present invention relates to methods and compositions for modulating mammalian physiology, including immune system function. In particular, it provides methods for modulating the metabolism and activity of mast cells. Diagnostic and therapeutic uses are disclosed.

BACKGROUND OF THE INVENTION

[0002] The immune system, composed of cells of the bone marrow, spleen, and hematopoietic cells, including but not limited to lymphoid and myeloid lineage cells, is responsible for defending against bacteria, viruses, and foreign multicellular organisms, as well as cancer cells. Improper regulation of the immune system can result in a number of disorders or pathological conditions, e.g., chronic inflammation, autoimmune diseases and disorders, and undesired allergic reactions to foreign particles or foreign tissues.

[0003] Mast cells, a myeloid lineage immune cell, secrete a variety of cytokines and enzymes that result in inflammation. As some of these substances occur in secretory vesicles that appear granular, the process of secretion is sometimes called degranulation. Rapid degranulation by mast cells contributes to the pathology of asthma, anaphylaxis, and other allergic responses, while slower degranulation by mast cells contributes to arthritis and other types of chronic inflammation. The release of inflammatory cytokines and enzymes by mast cells can result in tissue damage, further attraction of mast cells, resulting in further tissue damage.

[0004] Cells of the immune system possess many types of membrane-bound proteins that can serve as receptors. The ligands for these receptors can be small molecules, proteins, e.g., cytokines or chemokines, or membrane-bound proteins residing on a separate cell. Changes in the activity of a cell or tissue can result from occupation of a receptor by its physiological ligand, by an analogue of the physiological ligand, by an antibody, by agents that cross-link like-receptors to each other, and by agents that cross-link non-identical receptors to each other.

[0005] Mast cells contain a number of receptors that relay an inhibitory signal to the cell. These include CD200 receptor a (a.k.a. CD200Ra; OX2Ra), as well as various Ig-ITIM-bsaring receptors, e.g., low affinity IgG receptor FcγRIIB, transmembrane glycoprotein receptor gp49B1, signal regulatory protein (SIRP), mast cell function-associated Ag, and platelet endothelial cell adhesion molecule-1 (PECAM-1)/(CD31) (Wong, et al. (2002) J. Immunol. 168:6455-6462).

[0006] CD200 (a.k.a. OX2) is a widely distributed membrane-bound protein occurring on lymphoid, neuronal, endothe-lial, dendritic cells, and B cells (Wright, et al. (2000) Immunity 13, 233-242; Wright, et al. (2001) Immunology 102:173-179; Hoek, et al. (2000) Science 290:1768-1771; Barclay, et al. (2001) Immunol. 102:173-179; McCaughan, et al. (1987) Immunogenetics 25:329-335). CD200, the ligand of CD200R, can bind to CD200R, which is expressed on a separate cell. In humans, two subtypes of CD200Rs have been identified, hCD200Ra (SEQ ID NO:2) and hCD200Rb (SEQ ID NO:4). Murine homologs of CD200R consist of four receptor subtypes, CD200Ra (SEQ ID NO:6), CD200Rb (SEQ ID NO:8), CD200Rc (SEQ ID NO:10), and CD200Rd (SEQ ID NO:12). CD200Ra occurs, e.g., on macrophages, dendritic cells, and microglia, of the rat (Wright, et al. (2000) supra; Preston, et al. (1997) Eur. J. Immunol. 27:1911-1918.

[0007] Several regulatory pathways involving the membrane bound proteins for various immune cells have been identified. However, the molecules responsible for mast cell regulation are poorly understood. The present invention fulfills this need by providing methods of diagnosis and treatment of mast cell disorders by targeting mast cell receptor molecules, e.g., CD200Rs.

BRIEF DESCRIPTION OF THE DRAWINGS

[8000]

Figure 1 shows secretion of β-hexosaminidase versus concentration of degranulation signal.

Figure 2 shows cytokine release versus concentration of degranulation signal.

SUMMARY OF THE INVENTION

[0009] The invention is based, in part, upon the discovery that binding of an antibody to an inhibiting receptor, e.g., CD200Ra, inactivates a cell.

[0010] The invention provides a method of modulating the activity of a cell comprising contacting the cell with a binding composition derived from the antigen binding site of an antibody that specifically binds to CD200Ra (SEQ ID NOs:2 or 6), or an antigenic fragment thereof. Also provided is the above method wherein the cell is a mast cell; wherein the modulating inhibits cell activity or stimulates cell activity; wherein the modulating inhibits cell activity and the binding

composition comprises an agonist of CD200Ra (SEQ ID NOs:2 or 6); or wherein the modulating increases cell activity and the binding composition comprises an antagonist of CD200Ra (SEQ ID NOs:2 or 6). In another embodiment, the invention provides the above method wherein the binding composition comprises a humanized antibody; a monoclonal antibody; a polyclonal antibody; an Fab fragment; an F(ab')₂ fragment; a peptide mimetic of an antibody; or a detectable label. Yet another aspect of the invention is the above method, further comprising contacting the cell with an agent that specifically enhances expression of CD200Ra (SEQ ID NOs:2 or 6).

[0011] Also encompassed is a method of treating a subject suffering from an immune condition comprising treating with or administering the binding composition derived from the antigen binding site of an antibody that specifically binds to CD200Ra (SEQ ID NOs:2 or 6), or an antigenic fragment thereof. Also provided is the above method, wherein the binding composition comprises an agonist or antagonist of CD200Ra (SEQ ID NOs:2 or 6); wherein the immune condition is an inflammatory condition or an autoimmune condition. Also contemplated is the above method wherein the immune condition is rheumatoid arthritis; endotoxemia; psoriasis; or allergy; or where the immune condition is an infection or a cancerous condition. Further contemplated is the above method wherein the binding composition is administered in conjunction with an agent that specifically enhances expression CD200Ra (SEQ ID NOs:2 or 6), or an antigenic fragment thereof.

DETAILED DESCRIPTION

[0012] As used herein, including the appended claims, the singular forms of words such as "a," "an," and "the" include their corresponding plural references unless the context clearly dictates otherwise.

I. Definitions.

15

20

30

35

40

45

50

55

[0013] "Activity" of a molecule may describe or refer to binding of the molecule to a ligand or to a receptor, to catalytic activity, to the ability to stimulate gene expression, to antigenic activity, to the modulation of activities of other molecules, and the like. "Activity" of a molecule may also refer to activity in modulating or maintaining cell-to-cell interactions, e.g., adhesion, or activity in maintaining a structure of a cell, e.g., cell membranes or cytoskeleton. "Activity" may also mean specific activity, e.g., [catalytic activity]/[mg protein], or [immunological activity]/[mg protein], or the like.

[0014] "Amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, including selenomethionine, as well as those amino acids that are modified after incorporation into a polypeptide, e.g., hydroxyproline, O-phosphoserine, O-phosphotyrosine, γ -carboxyglutamate, and cystine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α -carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetic refers to a chemical compound that has a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid. Amino acids may be referred to herein by either their commonly known three letter symbols or by their one-letter symbols.

[0015] "Binding composition" encompasses, e.g., an antibody, polyclonal antibody, monoclonal antibody, engineered antibody, recombinant antibody, humanized antibody, binding fragment derived from an antibody, peptide mimetic of an antibody, a bifunctional, or multifunctional reagent. The binding composition may further comprise, e.g., a linker, oligosaccharide, or label. "Derived from an antibody" refers, e.g., to treatment or manipulation of an antibody to produce a fragment or complex, e.g., an antigen-binding site of the antibody, or use of genetically engineering to produce a molecule or complex that mimics predetermined features of the antibody, e.g., the antigen-binding site.

[0016] "Bispecific antibody" generally refers to a covalent complex, but may refer to a stable non-covalent complex of binding fragments from two different antibodies, humanized binding fragments from two different antibodies, or peptide mimetics of binding fragments from two different antibodies. Each binding fragment recognizes a different target or epitope, e.g., a different receptor, e.g., an inhibiting receptor and an activating receptor. Bispecific antibodies normally exhibit specific binding to two different antigens.

[0017] "Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variant refers to those nucleic acids that encode identical or essentially identical amino acid sequences. An example of a conservative substitution is the exchange of an amino acid in one of the following groups for another amino acid of the same group (U.S. Pat. No. 5,767,063 issued to Lee, et al.; Kyte and Doolittle (1982) J. Mol. Biol. 157:105-132).

- (1) Hydrophobic: Norleucine, Ile, Val, Leu, Phe, Cys, Met;
- (2) Neutral hydrophilic: Cys, Ser, Thr;

(3) Acidic: Asp, Glu;

5

20

30

35

40

45

50

55

- (4) Basic: Asn, Gln, His, Lys, Arg;
- (5) Residues that influence chain orientation: Gly, Pro;
- (6) Aromatic: Trp, Tyr, Phe; and(7) Small amino acids: Gly, Ala, Ser.

[0018] Methods relating to polypeptide molecules having substantially the same amino acid sequence as CD200 or CD200R (SEQ ID NOs:2, 4, 6, 8, 10, 12) but possessing minor amino acid substitutions, truncations, or deletions, that do not substantially affect the functional aspects are within the definition of the contemplated invention. Variants containing one or more peptide bond cleavages, where daughter polypeptides remain in association with each other, are within the definition of the contemplated invention.

[0019] "ITIM" and "ITAM" are two motifs found on some inhibiting and activating receptors, respectively. The ITIM motif is defined by the consensus sequence I/V/LxYxxL/V in the cytoplasmic domain where (Y) can be phosphorylated, resulting in the ability of the polypeptide bearing the ITIM motif to recruit various enzymes, where the enzymes aid in relaying an inhibitory signal to the cell (Sathish, et al., (2001) J. Immunol. 166:1763-1770). The consensus ITAM sequence is YxxL/Ix₆₋₈YxxL/I, where (Y) may be phosphorylated resulting in a change in signaling properties of the activating receptor or an accessory protein. The ITAM motif may occur within an activating receptor itself, or within an accessory protein that binds to the activating receptor, thus conferring activating properties to the activating receptor.

[0020] "Monofunctional reagent" refers, e.g., to an antibody, binding composition derived from the binding site of an antibody, an antibody mimetics, a soluble receptor, engineered, recombinant, or chemically modified derivatives thereof, that specifically binds to a single type of target. For example, a monofunctional reagent may contain one or more functioning binding sites for an CD200 receptor. "Monafunctional reagent" also refers to a polypeptide, antibody, or other reagent that contains one or more functioning binding sites for, e.g., CD200 receptor and one or more non-functioning binding sites for Fc receptor. For example, a monofunctional reagent may comprise an antibody binding site for CD200 receptor plus an Fc fragment that has been engineered so that the Fc fragment does not specifically bind to Fc receptor. [0021] "Bifunctional reagent" refers, e.g., to an antibody, binding composition derived from the binding site of an antibody, an antibody mimetic, a soluble receptor, engineered, recombinant, or chemically modified derivatives thereof, that specifically binds to two different targets, e.g., to an inhibiting CD200 receptor and an activating receptor. Generally, the bifunctional reagent will comprise binding sites from, e.g., two different antibodies, two different soluble receptors, or an antibody and a soluble receptor.

[0022] "Nucleic acid" refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single stranded or double-stranded form. The term nucleic acid may be used interchangeably with gene, cDNA, A, oligonucleotide, and polynucleotide. A particular nucleic acid sequence also implicitly encompasses "allelic variants" and "splice variants."

[0023] "Specific binding" of a binding composition means that the binding composition binds to a specific antigen, e.g., CD200Ra (SEQ ID NO:2), with a binding constant ordinarily about 2-fold greater than to another antigen, typically about 4-fold greater than to another antigen, more typically at least about 10-fold greater than to another antigen, frequently at least about 40-fold greater than to another antigen; and most frequently at least about 100-fold greater than to another antigen.

[0024] "Ligand" refers to small molecules, peptides, polypeptides, and membrane associated or membrane-bound molecules that act as agonists or antagonists of a receptor, as well as to soluble versions of the above membrane-associated or membrane-bound molecules. Where the ligand is membrane-bound on a first cell, the receptor usually occurs on a second cell. The second cell may have the same or a different identity as the first cell. A ligand or receptor may be entirely intracellular, that is, it may reside in the cytosol, nucleus, or some other intracellular compartment. The ligand or receptor may change its location, e.g., from an intracellular compartment to the outer face of the plasma membrane. The complex of a ligand and receptor is termed a "ligand receptor complex." Where a ligand and receptor are involved in a signaling pathway, the ligand occurs at an upstream position and the receptor occurs at a downstream position of the signaling pathway.

[0025] "Humanized antibody" means an antibody comprising an antigen-binding region of nonhuman origin, e.g., rodent, and at least a portion of an immunoglobin of human origin, e.g., a human framework region, a human constant region, or portion thereof. See, e.g., U.S. Pat. No. 6,352,832.

[0026] "Immune condition" means, e.g., pathological inflammation, an inflammatory disorder, an inflammatory disease or disorder, or an autoimmune disorder or disease. "Immune condition" also refers to infections and cancerous conditions, e.g., pathological states where the immune system attempts to reduce the infection or reduce the cancerous condition. "Cancerous condition" includes, e.g., cancer, cancer cells, tumors, angiogenesis, and precancerous conditions such as dysplasia.

[0027] "Sample" refers to a sample from a human, animal, or to a research sample, e.g., a cell, tissue, organ, fluid, gas, aerosol, slurry, colloid, or coagulated material. The "sample" may be tested <u>in vivo</u>, e.g., without removal from the human or animal, or it may be tested in vitro. The sample may be tested after processing, e.g., by histological methods.

"Sample" also refers, e.g., to a cell comprising a fluid or tissue sample or a cell separated from a fluid or tissue sample. "Sample" may also refer to a cell, tissue, organ, or fluid that is freshly taken from a human or animal, or to a cell, tissue, organ, or fluid that is processed or stored.

[0028] "Therapeutically effective amount" of a therapeutic agent is defined as an amount of each active component of the pharmaceutical formulation that is sufficient to show a meaningful patient benefit, i.e., to cause a decrease in or amelioration of the symptoms of the condition being treated. When the pharmaceutical formulation comprises a diagnostic agent, "a therapeutically effective amount" is defined as an amount that is sufficient to produce a signal, image, or other diagnostic parameter. Effective amounts of the pharmaceutical formulation will vary according to factors such as the degree of susceptibility of the individual, the age, gender, and weight of the individual, and idiosyncratic responses of the individual. See, e.g., U.S. Pat. No. 5,888,530.

II. General.

10

15

20

25

30

35

40

45

50

55

[0029] The invention provides methods for the treatment and diagnosis of immune conditions, inflammatory conditions, and autoimmune disorders involving cells bearing CD200R, e.g., mast cells, antigen presenting cells (APCs), dendritic cells, neutrophils, T cells, monocytes, and macrophages. Dendritic cells are professional APCs. These conditions include, e.g., rheumatoid arthritis, bronchial hyperreactivity, asthma, allergic conditions, psoriasis, inflammatory bowel disease, multiple sclerosis, and pathological innate response, e.g., endotoxemia, sepsis, and septic shock. The invention contemplates methods of modulating a CD200R using, e.g., an agonist or an antagonist of CD200Ra or CD200Rb.

[0030] The invention contemplates use of binding compositions to CD200Ra, e.g., for inhibiting mast cells in the treatment of mast cell-dependent pathological conditions. Mast cells are implicated in the initiation and prolongation of rheumatoid arthritis (RA) (Lee, et al. (2002) Science 297:1689-1692; Vastag (2002) J. Am. Med. Assoc. 288:1457-1458; Woolley and Tetlow (2000) Arthritis Res. 2:65-74; Olsson, et al. (2001) Ann. Rheum. Dis. 60:187-193). Collagen-induced arthritis (CIA) is an experimental animal model for RA. RA and CIA involve, e.g., fibrin deposition, hyperplasia of synovial cells, periosteal bone formation, mononuclear infiltrates, pannus formation, and ankylosis of the joints (Luross and Willians (2001) Immunology 103:407-416). Immune cells, such as T cells and B cells, infiltrate the joints and induce pathology, e.g., inflammation, edema, or destruction of bone and cartilage. RA is, in part, an autoimmune disorder, wherein autoimmunity occurs against various proteins, including cartilage structural proteins (Griffiths and Remmers (2001) Immunol. Revs. 184:172-183). CIA encompasses many features common to several human autoimmune diseases, e.g., RA, diabetes, multiple sclerosis, and autoimmune thyroiditis (Griffiths and Remmers, supra).

[0031] Mast cells also contribute to endotoxemia, which can be induced by administration of LPS to mice and related conditions (Tuncel, et al. (2000) Peptides 21:81-89; Muchamuel, et al. (1997) J. Immunol. 158:2898-2903; Howard, et al. (1993) J. Exp. Med. 177:1205-1208). Endotoxemia correlates with sepsis, septic shock, infection with Gram negative and other bacteria, and adverse reactions in innate immunity (Cohen (2000) Intensive Care Med., 26 Suppl. 1: S51-56; Freise, et al. (2001) J. Invest. Surg. 14:195-212).

[0032] Mast cells and APCs have been implicated in the pathology of skin disorders, e.g., psoriasis and atopic dermatitis. Psoriasis occurs in over 4% of the population of Western countries. Psoriasis, which may be life threatening in some instances, is characterized by frequent relapses. It has also been associated with a form of arthritis known as psoriatic arthritis (Ackermann and Harvima (1998) Arch. Dermatol. Res. 290:353-359; Yamamoto, et al. (2000) J. Dermatol. Sci. 24:171-176; Ackerman, et al. (1999) Br. J. Dermatol. 140:624-633; Schopf (2002) Curr. Opin. Invest. Drugs 3:720-724; Granstein (1996) J. Clin. Invest. 98:1695-1696; Christophers (2001) Clin. Exg. Dermatol. 26:314-320; Greaves and Weinstein (1995) New Engl. J. Med. 332:581-588; Robert and Kupper (1999) New Engl. J. Med. 341:1817-1828; Fearon and Veale (2001 Clin. Exp. Dermatol. 26:333-337; Mrowietz, et al. (2001) Exp Dermatol. 10:238-245; Ackermann, et al. (1999) Br. J. Dermatol. 140:624-633).

[0033] Asthma is another disorder involving mast cells, APCs, and other immune cells (Black (2002) New Engl. J. Med. 346:1742-1743; Brightling, et al. (2002) New Engl. J. Med. 346:1699-1705; Carroll, et al. (2002) Eur. Respir. J. 19:1-7; Xiang and Nilsson (2000) Clin. Exp. Allergy 30:1379-1386; Woodruff and Fahy (2001) J. Am. Med. Assoc. 286: 395-398). Asthma is a chronic disorder characterized by bronchial hyperreactivity, which is the manifestation of pulmonary inflammatory disorders, including asthma, chronic obstructive pulmonary disease (a.k.a. COPD; chronic obstructive pulmonary disorder), chronic bronchitis, eosinophilic bronchitis, bronchiolitis, and viral bronchiolitis (Riffo-Vasquez and Spina (2002) Pharmacol. Therapeutics 94:185-211). Asthma is the result of a cascade of immune events, including the release of IgE. (See, e.g., Marone (1998) Immunol. Today 19:5-9; Barnes and Lemanske (2001) New Engl. J. Med. 344: 350-362).

[0034] Mast cells contribute to the pathology of inflammatory bowel disease, e.g., Crohn's disease and colitis (Raithel, et al. (2001) Scand. J. Gastroenterol. 36:174-179; Nishida, et al. (2002) Hepatogastroenterol. 49:678-682; Gelbmann, et al. (1999) Gut 45:210-217; Nolte, et al. (1990) Gut 31:791-794; Jeziorska, et al. (2001) J. Pathol. 194:484-492). IgE activates mast cells resulting in constriction of the airways and damage by eosinophils to the airways.

[0035] Mast cells also contribute to the pathology of inflammatory conditions of the nervous system, e.g., multiple

sclerosis (Robbie-Ryan, et al. (2003) J. Immunol. 170:1630-1634; Dines and Powell (1997) J. Neuropathol. Exp. Neurol. 56:627-640). These cells also play a role in allograft rejection, e.g., of the liver, kidney, and lung and graft versus host disease (GVHD), and glomerulonephritis (O'Keefe, et al. (2002) Liver Transpl. 8:50-57; Lajoie, et al. (1996) Mod. Pathol. 9:1118-1125; Yousem (1997) Hum. Pathol. 28:179-182; Levi-Schaffer and Weg (1997) Clin. Exp. Allergy, 27 Suppl. 1: 64-70; Hiromura, et al. (1998) Am. J. Kidney Dis. 32:593-599). Mast cells have also been implicated in cardiovascular disease (Hara, et al. (2002) J. Exp. Med. 195:375-381).

[0036] In addition to mast cells, APCs have also been implicated in the mechanisms of disorders, such as, rheumatoid arthritis, allergies, asthma, endotoxemia, septic shock, and skin conditions, e.g., psoriasis (Santiago-Schwarz, et al. (2001) J. Immunol. 167:1758-1768; Lambrecht and Hammad (2003) Curr. Opin. Pulm. Med. 9:34-41; Eigenmann (2002) Pediatr. Allergy Immunol. 13:162-167; Curry, et al. (2003) Arch. Pathol. Lab. Med. 127:178-186; Supajatura, et al. (2002) J. Clin. Invest. 109:1351-1359; Koga, et al. (2002) Dermatol. 204:100-103).

[0037] The invention also contemplates a method of modulating a CD200R using, e.g., an antagonist of CD200Ra or an agonist of CD200Rb, in the treatment of infections or proliferative conditions, such as cancer and tumors. Mast cells, APCs, and other cells of the immune system play a role in preventing or combatting infections, e.g., bacterial, viral, and protozoal infections. See, e.g., Marshall, et al. (2003) Curr. Pharm. Dis. 9:11-24; Malaviya and Georges (2002) Clin. Rev. Allergy Immunol. 22:189-204; Mekori and Metcalfe (2000) Immunol. Rev. 173:131-140; Galli, et al. (1999) Curr. Opinion Immunol. 11:53-59; Miles and Mamlok (1992) J. Allergy Clin. Immunol. 89:638-639; Sacks and Sher (2002) Nature Immunol. 3:1041-1047; Eigenmann (2002) Pediatr. Allergy Immunol. 13:162-171). Mast cells, APCs, or other cells of the immune system have also been found to participate in preventing or combatting proliferative conditions, e.g., cancer and tumors. See, e.g., Reay (2001) Expert Opin. Ther. Targets 5:491-506; Heckelsmiller, et al. (2002) Eur. J. Immunol. 32:3235-3245; Stiff, et al. (2003) Int. J. Oncol. 22:651-656; Vermorken and Van Tendeloo (2003) Expert Rev. Anticancer Ther. 3:1-3.

III. CD200 receptors.

20

25

30

40

45

50

55

[0038] Murine CD200Ra (a.k.a. muCD200Ra; SEQ ID NO:6) has a relatively long cytoplasmic tail. From <u>in vivo</u> studies, muCD200Ra is believed to be an inhibitory receptor, although it lacks a classical ITIM sequence. MuCD200Rb (SEQ ID NO:8), muCD200Rc (SEQ ID NO: 10) and muCD200Rd (SEQ ID NO:12) have short cytoplasmic tails, charged amino acids in their transmembrane regions, and have been shown to pair with a cellular activating adaptor molecule, Dap12 (Lanier and Bakker (2000) Immunol. Today 21:611-614). Human CD200Ra is homologous to murine CD200Ra. Human CD200Rb (SEQ ID NO:4) is most homologous to muCD200Rb/d and is also a pairing partner with Dap12.

IV. Purification and modification of polypeptides.

[0039] Polypeptides, e.g., antigens, antibodies, and antibody fragments, for use in the contemplated method can be purified by methods that are established in the art. Purification may involve homogenization of cells or tissues, immunoprecipitation, and chromatography. Stability during purification or storage can be enhanced, e.g., by anti-protease agents, antioxidants, ionic and non-ionic detergents, and solvents, such as glycerol or dimethylsulfoxide.

[0040] Modification to proteins and peptides include epitope tags, fluorescent or radioactive groups, monosaccharides or oligosaccharides, sulfate or phosphate groups, C-terminal amides, acetylated and esterified N-groups, acylation, e.g., fatty acid, intrachain cleaved peptide bonds, and deamidation products (Johnson, et al. (1989) J. Biol. Chem. 264: 14262-14271; Young, et al. (2001) J. Biol. Chem. 276:37161-37165). Glycosylation depends upon the nature of the recombinant host organism employed or physiological state (Jefferis (2001) BioPharm 14:19-27; Mimura, et al. (2001) J. Biol. Chem. 276:45539-45547; Axford (1999) Biochim. Biophys. Acta 1:219-229; Malhotra, et al. (1995) Nature Medicine 1:237-243).

[0041] Derivatives of polypeptides also include modification by a fusion protein partner (Ausubel, et al. (2001) Current Protocols in Molecular Biology, Vol. 3, John Wiley and Sons, Inc., NY, NY, pp. 16.0.5-16.22.17; Sigma-Aldrich, Co. (2001) Products for Life Science Research, St. Louis, MO; pp. 45-89; Amersham Pharmacia Biotech (2001) BioDirectory, Piscataway, N.J., pp. 384-391).

V. Binding compositions.

[0042] Antibodies can be derived from human or non-human sources. Intact protein, denatured protein, or a peptide fragment of the protein, may be used for immunization (Harlow and Lane, <u>supra</u>, pp. 139-243). Regions of increased antigenicity may be used for peptide fragment immunization. Human CD200Ra (SEQ ID NO:2) has regions of increased antigenicity, e.g., at amino acids 43-47, 62-66, 109-114, 165-174, 187-199, 210-214, 239-244, 260-267, and 293-300 of SEQ ID NO:2 (Vector NTI® Suite, InforMax, Inc., Bethesda, MD). Human CD200Rb (SEQ ID NO:4) is unusually antigenic at amino acids 55-75 of SEQ ID NO:4. Mouse CD200Ra (SEQ ID NO:6) has regions of increased antigenicity

at amino acids 25-40 and amino acids 85-95 of SEQ ID NO:6. Mouse CD200Rb (SEQ ID NO:8) has regions of increased antigenicity at amino acids 10-22, 85-90, and 105-120 of SEQ ID NO:8. Mouse CD200Rc (SEQ ID NO: 10) has regions of increased antigenicity at amino acids 20-40, 115-130, and 190-220 of SEQ ID NO: 10. Mouse CD200Rd has regions of increased antigenicity at amino acids 20-50,90-120,155-175, and 180-200 of SEQ ID NO:12 (MacVector 6.5®, Accelrys, San Diego, CA). This list of antigenic fragments and regions is not intended to limit the regions of the polypeptides that can be used to raise antibodies or that can be bound by antibodies.

[0043] Binding compositions comprising an extracellular domain of CD200, or antigenic fragments thereof, are contemplated, e.g., in mono- and bifunctional agents. The extracellular domain of human, mouse, and rat CD200 is described (Chen, et al. (1997) Biochim. Biophys. Acta 1362:6-10).

[0044] Antibodies derived from murine or other non-human sources can provoke an immune response, provide weak recruitment of effector function, or show rapid clearance from the bloodstream (Baca, et al. (1997) J. Biol. Chem. 272: 10678-10684). For these reasons, it may be desired to prepare therapeutic antibodies by humanization. A humanized antibody contains the amino acid sequences from six complementarity determining regions (CDRs) of the parent mouse antibody, that are grafted on a human antibody framework. The content of non-human sequence in humanized antibodies is preferably low, i.e., about 5% (Baca, et al. (1997) J. Biol. Chem. 272:10678-10684). To achieve optimal binding, the humanized antibody may need fine-tuning, by changing certain framework amino acids, usually involved in supporting the conformation of the CDRs, back to the corresponding amino acid found in the parent mouse antibody. The framework amino acids that are generally changed back to those of the parent are those involved in supporting the conformation of the CDR loops (Chothia, et al. (1989) Nature 342:877-883; Foote and Winter (1992) J. Mol. Biol. 224:487-499). The framework residues that most often influence antigen binding is relatively small, and may be a small as eleven residues (Baca, et al. (1997) J. Biol. Chem. 272:10678-10684).

[0045] Humanized antibodies include antibodies having all types of constant regions, including IgM, IgG, IgD, IgA and IgE, and any isotype, including IgG1, IgG2, IgG3 and IgG4. When it is desired that the humanized antibody exhibit cytotoxic activity, the constant domain is usually a complement-fixing constant domain and the class is typically IgG1. When such cytotoxic activity is not desirable, the constant domain can be of the IgG2 class. The humanized antibody may comprise sequences from more than one class or isotype (U.S. Pat. No. 6,329,511 issued to Vasquez, et al.).

20

30

35

45

50

55

[0046] An alternative to humanization is to use human antibody libraries displayed on phage or human antibody libraries in transgenic mice (Vaughan, et al. (1996) Nature Biotechnol. 14:309-314; Barbas (1995) Nature Medicine 1: 837-839; Mendez, et al. (1997) Nature Genetics 15:146-156; Hoogenboom and Chames (2000) Immunol. Today 21: 371-377; Barbas, et al. (2001) Phage Display: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; Kay, et al. (1996) Phage Display of Peptides and Proteins: A Laboratory Manual, Academic Press, San Diego, CA; de Bruin, et al. (1999) Nature Biotechnol. 17:397-399).

[0047] Bifunctional antibodies are provided. See, e.g., Mack, et al. (1995) Proc. Natl. Acad. Sci. USA 92:7021-7025; Carter (2001) J. Immunol. Methods 248:7-15; Volkel, et al. (2001) Protein Engineering 14:815-823; Segal, et al. (2001) J. Immunol. Methods 248:1-6; Brennan, et al (1985) Science 229:81; Raso, et al. (1997) J. Biol. Chem. 272:27623; Morrison (1985) Science 229:1202; Traunecker, et al. (1991) EMBO J. 10:3655; and U.S. Pat. Nos. 5,932,448, 5,532,210, and 6,129,914. Single chain antibodies and diabodies are described. See, e.g., Malecki, et al. (2002) Proc. Natl. Acad. Sci. USA 99:213-218; Conrath, et al. (2001) J. Biol. Chem. 276:7346-7350; Desmyter, et al. (2001) J. Biol. Chem. 276: 26285-26290; Hudson and Kortt (1999) J. Immunol. Methods 231:177-189; and U.S. Pat. No. 4,946,778.

40 [0048] Purification of antigen is not necessary for the generation of antibodies. Animals can be immunized with cells bearing the antigen of interest. Splenocytes can then be isolated from the immunized animals, and the splenocytes can fused with a myeloma cell line to produce a hybridoma (Meyaard, et al. (1997) Immunity 7:283-290; Wright, et al. (2000) Immunity 13:233-242; Preston, et al., supra; Kaithamana, et al. (1999) J. Immunol. 163:5157-5164).

[0049] Therapeutic antibodies may be conjugated, e.g., to small drug molecules, enzymes, liposomes, polyethylene glycol (PEG), or fusion protein antibodies. See, e.g., van Oosterhout, et al. (2001) Int. J. Pharm. 221:175-186; Marsh and Klinman (1990) 144:1046-1051; Kreitman (2001) Curr. Pharm. Biotechnol. 2:313-325; Dinndorf, et al. (2001) J. Immunother. 24:511-516; Wahl, et al. (2001) Int. J. Cancer 93:540-600; Garber (2000) J. Nat. Cancer Instit. 92:1462-1464; Everts, et al. (2002) J. Immunol. 168:883-889; Chen, et al. (2001) Int. J. Cancer 94:850-858; Shaik, et al. (2001) J. Control. Release 76:285-295; Park, et al. (2001) J. control. Release 74:95-113; Solorzano, et al. (1998) J. Appl. Physiol. 84:1119-1130; Rosenberg, et al. (2001) J. Appl. Physiol. 91:2213-2223; Bendele, et al. (2000) Arthritis Rheum. 43: 2648-2659; Trakas and Tzartos (2001) J. Neurochem. 120:42-49; Chapman, et al. (1999) Nature Biotechnol. 17:780-783; Gaidamakova, et al. (2001) J. Control. Release 74:341-347; Coiffier, et al. (2002) New Engl. J. Med. 346:235-242.

[0050] Antibodies are useful for diagnostic or kit purposes, and include antibodies coupled, e.g., to dyes, radioisotopes, enzymes, or metals, e.g., colloidal gold (Le Doussal, et al. (1991) J. Immunol. 146:169-175; Gibellini, et al. (1998) J. Immunol. 160:3891-3898; Hsing and Bishop (1999) J. Immunol. 162:2804-2811; Everts, et al. (2002) J. Immunol. 168: 883-889).

VI. Inhibiting and activating receptors.

[0051] The invention provides methods for cross-linking two different receptors, e.g., an inhibiting receptor and an activating receptor, for modulating cell activity.

- [0052] Examples of inhibiting receptors include, e.g., FcγLAIR, FDF03, KIR, gp49B, ILT25, PIR-B, Ly49, CTLA-4, CD200Ra (SEQ ID NO:2), CD94/NKG2A, NKG2B-E, PECAM-1, CD5, CD22, CD72, PIP1, SIRPα, HM18, LRC, ILT, KIR, LIR, MIR, and MAFA. See, e.g., Long (1999) Ann. Rev. Immunol. 17:875-904; Lanier (1997) Immunity 6:371-378; Sinclair (1999) Scan. J. Immunol. 50:10-13; Pan, et al. (1999) Immunity 11:495-506) Inhibiting receptors also include DNAX Surface Protein-1 (a.k.a. DSP-1) (Cantoni, et al. (1999) Eur. J. Immunol. 29:3148-3159.
- [0053] Activating receptors include, e.g., CD3, CD2, CD10, CD161, Dap12, KAR, FcεRI, FcεRII, FcγRIIA, FcγRIIC, FcγRIII/CD16, Trem-1, Trem-2, CD28, p44, p46, B cell receptor, LMP2A, STAM, STAM-2, GPVI, and CD40. See, e.g., Azzoni, et al. (1998) J. Immunol. 161:3493-3500; Kita, et al. (1999) J. Immunol. 162:6901-6911; Merchant, et al. (2000) J. Virol. 74:9115-9124; Pandey, et al. (2000) J. Biol. Chem. 275:38633-38639; Zheng, et al. (2001) J. Biol Chem. 276: 12999-13006; Propst, et al. (2000) J. Immunol. 165:2214-2221.
- [0054] The invention provides methods for inhibiting, e.g., lymphoid cells, myeloid cells, and endothelial cells. Cell inhibition is accomplished, e.g., by treating a cell, tissue, organ, extracellular fluid, animal, human subject, or cells or tissues ex vivo, with a mono-, bi-, or multifunctional reagent or binding composition.
- [0055] Agents that modulate expression of receptors, e.g., on a cell surface, are described. See, e.g., van de Winkel, et al. (1991) J. Leukocyte Biol. 49:511-524; van de Winkel, et al. (1993) Immunol. Today 14:215-221; Heijnen, et al. (1997) Intern. Rev. Immunol. 16:29-55; Fridman and Sautes (1996) Cell-Mediated Effects of Immunoglobins, Chapman 20 and Hall, New York, NY, pp. 39-40). The invention encompasses using an agent to increase expression of an inhibiting receptor, such as CD200Ra (SEQ ID NO:2), in order to increase efficiency of interaction of a binding composition specific for CD200Ra with CD200Ra, e.g., associated with mast cells, APCs, neutrophils, T cells, B cells, basophils, eosinophils, or epithelial cells. Also contemplated is use of an agent to increase expression of an activating receptor, such as CD200Rb (SEQ ID NO:4). The agent may comprise, e.g., a cytokine such as interferon or IL-10, a growth factor, a bifunctional reagent, an enzyme, or a small molecule such as adenosine. The agent may comprise a factor that promotes maturation of, e.g., mast cells, dendritic cells, or other APCs, or neutrophils, such as, stem cell factor, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor, or IL-6 (Hjertson, et al. (1999) Brit. J. Haematol. 104:516-522; Austen and Boyce (2001) Leuk. Res. 25:511-518; Vandenabeele and Wu (1999) Immunol. Cell Biol. 77:411-419; Santiago-30 Schwarz (1999) J. Leuk. Biol. 66:209-216; Liu, et al. (2001) Nat. Immunol. 2:585-589; Kondo, et al. (2003 Ann. Rev. Immunol.; Dumortier, et al. (2003) Blood 101:2219-2226).

VII. Screening.

- [0056] Assays comprising animals, cells, or reagents such as beads or wells, are contemplated for screening for CD200, CD200R, and for agents that modulate interactions between CD200 and CD200R. See, e.g., Steinitz (2000) Analyt. Biochem. 232-238; Gast, et al. (1999) Analyt. Biochem. 276:227-241; Kaiser, et al. (2000) Analyt. Biochem. 282: 173-185; and U.S. Pat. Nos. 6,176,962 and 6,517,234.
- [0057] Cells or animals can be engineered, e.g., to express a CD200R, in order to facilitate their use in screening.

 Expression can be measured by, e.g., by hybridization-based techniques (Ausubel, et al. (2001) Curr. Protocols Mol. Biol., Vol. 4, John Wiley and Sons, New York, NY, pp. 25.0.1-25B.2.20; Ausubel, et al. (2001) Curr. Protocols Mol. Biol., Vol. 3, John Wiley and Sons, New York, NY, pp. 14.0.1-14.14.8; Liu, et al. (2002) Analyt. Biochem. 300:40-45; Huang, et al. (2000) Cancer Res. 60:6868-6874; Wittwer, et al. (1997) Biotechniques 22:130-138; Schmittgen, et al. (2000) Analyt. Biochem. 285:194-204; Heid, et al. (1996) Genome Res. 6:989-994). Polypeptides can be detected, e.g., by antibody-based techniques. See, e.g., Harlow and Lane, supra, pp. 553-612; Sims, et al. (2000) Analyt. Biochem. 281: 230-232.

VIII. Therapeutic compositions.

[0058] Formulations of, e.g., binding compositions, binding compounds, or antibodies, are prepared by mixing, e.g., the antibody having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers in the form of lyophilized cake or aqueous solutions. See, e.g., Hardman, et al. (2001) Goodman and Gilman's the Pharmacological Basis of Therapeutics, McGraw-Hill, New York, NY; and Gennaro (2000) Remington: The Science and Practice of Pharmacy, Lippincott, Williams, and Wilkins, New York, NY; Avis, et al. (eds.) (1993) Pharmaceutical Dosage Forms: Parenteral Medications, Marcel Dekker, NY; Lieberman, et al. (eds.) (1990) Pharmaceutical Dosage Forms: Tablets, Marcel Dekker, NY; and Lieberman, et al. (eds.) (1990) Pharmaceutical Dotage Forms: Disperse Systems Dekker, NY. The therapeutic or pharmaceutical of this invention may be combined with or used in association with, e.g., anti-inflammatory, chemotherapeutic or chemopreventive agents.

[0059] Acceptable carriers, excipients, buffers, stabilizers, and surfactants are described. See, e.g., U.S. Pat. Nos. 6,342,220; 5,440,021; 6,096,728; and Weiner and Kotkoskie (2000) Excipient Toxicity and Safety, Marcel Dekker, Inc., New York, NY.

[0060] Therapeutic antibody compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle. The route of antibody administration is, e.g. injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intracerebrospinal, intralesional, or pulmonary routes, or by sustained release systems. Sustained release systems are described. See, e.g.; Sidman et al. (1983) Biopolymers, 22:547-556; Langer et al. (1981) J. Biomed. Mater. Res. 15:167-277; Langer (1982) Chem. Tech. 12:98-105; Epstein et al. (1985) Proc. Natl. Acad. Sci. USA 82: 3688-3692; Hwang et al. (1980) Proc. Natl. Acad. Sci. USA 77:4030-4034; U.S. Pat. Nos. 6,350466 and 6,316,024.

[0061] An "effective amount" of antibody to be employed therapeutically will depend, e.g., upon the therapeutic objectives, the route of administration, the type of antibody employed, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. Typically, the clinician will administer the antibody until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays.

[0062] In the treatment or prevention of, e.g., an inflammatory or proliferative disorder, by the contemplated method, the binding composition will be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the antibody, the particular type of antibody, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The "therapeutically effective amount" of antibody to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat the proliferative disorder. Such amount is preferably below the amount that is toxic to the host.

[0063] As a general proposition, the initial pharmaceutically effective amount of the antibody administered parenterally will be in the range of about 0.1 μ g/kg to 10 mg/kg of the patient's body weight per day, ordinarily 0.1 μ g/kg/day to 1.0 mg/kg/day, preferably 0.1 μ g/kg/day to 0.1 mg/kg/day, more preferably 0.1 μ g/kg/day to 0.01 mg/kg/day, and most preferably 0.1 μ g/kg/day, or less. The desired dosage can be delivered by a single bolus administration, by multiple bolus administrations, or by continuous infusion administration of antibody, depending on the pattern of pharmacokinetics that the practitioner wishes to achieve. As noted above, however, these suggested amounts of antibody are subject to a fair amount of therapeutic discretion. The key factor in selecting an appropriate dose and scheduling is the result obtained.

IX. Secondary therapeutics.

[0064] The invention contemplates use of combinations of an agonist or antagonist of CD200R with a second agent, e.g., an anti-inflammatory, immunosuppressive, or anti-neoplastic agent. Anti-inflammatory agents include, e.g., steroids and non-steroidal anti-inflammatories (U.S. Pat. No. 6,294,170 issued to Boone, et al.; U.S. Pat. No. 6,096,728 issued to Collins, et al.; Hardman, et al. (2001) Goodman and Gilman's the Pharmacological Basis of Therapeutics, McGraw-Hill, New York, NY). Immunosuppressive agents include, e.g., azothioprine, mercaptopurine, and methotrexate. Anti-neoplastic agents include, e.g., 5-fluorouracil, methotrexate, cis-platin, and doxorubicin (U.S. Pat. No. 6,066,668 issued Hausheer, et al.).

X. Kits.

20

30

45

50

55

[0065] The contemplated method is adapted for use in kits, i.e., for screening or diagnostic purposes. The kit may be adapted for use in detecting or quantitating a binding composition to CD200R, e.g., in a pharmaceutical composition or in a biological sample. The contemplated kit is adapted for use with, e.g., mast cells from a subject or patient. Typically, the kit will have a compartment, a reagent, or directions for use or disposal, or any combination thereof. Kits adapted to binding assays are described, e.g., U.S. Pat. Nos. 6,306,608; 6,150,122; 6,083,760; and 5,863,739.

XI. Uses.

[0066] The present invention contemplates methods for using a binding composition specific for a CD200R to modulate disorders associated with improper function of cells of the immune system, e.g., mast cells, APCs, such as dendritic cells, T cells, neutrophils, monocytes, or macrophages. The binding composition may comprise an agonist or antagonist of a CD200R. Agonists of an inhibiting receptor, e.g., CD200Ra (SEQ ID NOs:2 or 6), will be useful in inhibiting activity of mast cells, APCs, such as dendritic cells, T cells, neutrophils, monocytes, or macrophages. Antagonists of an activating receptor, e.g., CD200Rb (SEQ ID NOs:4, 6, 10, or 12) will also be useful in inhibiting activity of, e.g., mast cells, APCs,

such as dendritic cells, T cells, neutrophils, monocytes, or macrophages. Antagonists of CD200Ra and agonists of CD200Rb will be useful for stimulating, e.g., mast cells and APCs, such as dendritic cells, T cells, neutrophils, monocytes, or macrophages, for the treatment of infections and proliferative conditions.

[0067] The methods of the present invention contemplate use of, e.g., peptides, small molecules, antibodies, and binding compositions derived from the antigen binding site of an antibody, to treat or diagnose a variety of immune disorders, e.g., bronchial hyperreactivity, allergic rhinitis, asthma, bronchitis, and anaphylaxis. See, e.g., Woodruff and Fahy, supra; Plaut (2001) J. Am. Med. Assoc. 286:3005-3006; and Marshall and Bienenstock (1994) Curr. Op. Immunol. 6:853-859; Luskin and Luskin (1996) Am. J. Ther. 3:515-520.

[0068] The methods of the present invention can also be used to treat or diagnose rheumatoid arthritis, and skin disorders including psoriasis and atopic dermatitis. See, e.g., Mican and Metcalfe (1990) J. Allergy Clin. Immunol. 86: 677-683; Malone, et al. (1987) Arthritis Rheum. 30:130-137; Malfait, et al. (1999) J. Immunol. 162:6278-6280; Ackermann and Harvima (1998) Arch. Dermatol. Res. 290:353-359; Ackernann, et al. (1999) Brit. J. Dermatol. 140:624-633; Askenase, et al. (1983) J. Immunol. 131:2687-2694. The method also contemplates treatment or diagnosis of inflammatory diseases of the gastrointestinal tract, e.g., Crohn's disease, ulcerative colitis, and irritable bowel syndrome. See, e.g., Malaviya, et al. (1995) Am. J. Ther. 2:787-792; Jeziorska, et al. (2001) J. Pathol. 194:484-492; Sullivan, et al (2000) Neurogastroenterol. Motility 12:449; Nolte, et al. (1990) Gut 31:791-794; Raithel, et al. (2001) Scand. J. Gastroenterol. 36:174-179. The method is also contemplated for use in treating chronic liver disease and congestive heart failure (O'Keefe, et al. (2002) Liver Transpl. 8:50-57; Hara, et al. (2002) J. Exp. Med. 195:375-381).

[0069] The invention also encompasses methods of treatment or diagnosis of demyelination or neurodegeneration, e.g., multiple sclerosis, Guillain-Barre syndrome, Alzheimer's disease, Parkinson's disease, and epilepsy (Purcell and Atterwill (1995) Neurochem. Res. 20:521-532; Secor, et al. (2000) J. Exp. Med. 191:813-822; Dines and Powell (1997) J. Neuropathol. Exp. Neurol. 56:627-640; Purcell and Atterwill (1995) Neurochem. Res. 20:521-532; Dietsch and Hinrichs (1989) J. Immunol. 142:1476-1481).

[0070] Moreover, the invention encompasses a method of treating or diagnosing Sjogren's syndrome, transplant and graft rejection, graft-versus-host disease (GVHD), mastocytosis, and methods for preventing angiogenesis (Pedersen and Nauntofte (2001) Expert Opin. Pharmacother. 2:1415-1436; Konttinen, et al. (2000) Rheumatol. Int. 19:141-147; Moutsopoulos and Youinou (1991) Curr. Opin. Rheumatol. 3:815-822, Gorczynski, et al. (2000) Clin. Immunol. 95: 182-189; Koskinen, et al. (2001) Transplantation 71:174-1747; O'Keefe, et al. (2002) Liver Transol. 8:50-57; Lajoie, et al. (1996) Mod. Pathol. 9:1118-1125; Pardo, et al. (2000) Virchows Arch. 437:167-172; Yousem (1997) Hum. Pathol. 28:179-182; and Levi-Schaffer and Wej (1997) Clin. Exp. Allergy 27 Suppl. 1:64-70; Tomita, et al. (2000) Ann. Thorac. Surg. 69:1686-1690; Brockow and Metcalfe (2001) Curr. Opin. Allergy Clin. Immunol. 1:449-454; Hiromatsu and Toda (2003) Microsc. Res. Tech. 60:64-69).

[0071] Yet another aspect of the invention provides methods of modulating activity of a CD200R, e.g., SEQ ID NO:2, for the treatment or prevention of cardiovascular disease, e.g., atherosclerosis. Immune cells, e.g., mast cells, dendritic cells, neutrophils, monocytes, and macrophages, contribute to the pathology of atherosclerosis. See, e.g., Huang, et al. (2002) Cardiovasc. Res. 55:150-160; Kelley, et al. (2000) Mol. Med. Today 6:304-308; Aicher, et al. (2003) Circulation 107:604-611; Ozmen, et al. (2002) Histol. Histopathol. 17:223-237; Wanders, et al. (1994) Transpl. Int. 7 Suppl. 1:S371-S375.

[0072] Also encompassed are methods of providing an antagonist of CD200Ra (SEQ ID NO:2) or an agonist of CD200Rb (SEQ ID NO:4) to stimulate cell activity, e.g., to combat bacterial infections, viral infections, persistent infections, infections by foreign multi-cellular organisms, cancerous conditions and tumors, and to promote wound healing.

[0073] The broad scope of this invention is best understood with reference to the following examples, which are not intended to limit the inventions to the specific embodiments.

45 EXAMPLES

10

20

30

35

40

50

55

I. General Methods.

[0074] Methods for the diagnosis and treatment of inflammatory conditions in animals and in humans are described. See, e.g., Ackerman (1997) Histological Diagnosis of Inflammatory Skin Disease, 2nd ed., Lippincott, Williams, and Wilkins, New York, NY; Gallin, et al. (1999) Inflammation:Basic Principles and Clinical Correlates, 3rd ed., Lippincott, Williams, and Wilkins, New York, NY; Geppetti and Holzer (1996) Neurogenic Inflammation, CRC Press, Boca Raton, FL; Nelson, et al. (2000) Cytokines in Pulmonary Disease:Infection and Inflammation, Marcel Dekker, Inc., New York, NY; O'Byrne (1990) Asthma as an Inflammatory Disease, Marcel Dekker, Inc., New York, NY., Parnharn, et al. (1991) Drugs in Inflammation (Agents and Actions Suppl., Vol. 32), Springer Verlag, Inc., New York, NY; Benezra (1999) Ocular Inflammation:Basic and Clinical Concepts, Blackwell Science, Ltd., Oxford, UK.

[0075] Standard methods in molecular biology are described (Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; Sambrook and Russell (2001) Molecular Cloning,

3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; Wu (1993) Recombinant DNA, Vol. 217, Academic Press, San Diego, CA). Standard methods also appear in Ausbel, et al. (2001) Current Protocols in Molecular Biology, Vols.1-4, John Wiley and Sons, Inc. New York, NY, which describes cloning in bacterial cells and DNA mutagenesis (Vol. 1), cloning in mammalian cells and yeast (Vol. 2), glycoconjugates and protein expression (Vol. 3), and bioinformatics (Vol. 4).

[0076] Methods for protein purification including immunoprecipitation, chromatography, electrophoresis, centrifugation, and crystallization are described (Coligan, et al. (2000) Current Protocols in Protein Science, Vol. 1, John Wiley and Sons, Inc., New York). Chemical analysis, chemical modification, post-translational modification, and glycosylation of proteins are described (Coligan, et al. (2000) Current Protocols in Protein Science Vol. 2, John Wiley and Sons, Inc., New York). Production, purification, and fragmentation of polyclonal and monoclonal antibodies is described (Coligan, et al. (2001) Current Protocols in Immunology, Vol. 1, John Wiley and Sons, Inc., New York; Harlow and Lane (1999) Using Antibodies, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; Harlow and Lane, supra).

[0077] Standard techniques for characterizing ligand/receptor interactions are available. See, e.g., Coligan, et al. (2001) Current Protcols in Immunology, Vol. 4, John Wiley and Sons, Inc., New York.

[0078] Standard techniques in cell and tissue culture are described. See, e.g., Freshney (2000) Culture of Animal Cells: A Manual of Basic Technique, 4th ed., Wiley-Liss, Hoboken, NJ; Masters (ed.) (2000) Animal Cell Culture: A Practical Approach, 3rd ed., Oxford Univ. Press, Oxford, UK; Doyle, et al. (eds.) (1994) Cell and Tissue Culture: Laboratory Procedures, John Wiley and Sons, NY; Melamed, et al. (1990) Flow Cytometry and Sorting Wiley-Liss, Inc., New York, NY; Shapiro (1988) Practical Flow Cytometry Liss, New York, NY; Robinson, et al. (1993) Handbook of Flow Cytometry Methods Wiley-Liss, New York, NY.

[0079] Animal models for arthritis, multiple sclerosis, psoriasis, and lipopolysaccharide (LPS)-induced inflammation are available. See, e.g., Luross and Williams (2001) Immunology 103:407-416; Griffiths and Remmers (2001) Immunol. Rev. 184:172-183; Beurler (2000) Curr. Opin. Immunol. 12:20-26; Campbell, et al. (1998) J. Immunol. 161:3639-3644; Tompkins, et al. (2002) J. Immunol. 168:4173-4183; Hong, et al. (1999) J. Immunol. 162:7480-7491.

[0080] Software packages for determining, e.g., antigenic fragments, signal and leader sequences, protein folding, and functional domains, are available. See, e.g., Vector NTI® Suite (Informax, Inc., Bethesda, MD); GCG Wisconsin Package (Accelrys, Inc., San Diego, CA), and DsCypher® (TimeLogic Corp., Crystal Bay, Nevada); Menne, et al. (2000) Bioinformatics 16:741-742. Public sequence databases were also used, e.g., from GenBank and others.

30 II. Preparation of mast cells.

[0081] Murine mast cell cultures were established from 2-3 week old C57BL/6 mice. Bone marrow was flushed from the femurs of 2-3 mice and subsequently washed three times with phosphate buffered saline (PBS). Cells were resuspended in 15 ml Dulbecco's minimal essential media (MEM) supplemented with sodium pyruvate, non-essential amino acids, 2-mercaptoethanol, N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), glutamine, 10-15% fetal calf serum (Hyclone, Inc., Logan, UT), 100 ng/mg rSCF, and 100 ng/ml of rIL-3. Cells were incubated in T25 flasks at 37°C. At weekly intervals, the non-adherent cells were refed with fresh media and transfered to a new flask. At two weeks, culture media was supplemented with 5.0 ng/ml of EL-4. By four weeks, the majority of non-adherent cells are expected to be typical murine mast cells expressing IgE FcR. From four weeks on, the cells were maintained with supplements of only rIL-3 and rIL-4.

III. Distribution of CD200R.

[0082] Total RNA was isolated from a variety of cell types and tissues using the RNAEASY® RNA isolation kit (Qiagen, Inc., Valencia, CA). RNA was reverse transcribed using oligo dT primers and Multiscribe® reverse transcriptase (Applied Biosystems, Inc., Foster City, CA). cDNA was analyzed for expression of CD200 receptors and ubiquitin by Taqman® PCR assays using a Perkin Elmer ABI Prism 5700® sequence detection system (Perkin Elmer, Inc., Wellesley, MA). Quantitation of target gene expression was calculated by normalizing the values relative to the expression of ubiquitin. [0083] Results of Taqman® analysis are presented in Table 1. Highest expression is represented by (+++), moderate expression is (++) or (+), while borderline to undetectable expression levels is (-). ND means not determined.

55

5

20

35

40

45

Table 1.

5	Cell or tissue	Human CD200Ra (SEQ ID NOs:1,2)	Human CD200Rb (SEQ ID NO: 3,4)	Mouse CD200Ra (SEQ ID NO: 5,6)	Mouse CD200Rb (SEQ ID NO: 7,8)	Mouse CD200Rc (SEQ ID NO: 9,10)	Mouse CD200Rd (SEQ ID NO: 11,12)
	Mast cells	(++)	(+++)	(++)	(+++)	(+++)	(+++)
10	Macrophages resting ex bone marrow	ND	ND	(+++)	(+++)	(-)	(++)
15	Macrophages activated LPS + IFNg + IL-10 24 hour ex bone marrow	ND	ND	(++)	(++)	(-)	(++)
20	Brain Macrophages (microglia)	ND	ND	(+)	(+)	(-)	(+)
20	Activated microglia	ND	ND	(+)	(++)	(-)	(++)
	Monocytes	(+)	(+,-)	ND	ND	ND	ND
25	Dendritic cells	(+++)	(+++)	(+)	(++)	(+)	(+)
	B cells	(+,-)	(+)	(+,-)	(+,-)	(-)	(+,-)
30	T cell C57BU6 TH1 activated pool	ND	ND	(+,-)	(+,-)	(-)	(-)
	T cell C57BL/6 TH2 activated pool	ND	ND	(++)	(++)	(+,-)	(+)
35	T cell TH1 activated pool	(-)	(-)	ND	ND	ND	ND
	T cell TH2 activated pool	(+)	(-)	ND	ND	ND	ND
40	NK cell	(-)	(-)	ND	ND	ND	ND
40	Endothelial cell	ND	ND	(-)	(+)	(-)	(-)
	Fibroblast	(-)	(+,-)	(-)	(-)	(-)	(-)
45	Aorta atherosclerosis model	ND	ND	(+++)	(+++)	(-)	(+++)
	Colon	(++)	(-)	(+)	(++)	(+,-)	(+)
	Lung	(++)	(++)	(+++)	(++)	(++)	(++)
50	Lung hypersensitivity pneumonitis	(+++)	ND	ND	ND	ND	ND
55	Fibroblast hypersensitivity pneumonitis	(+++)	ND	ND	ND	ND	ND

(continued)

5	Cell or tissue	Human CD200Ra (SEQ ID NOs:1,2)	Human CD200Rb (SEQ ID NO: 3,4)	Mouse CD200Ra (SEQ ID NO: 5,6)	Mouse CD200Rb (SEQ ID NO: 7,8)	Mouse CD200Rc (SEQ ID NO: 9,10)	Mouse CD200Rd (SEQ ID NO: 11,12)
	Eosinophilic granuloma	(++)	ND	ND	ND	ND	ND
10	Lung idiopathic pulmonary fibrosis	(++)	ND	ND	ND	ND	ND
15	Infiltrating cells rheumatoid arthritis	(+++)	ND	ND	ND	ND	ND
	Skin	(-)	(-)	(++)	(+)	(+)	(+)
20	Spinal cord C57BL/6 TNFα knockout, untreated	ND	ND	(+,-)	(+,-)	(-)	(-)
25	Spinal cord C57BL/6 TNFα□knockout EAE model	ND	ND	(+)	(+)	(-)	(++)
	Spleen	ND	ND	(++)	(+)	(++)	(+)

IV. Association of CD200R with Dap12.

30

35

50

[0084] To verify the association of CD200 receptors with Dap12, CD200 receptors were introduced by retrovirus vectors into Baf cell lines that had previously been transfected with one of the following FLAG-tagged molecules: Dap12, Dap10, FcεRγ, or CD3-ξ. The FLAG-tagged molecules are only expressed on the cell surface when stably associated with appropriate pairing partner molecule. When murine CD200Rc (SEQ ID NO:10) or murine CD200Rd (SEQ ID NO:12) was introduced into these transfectants, only FLAG-tagged Dap12 was rescued, indicating that these CD200 receptors specifically pair with Dap12.

V. Agonist antibodies of CD200R.

40 [0085] Epitope-tagged CD200R molecules were stably introduced into normal mouse mast cells. These CD200Rs were then directly engaged with monoclonal antibodies specific for various epitope tags. Mast cell degranulation, cytokine secretion, and proliferation were monitored with and without subsequent cross-linking of the anti-tag antibodies. Triggering CD200Ra had no effects on resting mast cells, however, triggering the CD200 receptors that pair with Dap12, i.e., activating CD200Rs, caused significant mast cell degranulation, cytokine secretion, and autocrine-dependent proliferation.

[0086] Epitope-tagged CD200Ra was stably introduced into normal mast cells. CD200Ra (SEQ ID NO:6) further comprising an epitope tag was engaged by a CD200 Ig-fusion protein or by monoclonal antibodies against the epitope tags while simultaneously activating the FcɛRI with IgE antibodies. Mast cells were then monitored for degranulation, cytokine secretion, and proliferative responses. In some experiments, CD200Ra and FcɛRI were co-ligated by a secondary antibody. The results demonstrated that CD200Ra is an inhibitory receptor capable of inhibiting FcɛRI-dependent responses in mast cells.

[0087] In related studies, monoclonal antibodies specific for murine CD200Ra (SEQ ID NO:6) were used in place of the anti-tag antibodies. In these studies with murine mast cells, the results again demonstrated that CD200Ra is an inhibitory receptor.

[0088] Monoclonal antibodies specific for human CD200Ra were tested for agonist activity using activated mast cells. Anti-huCD200Ra antibodies, i.e., DX136 (rlgG2a) and DX139 (rlgM), were found to be agonists of CD200Ra as measured by assessing changes in degranulation and secretion, using murine mast cells expressing human CD200Ra. Agonist activity is expressed by IC50.

[0089] Fusion proteins, comprising two CD200 extracellular domains fused to an Fc region, were also tested for agonist activity (huCD200-lg; muCD200-lg). These fusion proteins contained a mutation (D265A in the constant regions of the Fc used to create both huCD200-lg and muCD200-lg) to prevent binding to Fc receptor (FcR) and to complement (Idusogie, et al. (2000) J. Immunol. 164:4178-4184). These fusion proteins also delivered a signal that inhibited mast cell degranulation and cytokine secretion.

[0090] FACS analysis of blood cells revealed the types of white blood cells expressing CD200R, where cells were tagged by the indicated antibody (Table 2). Receptor internalization was measured by confocal microscopy (Liu, et al. (1998) Cancer Res. 58:4055-4060; Lee, et al. (2000) J. Pharmacol. Exp. Therapeutics 292:1048-1052) (Table 2). ND means not determined. Immunohistochemistry (IHC) refers to the ability of the indicated mAb to stain cells in frozen, acetone-fixed, human or mouse tissue, or formalin-fixed, paraffinembedded human or mouse tissues.

Table 2.

			Agonists of humar	CD200Ra (SEQ	ID NO·2)		
5	Name	Species and isotype	Agonist activity	Bioassay IC50	FACS analysis of blood	IHC	Receptor internali- zation
)	DX136	Rat IgG2a	Yes	1.0 nM	T cells+ Monocytes+ Neutrophils+++ Basophils++	Yes	No
5	DX138	Rat IgG2a	Yes	Yes		Yes	Yes
	DX139	Rat IgM	Strong	0.01 nM	T cells+ Neutrophils+++ Basophils+	Yes	No
,	DX142	Rat IgG1	Yes	0.5 nM	Neutrophils+	No	ND
	DX147	Rat IgG1	Yes	0.2 nM	Neutrophils+	Yes	No
5	DX153	Rat lgG1	Yes	0.14 nM	T cells(+,-); monocytes (+); neutrophils (+++); basophils (+)		
	huCD200-lg	Mouse IGG1	Yes	0.3 nM	ND	ND	ND
			Agonists of mouse	e CD200Ra (SEQ	ID NO:6)	•	
	Name	Species and isotype	Agonist activity	Bioassay IC50	FACS analysis of blood	IHC	Receptor internali- zation
	DX109	Rat lgG1	yes	0.2 nM	T cells+ Monocytes++ Neutrophils+++	Yes	No
	DX110	Rat IgG1	yes, less than DX109	ND	ND	Yes	ND
	muCD200-lg	Mouse IgG1	yes	1.3 nM	ND	ND	ND
_							

[0091] Mouse mast cells expressing the human CD200Ra molecule were stimulated with 25 μ g/ml monoclonal antibody to trigger the Dap12-linked activating receptor of mouse CD200Rd, followed by measurement of secreted β-hexosaminidase at 1.0 hours (Table 2). Agonist activity of anti-CD200Ra antibody or CD200-lg fusion protein was assessed by adding anti-CD200Ra antibody or CD200-lg fusion protein to the cell incubation mixtures and determining inhibition of secretion. Incubations were conducted with antibodies or CD200-lg fusion protein at concentrations of 0, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, and 9.0 μ g/ml. Control cell incubations were conducted with the rat isotype control mAb.

[0092] The results demonstrated that treatment with each of the anti-CD200R antibodies and with the CD200-Ig fusion

14

55

protein inhibited mast cell degranulation. Control isotype antibodies did not detectably influence secretion. However, each of the tested compounds inhibited with differing efficiencies, as determined by the IC50 (Table 2). In addition to having a better agonistic effect, the antibodies' effect was also longer lasting than that of the Ig-fusion protein.

[0093] Mouse mast cells were stimulated with IgE anti-TNP with antigen (TNP-keyhole limpet hemocyanin; KLH), followed by assay of released β -hexosaminidase (degranulation; Abs₄₀₅₋₆₅₀) and cytokine (secretion) (Figs. 1-2) The degranulation signal, IgE anti-TNP, was used at the indicated concentrations. DX109 monoclonal anti-CD200R antibody (mAb) and control rat IgG1 mAb were tested for their effect on inhibiting mast cell activity. DX109 mAb or rat IgG1 mAb were added at a constant concentration of 13 nM. The cytokines assayed were IL-13 and tumor necrosis factor (TNF) (Figs. 1-2). Degranulation, as assessed by hexosaminidase release, was studied (Fig. 1). Increases in stimulant concentration were followed by increases in hexosaminidase release where control rat IgG1 was added (upper curve, closed squares, Fig. 1), while incubations containing added DX109 mAb had relatively low levels of hexosaminidase release, except at the highest level of stimulant (lower curve, closed triangles, Fig. 1). Increasing stimulant concentration resulted in increases in secretion of IL-13 (closed circles, Fig. 2) and TNF (closed squares, Fig. 2) where secretion of both cytokines was inhibited by DX109 monoclonal antibody. The results demonstrate that anti-CD200R antibody is effective in inhibiting degranulation and cytokine secretion.

VI. Cross-linking an inhibiting receptor with an activating receptor.

10

15

20

30

35

40

45

50

55

[0094] Degranulation and secretion by human mast cells was measured by a protocol involving addition of anti-IgE receptor antibody, which binds to IgE receptor, addition of anti-CD200R antibody, which binds to CD200Ra (SEQ ID NO:2), and addition of goat anti-mouse F(ab')₂, which binds simultaneously to the anti-IgE antibody (adhering to IgE receptor) and to anti-CD200R antibody (adhering to CD200R). Control experiments involved variations of this protocol. [0095] Whole cord blood cells were cultured in Yssels medium supplemented with stem cell factor (SCF) and IL-6 for 4-6 weeks to produce human mast cells. IL-4 and IgE were added to the culture for an additional 2 weeks. Cells were then plated at 10⁶ cells/well in 96 well flat bottom plates. An inhibitory antibody (anti-CD200Ra antibody) or control antibody (mouse Ig) was then added. After 20 min incubation, anti-IgE receptor antibody was added to a concentration of 20 ng/ml. After 20 min of further incubation, the wells were washed and the crosslinker (goat anti-mouse antibody) was added. The mixture was incubated for 1 h, and the supernatant withdrawn and used for degranulation assays, as assessed by tryptase release. Tryptase assays were performed with the substrate N-alpha-benzyl-DL-arginine p-nitroanilide hydrochloride (BAPNA) with color measurement at 405-570 nm.

[0096] Degranulation (tryptase release) was maximal with addition of anti-IgE receptor antibody and control antibody (mouse Ig). Maximal tryptase release, under these conditions, resulted in Abs.₄₀₅₋₅₇₀ = 0.44-0.51. In incubations with anti-CD200Ra antibody, titrating levels of anti-CD200Ra antibody were used (0-1000 ng/ml anti-CD200Ra antibody). Different levels of antibody were used in separate incubation mixtures. Anti-CD200Ra antibody at increasing levels resulted in the progressive inhibition of tryptase release, where maximal inhibition (Abs.₄₀₅₋₅₇₀ = 0.05) occurred with about 1000 ng/ml anti-CD200Ra antibody. Intermediate levels of anti-CD200Ra antibody (200 ng/ml) inhibited tryptase release to about 25% the level of maximal tryptase release. The results demonstrate that cross-linking CD200Ra with IgE receptor-dependent degranulation in human mast cells.

[0097] Cross-linking of various inhibitory receptors, other than CD200Ra (SEQ ID NO:2), with Fc ϵ Rl also inhibited mast cell activity. The inhibitory receptors studied were DSP-1 and LAIR-1. Anti-DSP-1 antibody or anti-LA1R-1 antibody were used as agonists for DSP-1 or LAIR-1, repectively. Degranulation (tryptase release) was maximal with addition of anti-IgE receptor antibody plus control antibody (mouse Ig). Maximal tryptase release, under these conditions, resulted in Abs. $_{405-570} = 0.44-0.51$. Titrating levels of anti-DSP-1 antibody were used (0-1000 ng/ml anti-DSP-1 antibody), with different levels of anti-DSP-1 antibody in separate incubation mixtures. Increasing concentrations of anti-DSP-1 antibody resulted in progressive inhibition of tryptase release, where maximal inhibition (Abs $_{405-570} = 0.08$) occurred at about 40 ng/ml anti-DSP-1 antibody, as well as at higher concentrations of anti-DSP-1 antibody. Intermediate concentrations of anti-DSP-1 antibody (about 8 ng/ml) resulted in 25% maximal tryptase release. The results demonstrate that cross-linking DSP-1 with IgE receptor prevents IgE receptor-dependent degranulation.

[0098] In studies involving the inhibitory receptor LAIR-1, anti-LAIR-1 antibody was used at 0 or 50 ng/ml. Where incubations contained only activating antibody (anti-IgE receptor antibody), tryptase release was about $Abs_{405-570} = 0.69$ (defined as maximal). Where incubations contained activating antibody (anti-IgE receptor), anti-LAIR-1 antibody (50 ng/ml), and cross-linker, tryptase release was inhibited, and where tryptase release at the inhibited level was about 10% maximal ($Abs_{405-570} = 0.07$). Control incubations containing no activating antibody resulted in very little tryptase release ($Abs_{405-570} = 0.06$). The results demonstrate that cross-linking LAIR-1 with IgE receptor prevents IgE receptor-dependent degranulation.

VII. Preventing mast cell degranulation in vivo.

15

30

35

40

45

50

55

[0099] To determine if agonism of the CD200Ra molecule could also prevent mast cell degranulation in vivo, the passive cutaneous anaphylaxis (PCA) was employed. Each mouse in a group of five 30 g CD1 mice was injected i.v. with 100 μ g of DX109 (rat anti-muCD200Ra mAb). Each mouse in a second group of five, 30g CD1 mice was injected i.v. with 100 μ g of rat IgC1 control mAb. One hour later, the backs of all ten mice were shaved and mouse IgE anti-DNP mAb was injected intradermally (i.d.) in a volume of 20 μ l at 3 sites per mouse, respectively 10, 20 or 40 ng IgE per site. Twenty four hours later, all mice received i.v. a mixture of antigen (DNP-HSA) and the dye Evans's blue. Where the injected antigen binds to, and cross-links the IgE bound to skin mast cells, degranulation occurs, leading to release of mediators such as histamine that cause vascular edema, enabling the movement of the blue dye from the blood into the skin and appearance of blue spots on the skin. The size of the blue spot is proportional to the amount of IgE injected into the skin at that site. In mice receiving 100 μ g of the control IgG1 HnAb, the PCA reaction proceeded and blue spots appeared in all five mice, the largest size spot at the site where 40ng IgE was injected, the smallest blue spot where 10 ng IgE was injected. In mice receiving the DX109 anti-CD200Ra mAb, no blue spots appeared at any concentration of injected IgE. Thus, as in the in vitro studies, the DX109 mAb delivered an inhibitory signal to the skin mast cells in vivo, preventing degranulation.

VIII. Treatment of collagen induced arthritis (CIA) with anti-CD200Ra antibody.

[0100] CIA was induced in mice followed by treatment with anti-CD200Ra antibody (DX109 mAb) or with control IgG antibody. Female B10.RIII mice, 8-10 weeks old, were treated with bovine type II collagen in complete Freund's adjuvant (CFA) (Jirholt, et al. (1998) Eur. J. Immunol. 28:3321-3328). At day 0, mice were treated with one dose of bovine Type II collagen in CFA. Starting at day 7, antibody was administered at weekly intervals. DX109 antibody and control IgG doses were 1 mg, i.p. at days 7 and 14, and 1 mg, s.c. at days 21 and 28. Disease scoring commenced at day 14 and was continued to day 45. Experimental mice received DX109, while control mice received control IgG.

[0101] CIA was scored by cumulative incidence in units of percent. The control group showed 0% score from t = 14-18 days; 40% score at t = 19-20 days; 60% score at t = 21-30 days; and 80% score at t = 31-44 days. The DX109-treated group showed 0% score from t = 14-24 days and 20% score from t = 25-44 days. Thus DX109-treatment resulted in lower scores and relief from CIA.

[0102] CIA was also scored by Mean Clinical Score (MCS) (Hoek, et al, <u>supra</u>). The control group showed a MCS = 0 at 14-19 days; MCS = 1 at 20-21 days; MCS = -2 at 22-31 days, followed by a progressive increase to MCS = -4.5, where a score of MCS = -4.5 occurred at days 39-44. The DX109-treated group showed MCS = 0 at 14-24 days, MCS = 0.2 at 25-26 days, MCS = 0.5 at 27-34 days, MCS = 0.2 at 35-42 days, and MCS = 0.5 at 43-44 days. Again, the results demonstrated that DX109-treatment resulted in lower scores and relief from CIA.

IX. Effects of anti-CD200R antibody on LPS-induced endotoxaemia.

[0103] Endotoxaemia was induced in mice by LPS-treatment followed by treatment with anti-CD200R antibody (DX109) or control antibody and assessment of survival rate. The LPS dose was adjusted to provide sufficient toxicity to provoke toxicity and death of the mice, while avoiding saturating levels that would prevent the antibody from enhancing survival. The mice were of the C57BL/6 strain. Mice received 0.5 mg antibody (i.p.) at two time points, i.e., 1 hour prior to as well as simultaneously with the LPS. The anti-CD200R antibody treated mice showed a higher survival rate at various time points when compared to the control group. The results demonstrated that anti-CD200R antibody protects mice from LPS-induced toxicity.

X. Distribution of CD200Ra in human skin.

[0104] CD200Ra was visualized in green by rat anti-CD200Ra and tagging with goat anti-rat containing Alexa Fluor®-488 (Molecular Probes, Eugene, OR). Mast cells were visualized in red with mouse anti-CD117 (a marker for mast cells) and tagging with goat anti-mouse containing Alexa Fluor®-594 (Molecular Probes, Eugene, OR). Staining with anti-CD 117 revealed an array of discrete red spots. Staining with both antibodies indicated that about one third of CD200Rabearing cells were mast cells.

[0105] Normal human skin was also tested for localization of CD200Ra (SEQ ID NO:2) on macrophages. CD200Ra was localized by staining with anti-CD200Ra tagged with green. Macrophages were located with anti-CD11b antibody tagged with red. Staining with either antibody alone or with both antibodies together demonstrated that a majority of macrophages expressed CD200Ra.

[0106] Normal human and psoriatic skin was probed with anti-CD200Ra (DX136), stained with horse radish peroxidase (HRP), and examined under visible light. The results showed that psoriatic skin was profusely stained in both the dermis

and epidermis, when compared to normal skin. The psoriatic skin contained large clusters of CD200Ra⁺ cells, where these cells appeared to consist of T cells and myeloid cells.

SEQUENCE IDENTIFIERS

[0107]

5

10

15

20

SEQ ID NO:1 is human CD200Ra nucleic acid.

SEQ ID NO:2 is human CD200Ra polypeptide.

SEQ ID NO:3 is human CD200Rb nucleic acid.

SEQ ID NO:4 is human CD200Rb polypeptide.

SEQ ID NO:5 is murine CD200Ra nucleic acid.

SEQ ID NO:6 is murine CD200Ra polypeptide.

SEQ ID NO:7 is murine CD200Rb nucleic acid.

SEQ ID NO:8 is murine CD200Rb polypeptide.

SEQ ID NO:9 is murine CD200Rc nucleic acid.

SEQ ID NO: 1 0 is murine CD200Rc polypeptide.

SEQ ID NO:11 is murine CD200Rd nucleic acid.

SEQ ID NO:12 is murine CD200Rd polypeptide.

SEQ ID NO: 13 is rat CD200R nucleic acid.

SEQ ID NO:14 is rat CD200R polypeptide.

[0108] All citations herein are incorporated herein by reference to the same extent as if each individual publication, patent application, or patent was specifically and individually indicated to be incorporated by reference including all figures and drawings.

[0109] Many modifications and variations of this invention, as will be apparent to one of ordinary skill in the art, can be made to adapt to a particular situation, material, composition of matter, process, process step or steps, to preserve the objective, spirit, and scope of the invention. All such modifications are intended to be within the scope of the claims appended hereto without departing from the spirit and scope of the invention. The specific embodiments described herein are offered by way of example only, and the invention is to be limited by the terms of the appended claims, along with the full scope of the equivalents to which such claims are entitled; and the invention is not to be limited by the specific embodiments that have been presented herein by way of example.

35

30

40

45

50

SEQUENCE LISTING

-	<110> Schering Corporation	
5	<120> Methods of modulating CD200 receptors	
	<130> DX01550K WI	
10	<150> 60/364,513 <151> 2002-03-15	
	<160> 14	
	<170> PatentIn version 3.1	
15	<210> 1 <211> 2255 <212> DNA <213> Homo sapiens	
20	<400> 1 cagagaaaag cttctgttcg tccaagttac taaccaggct aaaccacata gacgtgaagg	50
	aaggggctag aaggaaggga gtgccccact gttgatgggg taagaggatc ctgtactgag	60 120
	aagttgacca gagagggtct caccatgcgc acagttcctt ctgtaccagt gtggaggaaa	180
25	agtactgagt gaagggcaga aaaagagaaa acagaaatgc tctgcccttg gagaactgct	240
	aacctagggc tactgttgat tttgactate ttettagtgg ccgaagcgga gggtgetget	300
	caaccaaaca actcattaat gctgcaaact agcaaggaga atcatgcttt agcttcaagc	360
30	agtttatgta tggatgaaaa acagattaca cagaactact cgaaagtact cgcagaagtt	420
	aacacttcat ggcctgtaaa gatggctaca aatgctgtgc tttgttgccc tcctatcgca	480
	ttaagaaatt tgatcataat aacatgggaa ataatcetga gaggecagee tteetgeaca	540
35	aaagcctaca ggaaagaaac aaatgagacc aaggaaacca actgtactga tgagagaata	600
	acctgggtct ccagacctga tcagaattcg gaccttcaga ttcgtccagt ggccatcact	660
	catgacgggt attacagatg cataatggta acacctgatg ggaatttcca tcgtggatat	720
40	cacciccaag igitagitac accigaagig acceigitic aaaacaggaa tagaacigca	780
	gtatgcaagg cagttgcagg gaagccagct gcgcagatct cctggatccc agagggcgat	840
	tgtgccacta agcaagaata ctggagcaat ggcacagtga ctgttaagag tacatgccac	900
<i>45</i>	tgggaggtcc acaatgtgtc taccgtgacc tgccacgtct cccatttgac tggcaacaag	960
	agtotgtaca tagagotact tootgttoca ggtgocaaaa aatcagoaaa attatatatt	1020
50	ccatatatca tecttactat tattattttg accategtgg gatteatttg gttgttgaaa	1080
	gtcaatggct gcagaaaata taaattgaat aaaacagaat ctactccagt tgttgaggag	1140
	gatgaaatgc agccctatgc cagctacaca gagaagaaca atcctctcta tgatactaca	1200

	adeadaggiga dygearered ggearracaa agrgaagrig acacagaeer ecataerria	1260
_	taagttgttg gactctagta ccaagaaaca acaacaaacg agatacatta taattactgt	1320
5	ctgattttct tacagttcta gaatgaagac ttatattgaa attaggtttt ccaaggttct	1380
	tagaagacat tttaatggat teteatteat accettgtat aattggaatt tttgattett	1440
10	agctgctacc agctagttct ctgaagaact gatgttatta caaagaaaat acatgcccat	1500
10	gaccaaatat tcaaattgtg caggacagta aataatgaaa accaaatttc ctcaagaaat	1560
	aactgaagaa ggagcaagtg tgaacagttt cttgtgtatc ctttcagaat attttaatgt	1620
15	acatatgaca tgtgtatatg cctatggtat atgtgtcaat ttatgtgtcc ccttacatat	1680
15	acatgcacat atctttgtca aggcaccagt gggaacaata cactgcatta ctgttctata	1740
	catatgaaaa cctaataata taagtcttag agatcatttt atatcatgac aagtagagct	1800
20	acctcattct ttttaatggt tatataaaat tccattgtat agttatatca ttatttaatt	1860
	aaaaacaacc ctaatgatgg atatttagat tcttttaagt tttgtttatt tcttttaagt	1920
	tttgtttgtg gtataaacaa taccacatag aatgtttctt gtgcatatat ctctttgttt	1980
25	ttgagtatat ctgtaggata actticttga gtggaattgt caggtcaaag ggtttgtgca	2040
	ttttactatt gatatatatg ttaakttgtg tcaaatatat atgtcaaatt ccctccaaca	2100
	ttgtttaaat gtgcctttcc ctaaatttct attttaataa ctgtactatt cctgcttcta	2160
30	cagttgccac tttctctttt taatcaacca gattaaatat gatgtgagat tataataaga	2220
	attatactat ttaataaaaa tggatttata ttttt	2255
35	<210> 2 <211> 348 <212> PRT <213> Homo sapiens	
	<400> 2	
40	Met Leu Cys Pro Trp Arg Thr Ala Asn Leu Gly Leu Leu Leu Ile Leu 1 5 15	
45	Thr Ile Phe Leu Val Ala Glu Ala Glu Gly Ala Ala Gln Pro Asn Asn 20 25 30	
	Ser Leu Met Leu Gln Thr Ser Lys Glu Asn His Ala Leu Ala Ser Ser 35 40 45	
50	Ser Leu Cys Met Asp Glu Lys Gln Ile Thr Gln Asn Tyr Ser Lys Val 50 55 60	
	Leu Ala Glu Val Asn Thr Ser Trp Pro Val Lys Met Ala Thr Asn Ala	

	65					70					7 5					80
5	Val	Leu	Cys	Cys	Pro 85	Pro	Ile	Ala	Leu	Arg 90	Asn	Leu	Ile	Ile	Ile 95	Thr
10	Trp	Glu	Ile	Ile 100	Leu	Arg	Gly	Gln	Pro 105	Ser	Cys	Thr	Lys	Ala 110	Tyr	Arg
	Lys	Glu	Thr 115	Asn	Glu	Thr	Lys	Glu 120	Thr	Asn	Cys	Thr	Asp 125	Glu	Arg	Ile
15	Thr	Trp 130	Val	Ser	Arg	Pro	Asp 135	Gln	Asn	Ser	Asp	Leu 140	Gln	Ile	Arg	Pro
20	Val 145	Ala	Ile	Thr	His	Asp 150	Gly	Tyr	Tyr	Arg	Cys 155	Ile	Met	Val	Thr	Pro 160
	Asp	Gly	Asn	Phe	His 165	Arg	Gly	Tyr	His	Leu 170	Gln	Val	Leu	Val	Thr 175	Pro
25	Glu	Val	Thr	Leu 180	Phe	Gln	Asn	Arg	Asn 185	Arg	Thr	Ala	Val	Cys 199	Lys	Ala
30	Val	Ala	Gly 195	Lys	Pro	Ala	Ala	Gln 200	Ile	Ser	Trp	Ile	Pro 205	Glu	Gly	Asp
35	Cys	Ala 210	Thr	Lys	Gln	Glu	Tyr 215	Trp	Ser	Asn	Gly	Thr 220	Val	Thr	Val	Lys
	Ser 225	Thr	Cys	His	Trp	Glu 230	Val	His	Asn	Val	Ser 235	Thr	Val	Thr	Cys	His 240
40	Val	Ser	His	Leu	Thr 245	Gly	Asn	Lys	Ser	Leu 250	Tyr	Ile	Glu	Leu	Leu 255	Pro
45	Val	Pro	Gly	Ala 260	Lys	Lys	Ser	Ala	Lys 265	Leu	Tyr	Ile	Pro	Tyr 270	Ile	Ile
	Leu	Thr	Ile 275	Ile	Ile	Leu	Thr	Ile 280	Val	Gly	Phe	Ile	Trp 285	Leu	Leu	Lys
50	Val	Asn 290	Gly	Cys	Arg	Lys	Tyr 295	Lys	Leu	Asn	Lys	Thr 300	Glu	Ser	Thr	Pro
	Va1 305	Val	Glu	Glu	Asp	Glu 310	Met	Gln	Pro	Tyr	Ala 315	Ser	Tyr	Thr	Glu	Lys 320

5	Asn Asn Pro Leu Tyr Asp Thr Thr Asn Lys Val Lys Ala Ser Gln Ala 325 330 335
	Leu Gln Ser Glu Val Asp Thr Asp Leu His Thr Leu 340 345
10	
	<210> 3 <211> 1010 <212> DNA <213> Homo sapiens
15	<400> 3 atgggtggaa agcagatgac acagaactat tcaacaattt ttgcagaagg taacatttca 60
	cagectgtac tgatggatat aaatgctgtg ctttgttgee etectattge attaagaaat 120
20	ttgatcataa taacatggga aataatcctg agaggccagc cttcctgcac aaaagcctac 180
	aagaaagaaa caaatgagac caaggaaacc aactgtactg ttgagagaat aacctgggtc 240
	totagacotg atcagaatto ggacottoag attogtoogg tggacacoac toatgacggg 300
25	tattacagag gcatagtggt aacacctgat gggaatttcc atcgtggata tcacctccaa 360
	gtgttagtta cacccgaagt ge=cctattt caaagcagga atataactgc agtatgcaag 420
	gcagttacag ggaagccage tgcccagate teetggatee cagagggate tattettgce 480
30	actaagcaag aatactgggg caatggcaca gtgacggtta agagtacatg cccctgggag 540
	ggccacaagt ctactgtgac ctgccatgtc tcccatttga ctggcaacaa gagtctgtcc 600
	gtaaagttga attcaggtct cagaacctca ggatctccag cgttgtcctt actgatcatt 660
35	ctttatgtga aactetetet ttttgtggte attetggtea ceaeaggatt tgttttette 720
	cagaggataa atcatgtcag aaaagttctt taaagaagaa ggaagggtct tcttttgctt 780
	ctcctccttg tctctggact gcaacattgg tgagatgagt gatggtccag cagtgaactt 840
40	gggccatgga tgatgttaag gatagaagcc actcagtagg atagaagaaa agaaagatgg 900
	aagaaggatc ctgggcttga tgaccatgaa gtttccctat aaaccctcaa ccacctattc 960
	attgacttct tttgtgttag agtgaataaa attttgttca tgccagtgtt 1010
45	<210> 4 <211> 250 <212> PRT <213> Homo sapiens
50	<400> 4
	Met Gly Gly Lys Gln Met Thr Gln Asn Tyr Ser Thr Ile Phe Ala Glu 1 5 10 15

5	Gly	Asn	Ile	Ser 20	Gln	Pro	Val	Leu	Met 25	Asp	Ile	Asn	Ala	Val 30	Leu	Cys
	Cys	Pro	Pro 35	Ile	Ala	Leu	Arg	Asn 40	Leu	Ile	Ile	Ile	Thr 45	Trp	Glu	Ile
10	Ile	Leu 50	Arg	Gly	Gln	Pro	Ser 55	Cys	Thr	Lys	Ala	Tyr 60	Lys	Lys	Glu	Thr
15	Asn 65	Glu	Thr	Lys	Glu	Thr 70	Asn	Суз	Thr	Val	Glu 75	Arg	Ile	Thr	Trp	Val 80
	Ser	Arg	Pro	Asp	Gln 85	Asn	Ser	Asp	Leu	Gln 90	Ile	Arg	Pro	Val	Asp 95	Thr
20	Thr	His	Asp	Gly 100	Tyr	Tyr	Arg	Gly	Ile 105	Val	Val	Thr	Pro	Asp 110	Gly	Asn
25	Phe	His	Arg 115	Gly	Tyr	His	Leu	Gln 120	Val	Leu	Val	Thr	Pro 125	Glu	Val	Asn
	Leu	Phe 130	Gln	Ser	Arg	Asn	Ile 135	Thr	Ala	Val	Cys	Lys 140	Ala	Val	Thr	Gly
30	Lys 145	Pro	Ala	Ala	Gln	Ile 150	Ser	Trp	Ile	Pro	Glu 155	Gly	Ser	Ile	Leu	Ala 160
35	Thr	Lys	Gln	Glu	Tyr 165	Trp	Gly	Asn	Gly	Thr 170	Val	Thr	Val	Lys	Ser 175	Thr
40	Cys	Pro	Trp	Glu 180	Gly	His	Lys	Ser	Thr 185	Val	Thr	Cys	His	Val 190	Ser	His
40	Leu	Thr	Gly 195	Asn	Lys	Ser	Leu	Ser 200	Val	Lys	Leu	Asn	Ser 205	Gly	Leu	Arg
45	Thr	Ser 210	Gly	Ser	Pro	Ala	Leu 215	Ser	Leu	Leu	Ile	Ile 220	Leu	Tyr	Val	Lys
50	Leu 225	Ser	Leu	Phe	Val	Val 230	Ile	Leu	Val	Thr	Thr 235	Gly	Phe	Val	Phe	Phe 240
50	Gln	Arg	Ile	Asn	His 245	Val	Arg	Lys	Val	Leu 250						

5	<210> 5 <211> 1624 <212> DNA <213> Mus musculus	
	<400> 5 aaaaccgaaa tgttttgctt ttggagaact tctgccctag cagtgctctt aatatg	gggg 60
10	gtctttgtgg ctgggtcaag ttgtactgat aagaatcaaa caacacagaa caacag	ttca 120
10	totoctotga cacaagtgaa cactacagtg totgtacaga taggtacaaa ggotot	gctc 180
	tgctgctttt ctattccact gacaaaagca gtattaatca catggataat aaagct	caga 240
15	ggcctgccat cctgcacaat agcatacaaa gtagatacaa agaccaatga aaccag	ctgc 300
10	ttgggcagga acatcacctg ggcctccaca cctgaccaca gtcctgaact tcagatc	agt 360
	gcagtgaccc tccagcatga ggggacttac acatgtgaga cagtaacacc tgaagg	yaat 420
20	tttgaaaaaa actatgacct ccaagtgctg gtgccccctg aagtaaccta ctttcca	igag 480
	aaaaacagat ctgcagtctg tgaggcaatg gcaggcaagc ctgctgcaca gatctct	tgg 540
	tetecagatg gggaetgtgt cactaegagt gaateacaca gcaatggeae tgtgaet	gtc 600
25	aggagcacat gccactggga gcagaacaat gtgtctgatg tgtcctgcat tgtctct	cat 660
	ttgactggta accaatetet **Cccatagaa etgagtagag gtggtaacca atcatta	cga 720
	ccatatattc catacatcat accatcaatt atcattttga tcatcatagg atgcatt	tgt 780
30	cttttgaaaa tcagtggctt cagaaaatgc aaattgccaa aattagaagc tacttca	gct 840
	attgaggagg atgaaatgca gccttatgct agctatacag agaagagcaa tccactc	tat 900
	gatactgtga ctaaggtgga ggcatttcca gtatcacaag gcgaagtcaa tggcaca	gac 960
35	tgccttactt tgtcggccat tggaatctag aaccaagaaa aaagaagtca agagaca	tca 1020
	taattactgc tttgctttct ttaaaattcg acaatggaag gactacttgg aaattag	ctc 1080
	ttccaaagct attaaaaagc acaaatgttc taatgaaatt gcatttaaat tctatca	ttg 1140
40	gaagtttgga atctctgctg ctacctgtta attttaggaa gaactgattt aattatt	aca 1200
	aagaaagcac atggttatgg tgaaatatca agttgtgcaa taaagtatga tgaaaac	tga 1260
	gtttcctcaa gaaataactg caggaggaac aatcatcact aaagaatttc atgtgag	ttc 1320
45	ttacaaaaaa attootatgt atacatgact atggtatgtg tgtocaatta catgttt	att 1380
	tacaaatgtg tatatatgca cacatttgct tttcaggaca tctccttgta aaaaaca	cac 1440
	tggagttttg gatttataaa agcttataaa gtgagcattg gagatatttt tatatca	gca 1500
50	taagtaaatc tacctcattc tttttaatgg ctacatagaa ttctcctgta tgattac	att 1560
	gtaatttaat taatcatggc ccttggattt tgtgttgtgt	cat 1620
	gtag	1624

5	<21 <21 <21 <21	1> 2>	6 326 PRT Mus	musc	ulus											
	<40	0>	6													
10	Met 1	Phe	Cys	Phe	Trp 5	Arg	Thr	Ser	Ala	Leu 10	Ala	Val	Leu	Leu	Ile 15	Trp
15	Gly	Val	Phe	Val 20	Ala	Gly	Ser	Ser	Cys 25	Thr	Asp	Lys	Asn	Gln 30	Thr	Thr
	Gln	Asn	Asn 35	Ser	Ser	Ser	Pro	Leu 40	Thr	Gln	Val	Asn	Thr 45	Thr	Val	Ser
20	Val	Gln 50	Ile	Gly	Thr	Lys	Ala 55	Leu	Leu	Cys	Cys	Phe 60	Ser	Ile	Pro	Leu
25	Thr 65	Lys	Ala	Val	Leu	Ile 70	Thr	Trp	Ile	Ile	Lys 75	Leu	Arg	Gly	Leu	Pro 80
	Ser	Cys	Thr	Ile	Ala 85	Tyr	Lys	Val	Asp	Thr 90	Lys	Thr	Asn	Glu	Thr 95	Ser
30	Суѕ	Leu	Gly	Arg 100	Asn	Ile	Thr	Trp	Ala 105	Ser	Thr	Pro	Asp	His 110	Ser	Pro
35	Glu	Leu	Gln 115	Ile	Ser	Ala	Val	Thr 120	Leu	Gln	His	Glu	Gly 125	Thr	Tyr	Thr
	Cys	Glu 130	Thr	Val	Thr	Pro	Glu 135	Gly	Asn	Phe	Glu	Lys 140	Asn	Tyr	Asp	Leu
40	Gln 145	Val	Leu	Val	Pro	Pro 150	Glu	Val	Thr	Tyr	Phe 155	Pro	Glu	Lys	Asn	Arg 160
45	Ser	Ala	Val	Cys	Glu 165	Ala	Met	Ala	Gly	Lys 170	Pro	Ala	Ala	Gln	Ile 175	Ser
50	Trp	Ser	Pro	Asp 180	Gly	Asp	Cys	Val	Thr 185	Thr	Ser	Glu	Ser	His 190	Ser	Asn
	Gly	Thr	Val 195	Thr	Val	Arg	Ser	Thr 200	Cys	His	Trp	Glu	Gln 205	Asn	Asn	Val

5	Ser	Asp 210	Val	Ser	Cys	116	215		His	Leu	Thr	220	Asn	GIN	Ser	Leu	
J	Ser 225	Ile	Glu	Leu	Ser	Arg 230	Gly	Gly	Asn	Gln	Ser 235	Leu	Arg	Pro	Tyr	11e 240	
10	Pro	Tyr	Ile	Ile	Pro 245	Ser	Ile	Ile	Ile	Leu 250	Ile	Ile	Ile	Gly	Cys 255	Ile	
15	Cys	Leu	Leu	Lys 260	Ile	Ser	Gly	Phe	Arg 265	Lys	Cys	Lys	Leu	Pro 270	Lys	Leu	
	Glu .	Ala	Thr 275	Ser	Ala	Ile	Glu	Glu 280	Asp	Glu	Met	Gln	Pro 285	Tyr	Ala	Ser	
20	Tyr	Thr 290	Glu	Lys	Ser	Asn	Pro 295	Leu	Tyr	Asp	Thr	Val 300	Thr	Lys	Val	Glu	
25	Ala : 305	Phe	Pro	Val	Ser	Gln 310	Gly	Glu	Val	Asn	Gly 315	Thr	Asp	Cys	Leu	Thr 320	
	Leu :	Ser	Ala	Ile	Gly 325	τ ė											
30	<210: <211: <212: <213:	> 1 > D	386 NA	iuscu	ılus						,						
35	<400 agag			ttcc	tgca	t aa	itggo	ectac	: aaa	gtag	jaaa	caaa	ggag	ac c	aatg	aaacc	60
	tgcti	tggg	ca g	gaac	atca	c ct	gggc	ctcc	aca	cctg	acc	ạcat	tcct	ga c	cttc	agatc	120
40					-	-		-				_			_	aaggg	180
70				-	-			-	_			_	_			tctct	240 300
																tgact	360
45																tetet	420
																ccacc	480
	cctt	cctt	gc t	gacc	attc	t ct	acgt	gaaa	atg	gtcc	ttt	tggg	gatt	at t	cttc	ttaaa	540
50	gtggg	gatt	tg c	tttc	ttcc	a ga	agag	aaat	gtt	acca	gaa	catg	aata	tc c	agat	ttctg	600
	gaago	ctca	tt a	gtct	gatg	a ca	cata	ccag	aaa	acag	cat	ttgt	aatc	aa c	tttc	tcatt	660
55	ggaat	tcca	gc t	tacc	cgtc	c ct	gctg	tctt	cat	gttt	gtt	agac	actc	ac c	tcca	aattc	720

	ttaa	ctg	aga	aggg	ctcc	tg t	ctaa	agga	a at	atgg	ggac	aaa	ttgt	gga	gcat	agacca	780
5	aaag	aaa	ggc	catc	caga	ga c	tgcc	ccac	c ta	agga	ccca	tcc	cata	tac	agac	accaaa	840
	ссса	gac	act	actg	aaga	tg c	tgcg	aagc	g tt	tgct	gaca	gga	gcct	gtt	atag	ctgtct	900
	cctg	aga	ggc	tcag	ccag	ag c	ctga	caaat	t ac	atag	gtag	atg	cttg	cag	ccaa	caactg	960
10	gact	gag	caa	aaaa	tctc	ca t	tgga	ggagt	t ta	gaga	aagg	act	gaag	agg	gtga	aagggt	1020
	ttgc	agc	ccc	atag	gaaga	за с	aaca	atato	c aa	ccaa	ccag	atc	tccc	aga	gctc	ccaggg	1080
	acta	aati	tac	caac	caaa	gg c	taca	catg	y aa	ggac	ctat	ggc	tcca	gct	gctt	gtgtag	1140
15	cagt	ggat	tgg	cctt	gttg	gg c	atca	gtgga	a ag	gaga	aacc	ctt	ggtc	cag	taaa	ggettg	1200
	attc	ccta	agt ·	gtaa	gagaa	at g	ccag	ggcag	g tg	acgt	ggga	gtg	agta	ggt	agga	agcatc	1260
	ctca	taga	atg	cagg	agaaa	ag g	agaa	tggaa	a ga	gggt	attc	tgg	aggg	gaa	actg	gaaaag	1320
20	gaga	caa	cat	ttga	aatgi	ta a	atac	ataaa	ata	atcc	aata	aaa	aatg	tac .	agtt	gccagt	1380
	catg	tg															1386
25	<210 <211 <212 <213	> 1 > 1	194 PRT	musc!	ulus								s i.				
30	<400	> 6	}														
	Arg	Gly	Gln	Pro	Ser 5	Cys	Ile	Met	Ala	Tyr 10	Lys	Val	Glu	Thr	Lys 15	Glu	
35	Thr	Asn	Glu	Thr 20	Суз	Leu	Gly	Arg	Asn 25	Ile	Thr	Trp	Ala	Ser 30	Thr	Pro	
	Asp !	His	Ile 35	Pro	Asp	Leu	Gln	Ile 40	Ser	Ala	Val	Ala	Leu 45	Gln	His	Glu	
40	Gly i	Asn 50	Tyr	Leu	Cys	Glu	Ile 55	Thr	Thr	Pro	Glu	Gly 60	Asn	Phe	His	Lys	
45	Val ' 65	Tyr	Asp	Leu	Gln	Val 70	Leu	Val	Pro	Pro	Glu 75	Val	Thr	Tyr	Phe	Leu 80	
	Gly	Glu	Asn	Arg	Thr 85	Ala	Val	Cys	Glu	Ala 90	Met	Ala.	Gly	Lys	Pro 95	Ala	
50																	

5	Ser His Ser Asn Gly Thr Val Thr Val Arg Ser Thr Cys His Trp Glu 115 120 125	
	Gln Asn Asn Val Ser Ala Val Ser Cys Ile Val Ser His Ser Thr Gly 130 135 140	
10	Asn Gln Ser Leu Ser Ile Glu Leu Ser Arg Gly Thr Thr Ser Thr Thr 145 150 155 160	
15	Pro Ser Leu Leu Thr Ile Leu Tyr Val Lys Met Val Leu Leu Gly Ile 165 170 175	
10	Ile Leu Leu Lys Val Gly Phe Ala Phe Phe Gln Lys Arg Asn Val Thr 180 185 190	
20	Arg Thr	
25	<210> 9 <211> 1354 <212> DNA <213> Mus musculus	
	<400> 9 ggcacgagtt acgatttgtg cttaacctga ctccactcca	60
30	ctctggcttt gatgttactc atcttcatca ctattttggt gcctgagtcå agttgttcag 1	20
	tgaaaggacg ggaggagate ecaceggatg atteatttee ttttteagat gataatatet 1	80
	tecetgatgg agtgggegte accatggaga ttgagattat cactecagtg tetgtacaga 2	40
35	taggtatcaa ggctcagctt ttctgtcatc ctagtccatc aaaagaagca acacttagaa 3	00
	tatgggaaat aactcccaga gactggcctt cctgcagact accctacaga gcagagttgc 3	60
	agcagatcag taaaaaaatc tgtactgaga gaggaaccac tagggtccct gcacatcacc 4	20
40	agagttetga cetteccate aaateaatgg ceetcaagca tgatgggeat tacteatgte 4	80
	ggatagaaac aacagatggg attttccaag agagacatag catccaagtg ccaggggaaa 5	40
	atagaactgt agtttgtgag gcaattgcaa gcaagcctgc tatgcagatc ttgtggactc 6	00
45	cagatgagga ctgtgtcact aagagtaaat cacacaatga caccatgatt gtcaggagca 6	60
	agtgccacag ggagaaaaac aatggccaca gtgtgttctg ctttatctcc catttgactg 7	20
	ataactggat tototocatg gaacagaatc gaggtacaac cagcatcctg cottocttgc 7	80
50	tgagcattct ctatgtgaaa ctggctgtaa ctgttctcat cgtaggattt gctttttcc 8	40
	agaagagaaa ttatttcaga gtgccagaag gctcctgagg agagtggtct gtggttaaga 9	00
55	tgagatttac caccatctga aagacatctt gtctaccgcg cagcgtgctg agattccgag 9	60

	aag	cago	cac	agaa	iccta	et a	aggaa	agaca	aa at	ctga	atgt	g gti	tgtca	aatc	ctt	tcaatgg	1020
5	acc	tgaç	gtac	ttct	ataa	ac c	cgaç	gtgag	gg tt	gtgo	ctgga	a cc	cagga	agcc	aggo	staggtc	1080
	ata	tato	gttg	att	ttgo	tg c	aaga	accto	ca to	gttt	atct	aca	aato	cta	aatt	ctttca	1140
	ctt	ccaç	jttt	taaa	actt	tt ç	igee	aago	a tt	ttat	ccad	ago	ataa	cac	cttt	aaagaa	1200
10	act	ctcc	cac	ggaa	actg	ict ç	gtto	cato	g aa	tgga	aaat	: tg:	caaca	ıtgg	ttta	caagac	1260
	agt	gcaa	acc	aago	agca	tt c	caaç	atat	g ag	ictto	agaa	agt	taca	ıgga	acto	ıtcttgg	1320
	gac	gaga	aag	aagg	atta	aa t	agtt	ccca	g to	cc							1354
15																	
	<210 <211 <211 <211	1> 2>	10 278 PRT Mus	musc	ulus												
20	<400)>	10														
	Met 1	His	Ala	Leu	Gly 5	Arg	Thr	Leu	Ala	Leu 10	Met	Leu	Leu	Ile	Phe 15	Ile	
25	Thr	Ile	Leu	Val 20	Pro	Glu	Ser	Ser	Cys 25	Ser	Val	Lys	Gly	Arg 30	Glu	Glu	
30	Ile	Pro	Pro 35	Asp	Asp	Ser	Phe	Pro 40	Phe	Ser	Asp	Asp	Asn 45	Ile	Phe	Pro	
	Asp	Gly 50	Val	Gly	Val	Thr	Met 55	Glu	Ile	Glu	Ile	Ile 60	Thr	Pro	Val	Ser	
35	Val 65	Gln	Ile	Gly	Ile	Lys 70	Ala	Gln	Leu	Phe	Cys 75	His	Pro	Ser		Ser 80	
40	Lys	Glu	Ala	Thr	Leu 85	Arg	Ile	Trp	Glu	Ile 90	Thr	Pro	Arg	Asp	Trp 95	Pro	
	Ser	Cys	Arg	Leu 100	Pro	Tyr	Arg	Ala	Glu 105	Leu	Gln	Gln	Ile	Ser 110	Lys	Lys	
45	Ile	Cys	Thr 115	Glu	Arg	Gly	Thr	Thr 120	Arg	Val	Pro	Ala	His 125	His	Gln	Ser	
50	Ser	Asp 130	Leu	Pro	Ile	Lys	Ser 135	Met	Ala	Leu	Lys	His 140	Asp	Gly	His	Tyr	
55	Ser	Cys	Arg	Ile	Glu	Thr 150	Thr	Asp	Gly	Ile	Phe 155	Gln	Glu	Arg	His	Ser 160	

5	Ile	Gln	Val	Pro	Gly 165	Glu	Asn	Arg	Thr	Val 170	Val	Cys	Glu	Ala	Ile 175	Ala	
	Ser	Lys	Pro	Ala 180	Met	Gln	Ile	Leu	Trp 185	Thr	Pro	Asp	Glu	Asp 190	Cys	Val	
10	Thr	Lys	Ser 195	Lys	Ser	His	Asn	Asp 200	Thr	Met	Ile	Val	Arg 205	Ser	Lys	Cys	
15	His	Arg 210	Glu	Lys	Asn	Asn	Gly 215	His	Ser	Val	Phe	Cys 220	Phe	Ile	Ser	His	
20	Leu : 225	Thr	Asp	Asn	Trp	Ile 230	Leu	Ser	Met	Glu	Gln 235	Asn	Arg	Gly	Thr	Thr 240	
	Ser 1	Ile	Leu		Ser 245	Leu	Leu	Ser	Ile	Leu 250	Tyr	Val	Lys	Leu	Ala 255	Val	
25	Thr V	Val :	Leu	Ile 260	Val	Gly	Phe		Phe 265	Phe	Gln	Lys	Arg	Asn 270	Tyr	Phe	
30	Arg V		Pro 275	Glu ·	Gly :	Ser											
	<210><211><211><212><213>	- 81 - Di	L3 NA	uscu	lne												
35	<400> atgca	- 13	L			t tc	cgac	tttg	act	ttgc	tga	tctt	catc	aa t	attti	ttgtg	60
	tctgg	gtca	aa g	ttgta	actga	a tga	agaat	tcaa	aca	atac	aga	atga	cagt	tc a	tctt	ctctg	120
40	acaca	agtt	a a	cacta	acaat	t gto	ctgta	acag	atg	gata	aaa	aggc	tctg	ct c	tgct	gcttt	180
	tctag	tcca	ac to	gataa	aatg	agt	tatta	aatc	aca	tgga	taa	taaa	acac	ag a	cacci	tgcct	240
	tcctg	caca	a t	agcat	acaa	a cct	tagat	taaa	aag	acca	atg (aaac	cage	tg c	ttgg	gcagg	300
45	aacat	cacc	t g	ggcct	cca	acc	ctgad	ccac	agt	cctg	aac	ttca	gato	ag t	gcagt	ggcc	360
	ctcca	gcat	g aq	gggga	actta	a cad	catgt	gag	ata	gtaad	cac (ctgaa	aggg	aa ti	taga	aaaa	420
	gtcta	tgac	c to	ccaag	gtgct	: ggt	gcc	cct	gag	gtaad	cct a	actt	tcca	gg ga	aaaaa	acaga	480
50	actgc	agto	t gt	tgagg	gcaat	ggo	aggo	caag	cct	gctg	cac a	agato	ctcti	tg ga	acte	agat	540
	gggga	ctgt	g to	cacta	agaç	ı tga	igtca	cac	agca	aatg	gca (ctgt	gacto	gt ca	aggag	gcacg	600
	tgcca	ctgg	g aç	gcaga	acaa	tgt	gtct	gtt	gtgt	cct	gct 1	tagto	ctctc	a ti	cgac	tggt	660
55																	

	aat	cagt	ctc	tgtc	cata	ga a	ctga	gtca	a gg	taca	atga	cca	cccc	ccg	ttcc	ttgctg	720
5	acc	atto	tct	atgt	gaaa	at g	gccc	ttt	g gt	gatt	atto	: ttc	ttaa	cgt	agga	itttgct	780
	ttc	ttcc	aga	agag	aaat	tt t	gcca	gaac	a tg	a							813
10	<21 <21 <21 <21	1> 2>	12 270 PRT Mus	musc	ulus									*			
	<40	0>	12														
15	Met 1	His	Ala	Leu	Gly 5	Arg	Ile	Pro	Thr	Leu 10	Thr	Leu	Leu	Ile	Phe 15	Ile	
20	Asn	Ile	Phe	Val 20	Ser	Gly	Ser	Ser	Cys 25	Thr	Asp	Glu	Asn	Gln 30	Thr	Ile	
	Gln	Asn	Asp 35	Ser	Ser	Ser	Ser	Leu 40	Thr	Gln	Val	Asn	Thr 45	Thr	Met	Ser	
25	Val	Gln 50	Met	Asp	Lys	Lys	Ala 55	Leu	Leu	Cys	Cys	Phe 60°	Ser	Ser	Pro	Leu	
30	Ile 65	Asn	Ala	Val	Leu	Ile 70	Thr	Trp	Ile	Ile	Lys 75	His	Arg	His	Leu	Pro 80	
	Ser	Cys	Thr	Ile	Ala 85	Tyr	Asn	Leu	Asp	Lys 90	Lys	Thr	Asn	Glu	Thr 95	Ser	
35	Cys	Leu	Gly	Arg 100	Asn	Ile	Thr	Trp	Ala 105	Ser	Thr	Pro	Asp	His 110	Ser	Pro	
40	Glu	Leu	Gln 115	Ile	Ser	Ala	Val	Ala 120	Leu	Gln	His	Glu	Gly 125	Thr	Tyr	Thr	
45	Cys	Glu 130	Ile	Val	Thr	Pro	Glu 135	Gly	Asn	Leu	Glu	Lys 140	Val	Tyr	Asp	Leu	
45	Gln 145	Val	Leu	Val	Pro	Pro 150	Glu	Val	Thr	Tyr	Phe 155	Pro	Gly	Lys	Asn	Arg 160	
50	Thr	Ala	Val	Cys	Glu 165	Ala	Met	Ala	Gly	Lys 170	Pro	Ala	Ala	Gln	Ile 175	Ser	
	Trp	Thr	Pro	Asp 180	Gly	Asp	Cys	Val	Thr 185	Lys	Ser	Glu	Ser	His 190	Ser	Asn	
55																	

5	Gly Thr Val Thr Val Arg Ser Thr Cys His Trp Glu Gln Asn Asn Val 195 200 205	
	Ser Val Val Ser Cys Leu Val Ser His Ser Thr Gly Asn Gln Ser Leu 210 215 220	
10	Ser Ile Glu Leu Ser Gln Gly Thr Met Thr Thr Pro Arg Ser Leu Leu 225 230 235 240	
15	Thr Ile Leu Tyr Val Lys Met Ala Leu Leu Val Ile Ile Leu Leu Asn 245 250 255	
	Val Gly Phe Ala Phe Phe Gln Lys Arg Asn Phe Ala Arg Thr 260 265 270	
20	<210> 13 <211> 2358 <212> DNA <213> Rattus sp.	
25	<400> 13 ageggaggga teet fiteat ggteaceget geteccetae etgtgaagag aaagageace	60
	gagtgagccg ctgaaaacca gaaaaccgaa atgctctgct tttggagaac ttctcacgta	120
	gcagtactet tgatetgggg ggtettegeg getgagteaa gttgteetga taagaateaa	180
30	acaatgcaga acaattcatc aactatgaca gaagttaaca ctacagtgtt tgtacagatg	240
	ggtaaaaagg ctctgctctg ctgcccttct atttcactga caaaagtaat attaataaca	300
35	tggacaataa ccctcagagg acageettee tgeataatat cctacaaage agacacaagg	360
	gagacccatg aaagcaactg ctcggacaga agcatcacct gggcctccac acctgacctc	420
	gctcctgacc ttcagatcag tgcagtggcc ctccagcatg aagggcgtta ctcatgtgat	480
40	atagcagtac ctgacgggaa tttccaaaac atctatgacc tccaagtgct ggtgccccct	540
	gaagtaaccc actttccagg ggaaaataga actgcagttt gtgaggcgat tgcaggcaaa	600
	cotgotgogo agatotottg gacgocagat ggggattgtg togotaagaa tgaatoacac	660
45	agcaatggca ccgtgactgt ccggagcaca tgccactggg agcagagcca cgtgtctgtc	720
	gtgttctgtg ttgtctctca cttgacaact ggtaaccagt ctctgtctat agaactgggt	780
	agagggggtg accaattatt aggatcatac attcaataca tcatcccatc tattattatt	840
50	ttgatcatca taggatgcat ttgtcttttg aaaatcagtg gctgcagaaa atgtaaattg	900
	ccaaaatcgg gagctactcc agatattgag gaggatgaaa tgcagccgta tgctagctac	96 0
55	acagagaaga gcaatccact ctatgatact gtgaccacga cggaggcaca cccagcgtca 10	020

	caaggeaaag ccaacggeac agaccgcest accregceag ccargggaar ccagaaccaa	1000
5	ggaaaagaag tcaagagaca tcataattac tgcttttctt tctttaaact tctccaatgg	1140
	agggaaatta gctcttctga agttcttaga aagcacaaat gttctaatgg atttgccttt	1200
	aagttettet atcattggaa gtttggaate tttgetgeta eetgttaatt etaggaagaa	1260
10	ctgatttaat tattacaaag aaagcacatt gttatggtaa aatatcaaat tgtgcaatac	1320
	aatgatgaaa actgagtttc ctcaagaaat aactgcagaa ggaacaatca ttactaaagc	1380
	atttcatgtg agttcttcca aaaaagaaaa tccctgtgta tacgacatga ttatggtatg	1440
15	tgtgtgcctt tatatgtttg tttacaaatg tgtatatatg cacacatctg attatcaaga	1500
	catctctgtc aaaaactcac tggcgttcca gatttatgaa agctaataaa gtgagtattg	1560
	gagatgtttt tatatctgta tatgtaaaac tacctcattc tttttaatgg ctacataaaa	1620
20	ttcatggtcc ttggatgggc atttagactt tgtgttgtat gtggtattaa atgataccat	1680
	gtggaatgtt tettgtggtg aateteegea ttatttgagt geacetgtga gataatttet	1740
	gtgagtgtaa tggtcctgtc agttggaatg cgcttttatg atcaatagat tagtcaaact	1800
25	gtgtcagttt acattttctc taattgtgtt taatgtgact tottccatat tcttattctt	1860
	atgtttttaa tatcttcact ttcacctttt atactttcca tctttaatta accagttggg	1920
	tgatgtgtct taaggttgtg atattaactt tattatttaa tggaactgga ttcatatctt	1980
30	tgggtttcat gtccacaaaa gagatagaaa gcatttgtaa agacagtatt ttcaactcct	2040
	tgtattacta caaaaatgtt gacatctgat gcacaacagt tttatggatg ttatgaattg	2100
	tgtgttttta acattctatt ctgatgtact tataagagag caactgtctt tgaactatat	2160
35	atgtaggtgg gagaacttgg agtactttat gtgctaatag gatggtaatg ggatgatata	2220
	acttttccct ccagtttttt ggagggaaat attaggaata catgtattga taatttttag	2280
	catatatttt ttaattgtta aaaataaacc tgttcccttt atatcaggaa agatattaaa	2340
40	aatggattta ttcatctc	2358
45	<210> 14 <211> 327 <212> PRT <213> Rattus sp.	
	<400> 14	
50	Met Leu Cys Phe Trp Arg Thr Ser His Val Ala Val Leu Leu Ile Trp 1 5 10 15	

Gly Val Phe Ala Ala Glu Ser Ser Cys Pro Asp Lys Asn Gln Thr Met $20 \hspace{1cm} 25 \hspace{1cm} 30$

5	Glr	a Asn	Asn 35	Ser	Ser	Thr	Met	Th: 40	: Glu	ı Val	. Asn	Thr	Thr 45	: Val	. Phe	e Val
	Glr	Met 50	Gly	Lys	Lys	Ala	Leu 55	Leu	Cys	: Cys	Pro	Ser 60	Ile	e Ser	: Let	1 Thr
10	Lys 65	Val	Ile	Leu	Ile	Thr 70	Trp	Thr	Ile	Thr	Leu 75	Arg	Gly	Gln	Pro	Ser 80
15	Cys	Ile	Ile	Ser	Tyr 85	Lys	Ala	Asp	Thr	Arg 90	Glu	Thr	His	Glu	Ser 95	Asn
	Cys	Ser	Asp	Arg 100	Ser	Ile	Thr	Trp	Ala 105	Ser	Thr	Pro	Asp	L e u 110	Ala	Pro
20	Asp	Leu	Gln 115	Ile	Ser	Ala	Val	Ala 120	Leu	Gln	His	Glu	Gly 125	Arg	Tyr	Ser
25	Суѕ	Asp 130	Ile	Ala	Val	Pro	Asp 135	Gly	Asn	Phe	Gln	Asn 140	Ile	Tyr	Asp	Leu
	Gln 145	Val	Leu	Val	Pro	Pro 150	Glu	Val	Thr	His	Phe 155	Pro	Gly	Glu	Asn	Arg 160
30	Thr	Ala	Val	Cys	Glu 16 5	Ala	Ile	Ala	Gly	Lys 170	Pro	Ala	Ala	Gln	Ile 175	Ser
35	Trp	Thr	Pro	Asp 180	Gly	Asp	Суз	Val	Ala 185	Lys	Asn	Glu	Ser	His 190	Ser	Asn
40	Gly	Thr	Val 195	Thr	Val	Arg	Ser	Thr 200	Cys	His	Trp	Glu	Gln 205	Ser	His	Val
40	Ser	Val 210	Val	Phe	Cys		Val 215	Ser	His	Leu	Thr	Thr 220	Gly	Asn	Gln	Ser
45	Leu 225	Ser	Ile	Glu	Leu	Gly 230	Arg	Gly	Gly	Asp	Gln 235	Leu	Leu	Gly	Ser	Tyr 240
50	Ile	Gln	Tyr		Ile 245	Pro	Ser	Ile		Ile 250	Leu	Ile	Ile		Gly 255	Cys
	Ile	Cys		Leu : 260	Lys	Ile	Ser		Cys . 265	Arg	Lys (Cys		Leu 270	Pro	Lys

Ser Gly Ala Thr Pro Asp Ile Glu Glu Asp Glu Met Gln Pro Tyr Ala 275 5 Ser Tyr Thr Glu Lys Ser Asn Pro Leu Tyr Asp Thr Val Thr Thr 290 295 Glu Ala His Pro Ala Ser Gln Gly Lys Val Asn Gly Thr Asp Cys Leu 10 305 310 320 Thr Leu Ser Ala Met Gly Ile 325

15

Claims

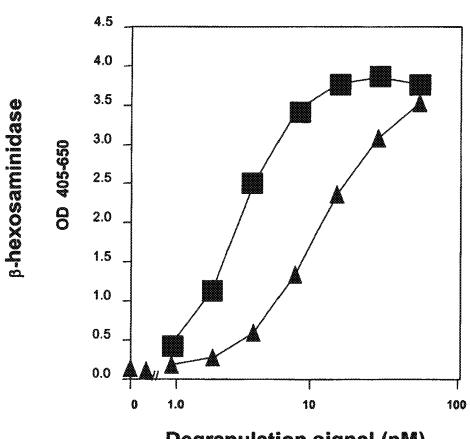
- 20 1. A method of modulating the activity of a cell comprising contacting the cell with a binding composition derived from the antigen binding site of an antibody that specifically binds to CD200Ra (SEQ ID NOs:2 or 6), or an antigenic fragment thereof.
 - 2. The method of Claim 1, wherein the cell is a mast cell.

25

- 3. The method of Claim 1, wherein the modulating:
 - a) inhibits cell activity; or
 - b) stimulates cell activity.

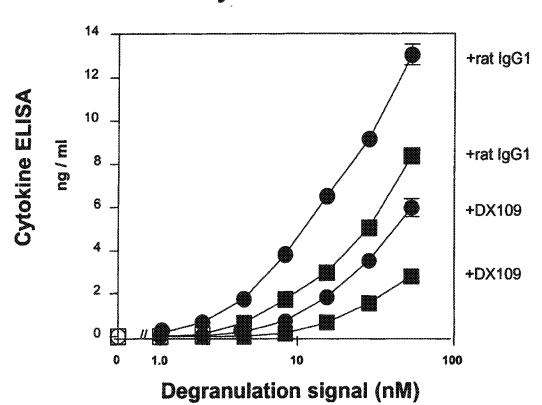
30

40


45

- 4. The method of Claim 1, wherein the modulating inhibits cell activity and the binding composition comprises an agonist of CD200Ra (SEQ ID NOs:2 or 6).
- 5. The method of Claim 1, wherein the modulating increases cell activity and the binding composition comprises an 35 antagonist of CD200Ra (SEQ ID NOs:2 or 6).
 - 6. The method of Claim 1, wherein the binding composition comprises:
 - a) a humanized antibody;
 - b) a monoclonal antibody;
 - c) a polyclonal antibody;
 - d) an Fab fragment;
 - e) an F(ab')₂ fragment;
 - f) a peptide mimetic of an antibody; or
 - g) a detectable label.
 - 7. The method of Claim 1, further comprising contacting the cell with an agent that enhances expression of CD200Ra (SEQ ID NOs:2 or 6), or an antigenic fragment thereof.
- 50 8. A method of treating a subject suffering from an immune condition comprising treating with or administering the binding composition of Claim 1.
 - The method of Claim 8, wherein the binding composition comprises an agonist or antagonist of CD200Ra (SEQ ID NOs:2 or 6).

- **10.** The method of Claim 8, wherein the immune condition is:
 - a) an inflammatory condition; or


	b) an autoimmune condition.
	11. The method of Claim 8, wherein the immune condition is:
5	a) rheumatoid arthritis;b) endotoxemia;c) psoriasis; ord) allergy.
10	12. The method of Claim 8, wherein the immune condition is:
	a) an infection; or b) a cancerous condition.
15	13. The method of Claim 8, wherein the binding composition is administered in conjunction with an agent that specifically enhances expression of CD200Ra (SEQ ID NOs:2 or 6), or an antigenic fragment thereof.
20	14. A method of diagnosing an immune disorder comprising contacting a sample with a binding composition of Claim 1 and determining the modulation of cell activity.
20	15. The method of Claim 14, wherein the modulation is:
25	a) inhibition; or b) activation.
	16. The method of Claim 14, wherein the contacting is <u>in vitro</u> .
30	
35	
40	
45	
50	
<i>55</i>	

Degranulation

Degranulation signal (nM)

Cytokine release

EUROPEAN SEARCH REPORT

Application Number EP 09 16 3830

Category	Citation of document with in- of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
Х,Р	ameliorates collager mice." CLINICAL IMMUNOLOGY 2002, vol. 104, no. 3, Sep pages 256-264, XP000 ISSN: 1521-6616 * page 259, left-har paragraph - right-har *		8-11,13	INV. A61K39/395 A61P37/00 A61P35/00 A61P31/00 G01N33/53 ADD. C07K16/28
X	not CD200, alters c profile from stimula EUROPEAN JOURNAL OF DE, vol. 31, August 200. 2331-2337, XP0029654 ISSN: 0014-2980 * abstract * * page 2332, left-haline 15 * * page 2334, left-haline 15 right-hand column	to CD200 receptor, but ytokine production ated macrophages" IMMUNOLOGY, WEINHEIM, 1 (2001-08), pages 417 and column, line 9 - and column, lines 22-24, line 3 * -/	1-6	TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has b	Date of completion of the search		Examiner
	The Hague	6 August 2009	Sia	iterli, Maria
X : parti Y : parti docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anoth iment of the same category inological background written disclosure rmediate document	L : document cited fo	ument, but publice the application or other reasons	shed on, or

EUROPEAN SEARCH REPORT

Application Number EP 09 16 3830

Category	Citation of document with indic of relevant passage		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
A	WRIGHT G J ET AL: "L surface 0X2 glycoprot novel receptor on macin the control of the IMMUNITY 2000 UNITED vol. 13, no. 2, 2000, XP002357892 ISSN: 1074-7613 * figure 2a * * page 240, left-hand page 237, left-hand *	crophages implicated fir function" STATES, pages 233-242,	1-16	
Y	WO 00/70045 A (MEDICA SCHERING CORPORATION; BRO) 23 November 2000 * page 7, lines 6-13 * page 83, paragraph * page 65, lines 20-2 21-35; claims 5,6 * * page 75, lines 13-3 *	BARCLAY, A., NEIL; (2000-11-23) * II * 5 - page 71, lines	1-16	TECHNICAL FIELDS SEARCHED (IPC)
Υ,Ρ		RCZYNSKI, REGINALD, M; nber 2002 (2002-11-28) * * line 32 *	1-16	
	The present search report has bee	-/ n drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	The Hague	6 August 2009	Sia	terli, Maria
X : parti Y : parti docu A : tech	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another unent of the same category inological background		the application other reasons	shed on, or
O : non	-written disclosure rmediate document	& : member of the sar	ne patent family	, corresponding

EUROPEAN SEARCH REPORT

Application Number EP 09 16 3830

Category	Citation of document with inc of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
А	HOEK R M ET AL: "Domacrophage lineage with OX2 (CD200)" SCIENCE, AMERICAN AS ADVANCEMENT OF SCIEN vol. 290, no. 5497, 1 December 2000 (200 1768-1771, XP0022636 ISSN: 0036-8075	SSOCIATION FOR THE NCE,, US, 00-12-01), pages	1-16	
X,P	GORCZYNSKI R M ET Al anti-CD200R regulate arthritis (CIA) in r FASEB JOURNAL (FEDER SOCIETIES FOR EXPERS BETHESDA, US, vol. 16, no. 5, 22 N , page A1045, XP0090 ISSN: 0892-6638 * abstract *	es collagen induced nice" RATION OF AMERICAN IMENTAL BIOLOGY), March 2002 (2002-03-22)	1-13	
Т	of the CD200 receptor	2003-09-15), pages		TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has be	een drawn up for all claims Date of completion of the search		Examiner
	The Hague	6 August 2009	Sia	iterli, Maria
X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category nological background written disclosure mediate document	L : document cited fo	ument, but publice the application rother reasons	shed on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 09 16 3830

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

06-08-2009

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0070045	A	23-11-2000	AU CA CN EP HU JP JP KR MX NZ US	5007200 2372549 1372594 1177295 0203805 2002543838 2007319163 20090025341 PA01011519 515382 2009012270 2006084121	A1 A1 A2 T A A A A	05-12-20 23-11-20 02-10-20 06-02-20 28-03-20 24-12-20 13-12-20 10-03-20 20-08-20 26-03-20 08-01-20 20-04-20
W0 02095030	A	28-11-2002	CA	2448668		28-11-20

© For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

FORM P0459

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5767063 A, Lee [0017]
- US 6352832 B [0025]
- US 5888530 A [0028]
- US 6329511 B [0045]
- US 5932448 A [0047]
- US 5532210 A [0047]
- US 6129914 A [0047]
- US 4946778 A [0047]
- US 6176962 B [0056]
- US 6517234 B [0056]
- US 6342220 B [0059]

- US 5440021 B [0059]
- US 6096728 B [0059]
- US 6350466 B [0060]
- US 6316024 B [0060]
- US 6294170 B, Boone [0064]
- US 6096728 A, Collins [0064]
- US 6066668 A, Hausheer [0064]
- US 6306608 B [0065]
- US 6150122 B [0065]
- US 6083760 B [0065]
- US 5863739 B [0065]

Non-patent literature cited in the description

- Wong et al. J. Immunol, 2002, vol. 168, 6455-6462 [0005]
- Wright et al. Immunity, 2000, vol. 13, 233-242 [0006]
 [0048]
- Wright et al. Immunology, 2001, vol. 102, 173-179
 [0006]
- Hoek et al. Science, 2000, vol. 290, 1768-1771 [0006]
- Barclay et al. Immunol., 2001, vol. 102, 173-179 [0006]
- McCaughan et al. Immunogenetics, 1987, vol. 25, 329-335 [0006]
- Preston et al. Eur. J. Immunol, 1997, vol. 27, 1911-1918 [0006]
- Kyte; Doolittle. J. Mol. Biol, 1982, vol. 157, 105-132
 [0017]
- Sathish et al. J. Immunol, 2001, vol. 166, 1763-1770 [0019]
- Lee et al. Science, vol. 297, 1689-1692 [0030]
- Vastag. J. Am. Med. Assoc., vol. 288, 1457-1458
 [0030]
- Woolley; Tetlow. Arthritis Res., 2000, vol. 2, 65-74
 [0030]
- Olsson et al. Ann. Rheum. Dis., 2001, vol. 60, 187-193 [0030]
- Luross; Willians. *Immunology*, 2001, vol. 103, 407-416 [0030]
- Griffiths; Remmers. Immunol. Revs., 2001, vol. 184, 172-183 [0030]
- Tuncel et al. Peptides, 2000, vol. 21, 81-89 [0031]
- Muchamuel et al. *J. Immunol*, 1997, vol. 158, 2898-2903 [0031]
- Howard et al. J. Exp. Med, 1993, vol. 177, 1205-1208
 [0031]

- Cohen. Intensive Care Med., 2000, vol. 26 (1), 51-56
 [0031]
- Freise et al. J. Invest. Surg., 2001, vol. 14, 195-212 [0031]
- Ackermann; Harvima. Arch. Dermatol. Res., 1998, vol. 290, 353-359 [0032] [0068]
- Yamamoto et al. J. Dermatol. Sci., 2000, vol. 24, 171-176 [0032]
- Ackerman et al. Br. J. Dermatol., 1999, vol. 140, 624-633 [0032]
- **Schopf.** *Curr. Opin. Invest. Drugs*, 2002, vol. 3, 720-724 [0032]
- Granstein. J. Clin. Invest., vol. 98, 1695-1696 [0032]
- Christophers. Clin. Exg. Dermatol., 2001, vol. 26, 314-320 [0032]
- Greaves; Weinstein. New Engl. J. Med., 1995, vol. 332, 581-588 [0032]
- Robert; Kupper. New Engl. J. Med., 1999, vol. 341, 1817-1828 [0032]
- Fearon; Veale. Clin. Exp. Dermatol., 2001, vol. 26, 333-337 [0032]
- Mrowietz et al. Exp Dermatol., 2001, vol. 10, 238-245 [0032]
- Ackermann et al. Br. J. Dermatol., 1999, vol. 140, 624-633 [0032]
 Black. New Engl. J. Med., 2002, vol. 346, 1742-1743
- [0033]
 Brightling et al. New Engl. J. Med., 2002, vol. 346,
- 1699-1705 **[0033]**
- Carroll et al. Eur. Respir. J., 2002, vol. 19, 1-7 [0033]
- Xiang; Nilsson. Clin. Exp. Allergy, 2000, vol. 30, 1379-1386 [0033]
- Woodruff; Fahy. J. Am. Med. Assoc., 2001, vol. 286, 395-398 [0033]

- Riffo-Vasquez; Spina. Pharmacol. Therapeutics, 2002, vol. 94, 185-211 [0033]
- Marone. Immunol. Today, 1998, vol. 19, 5-9 [0033]
- Barnes; Lemanske. New Engl. J. Med., 2001, vol. 344, 350-362 [0033]
- Raithel et al. Scand. J. Gastroenterol., 2001, vol. 36, 174-179 [0034] [0068]
- Nishida et al. Hepatogastroenterol., 2002, vol. 49, 678-682 [0034]
- Gelbmann et al. Gut, 1999, vol. 45, 210-217 [0034]
- Nolte et al. Gut, 1990, vol. 31, 791-794 [0034] [0068]
- Jeziorska et al. J. Pathol., 2001, vol. 194, 484-492
 [0034] [0068]
- Robbie-Ryan et al. J. Immunol, 2003, vol. 170, 1630-1634 [0035]
- Dines; Powell. J. Neuropathol. Exp. Neurol., 1997, vol. 56, 627-640 [0035] [0069]
- O'Keefe et al. Liver Transpl., 2002, vol. 8, 50-57 [0035] [0068]
- Lajoie et al. *Mod. Pathol.,* 1996, vol. 9, 1118-1125 [0035] [0070]
- Yousem. Hum. Pathol., 1997, vol. 28, 179-182
 [0035] [0070]
- Levi-Schaffer; Weg. Clin. Exp. Allergy, 1997, vol. 27 (1), 64-70 [0035]
- **Hiromura et al.** *Am. J. Kidney Dis.,* 1998, vol. 32, 593-599 [0035]
- Hara et al. J. Exp. Med, 2002, vol. 195, 375-381
 [0035] [0068]
- Santiago-Schwarz et al. J. Immunol, 2001, vol. 167, 1758-1768 [0036]
- Lambrecht; Hammad. Curr. Opin. Pulm. Med., 2003, vol. 9, 34-41 [0036]
- Eigenmann. Pediatr. Allergy Immunol., 2002, vol. 13, 162-167 [0036]
- Curry et al. Arch. Pathol. Lab. Med., 2003, vol. 127, 178-186 [0036]
- Supajatura et al. J. Clin. Invest., 2002, vol. 109, 1351-1359 [0036]
- Koga et al. Dermatol., 2002, vol. 204, 100-103
 [0036]
- Marshall et al. Curr. Pharm. Dis., vol. 9, 11-24 [0037]
- Malaviya; Georges. Clin. Rev. Allergy Immunol., 2002, vol. 22, 189-204 [0037]
- Mekori; Metcalfe. Immunol. Rev., 2000, vol. 173, 131-140 [0037]
- Galli et al. Curr. Opinion Immunol., 1999, vol. 11, 53-59 [0037]
- Miles; Mamlok. J. Allergy Clin. Immunol., 2002, vol. 89, 638-639 [0037]
- Sacks; Sher. Nature Immunol., 2002, vol. 3, 1041-1047 [0037]
- Eigenmann. Pediatr. Allergy Immunol., 2002, vol. 13, 162-171 [0037]
- Reay. Expert Opin. Ther. Targets, 2001, vol. 5, 491-506 [0037]
- Heckelsmiller et al. Eur. J. Immunol, 2002, vol. 32, 3235-3245 [0037]

- Stift et al. Int. J. Oncol., 2003, vol. 22, 651-656 [0037]
- Vermorken; Van Tendeloo. Expert Rev. Anticancer Ther., 2003, vol. 3, 1-3 [0037]
- Lanier; Bakker. Immunol. Today, 2000, vol. 21, 611-614 [0038]
- **Johnson et al.** *J. Biol. Chem,* 1989, vol. 264, 14262-14271 **[0040]**
- Young et al. J. Biol. Chem, 2001, vol. 276, 37161-37165 [0040]
- Jefferis. BioPharm, 2001, vol. 14, 19-27 [0040]
- Mimura et al. *J. Biol. Chem,* 2001, vol. 276, 45539-45547 [0040]
- **Axford.** *Biochim. Biophys. Acta,* 1999, vol. 1, 219-229 **[0040]**
- Malhotra et al. Nature Medicine, 1995, vol. 1, 237-243 [0040]
- Ausubel et al. Current Protocols in Molecular Biology. John Wiley and Sons, Inc, 2001, vol. 3, 16.0.5-16.22.17 [0041]
- Products for Life Science Research. Sigma-Aldrich, Co, 2001, 45-89 [0041]
- BioDirectory. Amersham Pharmacia Biotech, 2001, 384-391 [0041]
- Chen et al. Biochim. Biophys. Acta, 1997, vol. 1362, 6-10 [0043]
- Baca et al. J. Biol. Chem, 1997, vol. 272, 10678-10684 [0044] [0044] [0044]
- Chothia et al. Nature, 1989, vol. 342, 877-883 [0044]
- Foote; Winter. J. Mol. Biol, 1992, vol. 224, 487-499 [0044]
- Vaughan et al. Nature Biotechnol, 1996, vol. 14, 309-314 [0046]
- Barbas. Nature Medicine, 1995, vol. 1, 837-839
 [0046]
- Mendez et al. Nature Genetics, 1997, vol. 15, 146-156 [0046]
- Hoogenboom; Chames. Immunol. Today, 2000, vol. 21, 371-377 [0046]
- Barbas et al. Phage Display: A Laboratory Manual.
 Cold Spring Harbor Laboratory Press, 2001 [0046]
- Kay et al. Phage Display of Peptides and Proteins:A
 Laboratory Manual. Academic Press, 1996 [0046]
- de Bruin et al. *Nature Biotechnol*, 1999, vol. 17, 397-399 [0046]
- Mack et al. Proc. Natl. Acad. Sci. USA, 1995, vol. 92, 7021-7025 [0047]
- Carter. J. Immunol. Methods, 2001, vol. 248, 7-15 [0047]
- Volkel et al. Protein Engineering, 2001, vol. 14, 815-823 [0047]
- Segal et al. J. Immunol. Methods, 2001, vol. 248, 1-6 [0047]
- Brennan et al. Science, 1985, vol. 229, 81 [0047]
- Raso et al. J. Biol. Chem, 1997, vol. 272, 27623
- Morrison. Science, 1985, vol. 229, 1202 [0047]
- Traunecker et al. EMBO J, 1991, vol. 10, 3655 [0047]

- Malecki et al. Proc. Natl. Acad. Sci. USA, 2002, vol. 99, 213-218 [0047]
- Conrath et al. J. Biol. Chem, 2001, vol. 276, 7346-7350 [0047]
- Desmyter et al. J. Biol. Chem, 2001, vol. 276, 26285-26290 [0047]
- Hudson; Kortt. J. Immunol. Methods, 1999, vol. 231, 177-189 [0047]
- Meyaard et al. Immunity, 1997, vol. 7, 283-290
 [0048]
- Kaithamana et al. *J. Immunol*, 1999, vol. 163, 5157-5164 [**0048**]
- van Oosterhout et al. Int. J. Pharm., 2001, vol. 221, 175-186 [0049]
- Kreitman. Curr. Pharm. Biotechnol., 2001, vol. 2, 313-325 [0049]
- **Dinndorf et al.** *J. Immunother.*, 2001, vol. 24, 511-516 [0049]
- Wahl et al. Int. J. Cancer, 2001, vol. 93, 540-600
 [0049]
- Garber. J. Nat. Cancer Instit., 2000, vol. 92, 1462-1464 [0049]
- Everts et al. J. Immunol, 2002, vol. 168, 883-889
 [0049]
- Chen et al. Int. J. Cancer, 2001, vol. 94, 850-858 [0049]
- Shaik et al. *J. Control. Release*, 2001, vol. 76, 285-295 [0049]
- Park et al. J. control. Release, 2001, vol. 74, 95-113
 [0049]
- Solorzano et al. J. Appl. Physiol., 1998, vol. 84, 1119-1130 [0049]
- Rosenberg et al. J. Appl. Physiol., 2001, vol. 91, 2213-2223 [0049]
- Bendele et al. Arthritis Rheum., 2000, vol. 43, 2648-2659 [0049]
- Trakas; Tzartos. J. Neurochem., 2001, vol. 120, 42-49 [0049]
- Chapman et al. *Nature Biotechnol*, 1999, vol. 17, 780-783 [0049]
- Gaidamakova et al. J. Control. Release, 2001, vol. 74, 341-347 [0049]
- Coiffier et al. New Engl. J. Med., 2002, vol. 346, 235-242 [0049]
- Le Doussal et al. J. Immunol., 1991, vol. 146, 169-175 [0050]
- **Gibellini et al.** *J. Immunol*, 1998, vol. 160, 3891-3898 **[0050]**
- Hsing; Bishop. J. Immunol., 1999, vol. 162, 2804-2811 [0050]
- Everts et al. *J. Immunol.*, 2002, vol. 168, 883-889 [0050]
- Long. Ann. Rev. Immunol., 1999, vol. 17, 875-904
 [0052]
- Lanier. Immunity, 1997, vol. 6, 371-378 [0052]
- Sinclair. Scan. J. Immunol., 1999, vol. 50, 10-13
 100521
- Pan et al. Immunity, 1999, vol. 11, 495-506 [0052]

- Cantoni et al. Eur. J. Immunol, 1999, vol. 29, 3148-3159 [0052]
- Azzoni et al. J. Immunol, 1998, vol. 161, 3493-3500
 [0053]
- **Kita et al.** *J. Immunol*, 1999, vol. 162, 6901-6911 **[0053]**
- Merchant et al. J. Virol., 2000, vol. 74, 9115-9124
 [0053]
- Pandey et al. J. Biol. Chem, 2000, vol. 275, 38633-38639 [0053]
- **Zheng et al.** *J. Biol Chem*, 2001, vol. 276, 12999-13006 **[0053]**
- Propst et al. J. Immunol, 2000, vol. 165, 2214-2221
 [0053]
- van de Winkel et al. J. Leukocyte Biol., 1991, vol.
 49, 511-524 [0055]
- van de Winkel et al. Immunol. Today, 1993, vol. 14, 215-221 [0055]
- Heijnen et al. Intern. Rev. Immunol., 1997, vol. 16, 29-55 [0055]
- Fridman; Sautes. Cell-Mediated Effects of Immunoglobins. Chapman and Hall, 1996, 39-40 [0055]
- Hjertson et al. Brit. J. Haematol., 1999, vol. 104, 516-522 [0055]
- Austen; Boyce. Leuk. Res., 2001, vol. 25, 511-518 [0055]
- Vandenabeele; Wu. Immunol. Cell Biol., 1999, vol. 77, 411-419 [0055]
- Santiago-Schwarz. *J. Leuk. Biol.*, 1999, vol. 66, 209-216 [0055]
- Liu et al. Nat. Immunol., 2001, vol. 2, 585-589 [0055]
- Kondo et al. Ann. Rev. Immunol., 2003 [0055]
- Dumortier et al. Blood, 2003, vol. 101, 2219-2226 [0055]
- Steinitz. Analyt. Biochem, 2000, 232-238 [0056]
- Gast et al. Analyt. Biochem, 1999, vol. 276, 227-241
 [0056]
- Kaiser et al. Analyt. Biochem, 2000, vol. 282, 173-185 [0056]
- Ausubel et al. Curr. Protocols Mol. Biol. John Wiley and Sons, 2001, vol. 4, 25.0.1-25B.2.20 [0057]
- Ausubel et al. Curr. Protocols Mol. Biol. John Wiley and Sons, 2001, vol. 3, 14.0.1-14.14.8 [0057]
- Liu et al. Analyt. Biochem, 2002, vol. 300, 40-45[0057]
- Huang et al. Cancer Res, 2000, vol. 60, 6868-6874
 [0057]
- Wittwer et al. *Biotechniques*, 1997, vol. 22, 130-138 [0057]
- Schmittgen et al. Analyt. Biochem, 2000, vol. 285, 194-204 [0057]
- Heid et al. Genome Res., 1996, vol. 6, 989-994
 [0057]
- Sims et al. Analyt. Biochem, 2000, vol. 281, 230-232 [0057]
- Hardman et al. Goodman and Gilman's the Pharmacological Basis of Therapeutics. McGraw-Hill, 2001 [0058] [0064]

- Gennaro. Remington: The Science and Practice of Pharmacy. Lippincott, Williams, and Wilkins, 2000 [0058]
- Pharmaceutical Dosage Forms: Parenteral Medications. Marcel Dekker, 1993 [0058]
- Pharmaceutical Dosage Forms: Tablets. Marcel Dekker, 1990 [0058]
- Pharmaceutical Dotage Forms: Disperse Systems. Dekker, 1990 [0058]
- Weiner; Kotkoskie. Excipient Toxicity and Safety. Marcel Dekker, Inc, 2000 [0059]
- Sidman et al. Biopolymers, 1983, vol. 22, 547-556
 [0060]
- Langer et al. J. Biomed. Mater. Res., 1981, vol. 15, 167-277 [0060]
- Langer. Chem. Tech., 1982, vol. 12, 98-105 [0060]
- Epstein et al. Proc. Natl. Acad. Sci. USA, 1985, vol. 82, 3688-3692 [0060]
- Hwang et al. Proc. Natl. Acad. Sci. USA, 1980, vol. 77, 4030-4034 [0060]
- Plaut. J. Am. Med. Assoc., 2001, vol. 286, 3005-3006
 [0067]
- Marshall; Bienenstock. Curr. Op. Immunol., 1994, vol. 6, 853-859 [0067]
- Luskin; Luskin. Am. J. Ther., vol. 3, 515-520 [0067]
- Mican; Metcalfe. J. Allergy Clin. Immunol., 1990, vol. 86, 677-683 [0068]
- Malone et al. Arthritis Rheum., 1987, vol. 30, 130-137 [0068]
- Malfait et al. J. Immunol, 1999, vol. 162, 6278-6280
 [0068]
- Ackernann et al. Brit. J. Dermatol., 1999, vol. 140, 624-633 [0068]
- Askenase et al. J. Immunol, 1983, vol. 131, 2687-2694 [0068]
- Malaviya et al. Am. J. Ther., 1995, vol. 2, 787-792
 [0068]
- Sullivan et al. Neurogastroenterol. Motility, 2000, vol. 12, 449 [0068]
- Purcell; Atterwill. Neurochem. Res., 1995, vol. 20, 521-532 [0069] [0069]
- Secor et al. J. Exp. Med, 2000, vol. 191, 813-822 [0069]
- Dietsch; Hinrichs. J. Immunol, 1989, vol. 142, 1476-1481 [0069]
- Pedersen; Nauntofte. Expert Opin. Pharmacother., 2001, vol. 2, 1415-1436 [0070]
- Konttinen et al. Rheumatol. Int., 2000, vol. 19, 141-147 [0070]
- Moutsopoulos; Youinou. Curr. Opin. Rheumatol., 1991, vol. 3, 815-822 [0070]
- Gorczynski et al. Clin. Immunol., 2000, vol. 95, 182-189 [0070]
- Koskinen et al. *Transplantation*, 2001, vol. 71, 174-1747 [0070]
- O'Keefe et al. Liver Transol., 2002, vol. 8, 50-57
 [0070]

- Pardo et al. Virchows Arch., 2000, vol. 437, 167-172
 [0070]
- Levi-Schaffer; Wej. Clin. Exp. Allergy, 1997, vol. 27 (1), 64-70 [0070]
- Tomita et al. Ann. Thorac. Surg., 2000, vol. 69, 1686-1690 [0070]
- Brockow; Metcalfe. Curr. Opin. Allergy Clin. Immunol., 2001, vol. 1, 449-454 [0070]
- Hiromatsu; Toda. *Microsc. Res. Tech.*, 2003, vol. 60, 64-69 [0070]
- Huang et al. Cardiovasc. Res., 2002, vol. 55, 150-160 [0071]
- Kelley et al. Mol. Med. Today, 2000, vol. 6, 304-308
 [0071]
- Aicher et al. Circulation, 2003, vol. 107, 604-611
 [0071]
- Ozmen et al. Histol. Histopathol., 2002, vol. 17, 223-237 [0071]
- Wanders et al. Transpl. Int., 1994, vol. 7 (1), S371-S375 [0071]
- Ackerman. Histological Diagnosis of Inflammatory Skin Disease. Lippincott, Williams, and Wilkins, 1997 [0074]
- Gallin et al. Inflammation:Basic Principles and Clinical Correlates. Lippincott, Williams, and Wilkins, 1999 [0074]
- Geppetti ; Holzer. Neurogenic Inflammation. CRC Press, 1996 [0074]
- Nelson et al. Cytokines in Pulmonary Disease:Infection and Inflammation. Marcel Dekker, Inc, 2000 [0074]
- O'Byrne. Asthma as an Inflammatory Disease. Marcel Dekker, Inc, 1990 [0074]
- Agents and Actions. Parnharn et al. Drugs in Inflammation. Springer Verlag, Inc, 1991, vol. 32 [0074]
- Benezra. Ocular Inflammation:Basic and Clinical Concepts. Blackwell Science, Ltd, 1999 [0074]
- Maniatis et al. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1982 [0075]
- Sambrook; Russell. Molecular Cloning. Cold Spring Harbor Laboratory Press, 2001 [0075]
- Wu. Recombinant DNA. Academic Press, 1993, vol. 217 [0075]
- Ausbel et al. Current Protocols in Molecular Biology.
 John Wiley and Sons, Inc, 2001, vol. 1-4 [0075]
- Coligan et al. Current Protocols in Protein Science.
 John Wiley and Sons, Inc, 2000, vol. 1 [0076]
- Coligan et al. Current Protocols in Protein Science.
 John Wiley and Sons, Inc, 2000, vol. 2 [0076]
- Coligan et al. Current Protcols in Immunology. John Wiley and Sons, Inc, 2001, vol. 1 [0076]
- Harlow; Lane. Using Antibodies. Cold Spring Harbor Laboratory Press, 1999 [0076]
- Coligan et al. Current Protcols in Immunology. John Wiley and Sons, Inc, 2001, vol. 4 [0077]
- Freshney. Culture of Animal Cells: A Manual of Basic Technique. Wiley-Liss, 2000 [0078]

- Animal Cell Culture: A Practical Approach. Oxford Univ. Press, 2000 [0078]
- Cell and Tissue Culture: Laboratory Procedures.
 John Wiley and Sons, 1994 [0078]
- Melamed et al. Flow Cytometry and Sorting. Wiley-Liss, Inc, 1990 [0078]
- Shapiro. Practical Flow Cytometry. Liss, 1988 [0078]
- Robinson et al. Handbook of Flow Cytometry Methods. Wiley-Liss, 1993 [0078]
- Luross; Williams. Immunology, 2001, vol. 103, 407-416 [0079]
- **Griffiths**; **Remmers.** *Immunol. Rev.*, vol. 184, 172-183 [0079]
- Beurler. Curr. Opin. Immunol., vol. 12, 20-26 [0079]
- Campbell et al. *J. Immunol*, 1998, vol. 161, 3639-3644 [0079]

- Tompkins et al. *J. Immunol*, 2002, vol. 168, 4173-4183 [0079]
- Hong et al. J. Immunol, 1999, vol. 162, 7480-7491
 [0079]
- Menne et al. Bioinformatics, 2000, vol. 16, 741-742
 [0080]
- Idusogie et al. *J. Immunol*, 2000, vol. 164, 4178-4184 [0089]
- Liu et al. Cancer Res, 1998, vol. 58, 4055-4060 [0090]
- Lee et al. J. Pharmacol. Exp. Therapeutics, 2000, vol. 292, 1048-1052 [0090]
- **Jirholt et al.** *Eur. J. Immunol*, 1998, vol. 28, 3321-3328 [0100]