(19)
(11) EP 2 103 344 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
02.02.2011 Bulletin 2011/05

(21) Application number: 08007848.8

(22) Date of filing: 23.04.2008
(51) International Patent Classification (IPC): 
B01F 3/04(2006.01)
B01F 13/10(2006.01)
B01F 5/12(2006.01)
B01F 5/16(2006.01)

(54)

Gas-liquid mixer

Gas-Flüssigkeits-Mischer

Mélangeur gaz/liquide


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30) Priority: 18.03.2008 TW 97204592 U
18.03.2008 TW 97204593 U

(43) Date of publication of application:
23.09.2009 Bulletin 2009/39

(73) Proprietor: Teng, Min Chien
Daya Township T'ai chung County 428 (TW)

(72) Inventor:
  • Teng, Min Chien
    Daya Township T'ai chung County 428 (TW)

(74) Representative: Strehl Schübel-Hopf & Partner 
Maximilianstrasse 54
80538 München
80538 München (DE)


(56) References cited: : 
EP-A- 1 466 661
WO-A-2005/077507
GB-A- 2 056 297
WO-A-00/25904
WO-A-2007/136030
US-B1- 6 245 226
   
  • NEHODA K: "Oxy-Vital - Sauerstoff für Ihre Gesundheit"[Online] 14 April 2005 (2005-04-14), pages 1-5, XP002534340 Retrieved from the Internet: URL:http://www.oxy-vital.ch/ox/fixD.htm> [retrieved on 2009-06-26]
  • WASNER TECHNOLOGIEN & PRODUKTE: "Oxy-Vital Sauerstoff Wasser"[Online] pages 1-5, XP002534341 Retrieved from the Internet: URL:http://www.wasner.ch/_druck/swa_neu1.p df> [retrieved on 2009-06-26]
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND OF THE INVENTION


Field of Invention



[0001] The invention relates to a water processing device and, in particular, to a gas-liquid mixer for increasing the oxygen content of water by forming tiny bubbles for air inside the water.

Related Art



[0002] A conventional water purifying device 8, as shown in FIG. 10, has a water inlet 81 and a water outlet 82. The water to be purified enters the water purifying device 8 through the inlet 81. The purified water flows out via the outlet 82 for users to drink and use or to boil for drinking. However, the above-mentioned water purifying device 8 is usually used to simply filter out impurities inside water. It cannot increase the oxygen content in water.

[0003] Therefore, a tiny bubble water processing device 9, shown in FIG. 11, has been invented. It comprises a motor 91, a pressure bucket 92, and a high oxygen solving mechanism 93. The motor 91 pushes water to flow through a first channel 94 into the pressure bucket 92. The first channel 94 is provided with an air valve 95 for air to enter the first channel 94 and to flow with the water into the pressure bucket 92. The air and water stored in the pressure bucket 92 under a high pressure render the air bubbles solved in the water.

[0004] The high oxygen solving mechanism 93 is connected with the pressure bucket 92 via a second channel 96. The internal channel of the high oxygen solving mechanism is designed in such a way that the water flow speed is changed and the bubbles solved in the water become even smaller in size.

[0005] Although the above-mentioned tiny bubble water processing device 9 can increase the oxygen content in water, the components of the tiny bubble water processing device are too complicated. It relies on the pressure bucket 92 along with the high oxygen solving mechanism 93 to achieve the desired effect. Moreover, the oxygen is solved in water by taking in air once and imposing a high pressure. The effect is thus very limited.

[0006] A device of the same type is known from Nehoda K: "Oxy-Vital Sauerstoff für Ihre Gesundheit" April 14, 2005, pages 1-5, to be retrieved form the Internet at "http://www. oxy-vital.ch/ox/fixD.htm" (cf. XP 002534340).

[0007] A gas-liquid mixer having the features included in the first part of claim 1 is disclosed in WO 2007/136030 A1. The known apparatus comprises a cylindrical gas swirling shearing chamber for producing fine bubbles disposed between a pump and a water storage tank, the chamber having an inlet near one end wall, through which the water-gas mixture enters in a tangential direction, and an axial outlet in the other end wall.

SUMMARY OF THE INVENTION



[0008] An objective of the invention is to solve the above-mentioned problems by providing a gas-liquid mixer. Using a helical pipe, taking in air through an intake valve, and imposing a pressure with a pump, the air is solved in water and produces a lot of tiny bubbles.

[0009] This objective is achieved by the gas-liquid mixer defined in claim 1.

[0010] The gas-liquid mixer has at least one pump with a water inlet and a water outlet that are in fluid communications with each other and a helical pipe. The water enters the pump through the water inlet. The inlet has at least one air inlet valve. The water outlet is connected with a water supplying channel. The first air inlet valve guides air into the pump. When the pump imposes a pressure, the air and the water are mixed. The gas-liquid mixture is guided by the water outlet to the water supplying channel. The helical pipe is connected with the water supplying channel. When the gas-liquid mixed water flows from the water supplying channel into the helical pipe, the air and water further mix with each other by crossing and spiraling inside the helical pipe.

[0011] Moreover, the disclosed water supplying channel can be installed with an adjusting valve for gauging the water flowing into the helical pipe as well as adjusting the output pressure as the water flows from the water supplying channel into the helical pipe.

[0012] Besides, the disclosed gas-liquid mixer is provided with a gas-liquid mixing bucket. The gas-liquid mixing bucket has a water controlling valve for forming a closed space therein. The helical pipe is disposed inside the closed space. The water controlling valve has a water-entering portion and a water-leaving portion. The water-entering portion is in fluid communications with the water supplying channel and the helical pipe. The helical pipe is further provided with a high-pressure water outlet, so that the second-mixed water is ejected from there and perform a third gas-liquid mixing inside the closed space.

[0013] In addition, the gas-liquid mixing bucket has a second air inlet valve to guide air into the system for the second time. This enables a fourth gas-liquid mixing in the closed space.

[0014] The gas-liquid mixing bucket also has a plurality of granular filtering units for performing a second filtering on the water therein. The squeezing and collisions with the filtering units make the gas-liquid mixing more uniform and lasting. This helps increasing the oxygen content in water.

[0015] The water supplying channel can be installed with at least one horizontal filter. The helical pipe is then disposed in the horizontal filter. Both ends of the helical pipe are connected to a third water inlet and a third water outlet of the horizontal filter, respectively. This also produces water rich in oxygen.

[0016] Furthermore, the invention can have a pressured water storage bucket. It stores the water that has been first mixed by the pump. The pressured water storage bucket stores a pressure in order to perform a second pressure increase as water is output from the pressured water storage bucket.

BRIEF DESCRIPTION OF THE DRAWINGS



[0017] The invention will become more fully understood from the detailed description given herein below illustration only, and thus is not limitative of the present invention, and wherein:

FIGS. 1 to 9 are schematic structural views of nine embodiments of the invention;

FIG. 10 shows a conventional water purifying device; and

FIG. 11 shows a conventional tiny bubble water processing device.


DETAILED DESCRIPTION OF THE INVENTION



[0018] The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.

[0019] Please refer to FIG. 1. The disclosed gas-liquid mixer 1 is used to perform a gas-liquid mixing on water. It has the following features. The gas-liquid mixer 1 has at least one pump 11 with a water inlet 111 and a water outlet 112 that are in fluid communications with each other and a helical pipe 13. The water enters the pump 11 through the water inlet 111. The water inlet 111 has at least one air inlet valve 12. The water outlet 112 is connected with a water supplying channel 14. The first air inlet valve 12 guides air into the pump 11. When the pump 11 imposes a pressure, the air and the water are mixed for the first time, producing a lot of tiny oxygen-rich bubbles in the water. The gas-liquid mixture is guided by the water outlet 112 to the water supplying channel 14. In this embodiment, the pump 11 is a high-pressure pump. The first air inlet valve 12 is a retaining valve to prevent the water from flowing back to the first air inlet.

[0020] The helical pipe 13 is connected with the water supplying channel 14. When the gas-liquid mixed water flows from the water supplying channel 14 into the helical pipe 13, the air and water further mix with each other by crossing and spiraling inside the helical pipe 13.

[0021] The invention also has other embodiments that are only partially different from the first embodiment. Please refer to FIG 2 for a second embodiment. In this embodiment, the water supplying channel 14 is provided with an adjusting valve 3 for gauging the water flux and the water output pressure from the water supplying channel 14 to the helical pipe 13. The adjusting valve 3 is a retaining valve.

[0022] A third embodiment of the invention is shown in FIG. 3. In this embodiment, the gas-liquid mixer 1 further includes a gas-liquid mixing bucket 15. A water controlling valve 16 is disposed at the bottom of the gas-liquid mixing bucket to form a closed space 17 therein. The helical pipe 13 is disposed in the closed space 17. In this embodiment, one end of the helical pipe 13 is mounted on the water controlling valve 16. The water controlling valve 16 has a water-entering portion 161 and a water-leaving portion 162. The water-entering portion 161 is connected with the water supplying channel 14 the helical pipe 13 mounted on the water controlling valve 16. The water-leaving portion 162 has a guiding hole 163 connected with the closed space 17 of the gas-liquid mixing bucket 15.

[0023] The helical pipe 13 further has a high-pressure water outlet 18. The high-pressure water outlet 18 has an opening end 181 with a flat shape. The gas-liquid mixing is done in the helical pipe 13, and then output from the opening end 181 of the high-pressure water outlet 18.

[0024] Due to the flat shape of the opening end 181 of the high-pressure water outlet 18, the pressure of water increases when it reaches the opening end 181. The water is thus ejected from the high-pressure water outlet 18 at a high pressure and directly hits one side of the closed space 17 of the gas-liquid mixing bucket 15. In this embodiment, the high-pressure water outlet 18 corresponds to one side of the top edge of the gas-liquid mixing bucket 15.

[0025] Moreover, water molecules change their original moving direction as they hit the gas-liquid mixing bucket 15. This change in the water flow direction enables the water to produce turbulence inside the gas-liquid mixing bucket 15, rendering a third gas-liquid mixing. As a result, there are more tiny bubbles in the water.

[0026] To increase the purifying and gas-liquid mixing effects, the disclosed gas-liquid mixing bucket 15 is disposed with a plurality of granular filtering units 19 to further filter the water therein. By colliding wit the filtering units 19, the gas-liquid mixing is more uniform and lasting. Therefore, the oxygen content of water is increased.

[0027] The water after the above-mentioned three gas-liquid mixings contains a huge amount of tiny bubbles. Therefore, a lot of air has been mixed into the water to increase its oxygen content. Afterwards, the water is guided by the guiding hole 163 of the water controlling valve 16 to leave via the water-leaving portion 162.

[0028] A fourth embodiment of the invention is illustrated in FIG. 4. It is different from the third embodiment in that the high-pressure water outlet 18 goes through the central region of the helical pipe 13. The gas-liquid mixing bucket 15 further has at least a second air inlet valve 151. In this embodiment, the second air inlet valve 151 is a retaining valve to guide more air into the closed space 17 for a fourth mixing. This further enriches the oxygen content of water.

[0029] As shown in FIG. 5, in a fifth embodiment of the invention, the water-leaving portion 162 of the water controlling valve 16 on the gas-liquid mixing bucket 15 is connected with toilet equipment 2 that has at least one faucet 21. The water processed by the gas-liquid mixer 1 is guided to the faucet 21. Thereby, the toilet equipment 2 can provide water full of tiny bubbles and rich in oxygen. The helical pipe 13 can be directly mounted inside a filter pipe (not shown) on the market for uses.

[0030] According to the above-mentioned embodiments, the invention has the following features. Air and water enter the pump 11 simultaneously. The pump 11 imposes a pressure to mix the air and water. The mixture then enters a helical pipe 13 at a higher pressure for a further gas-liquid mixing. Afterwards, it goes through a high-pressure water outlet 18 and enters the gas-liquid mixing bucket 15 by high-pressure injection. Using the first and second air inlet valves 12, 151 and the filtering units 19, the air and the water can be mixed more uniformly. This does not only greatly increase the oxygen content of water, but produces a huge amount of tiny bubbles in the mixed water.

[0031] A sixth embodiment of the invention is shown in FIG. 6. The gas-liquid mixer 1 is installed on a filter 3 to perform gas-liquid mixing on the water output by the filter 3. The filter 3 has a first water inlet 31 and a first water outlet 32. The water inlet 111 of the pump 11 in the gas-liquid mixer 1 is connected with the first water outlet 32 of the filter 3. Therefore, the water first passes through the filter 3, and then enters the pump 11 via the water inlet 111. Through the action of the gas-liquid mixer 1, the oxygen content and the amount of tiny bubbles in the drinking water are greatly increased.

[0032] Please refer to FIG. 7 for a seventh embodiment of the invention. It differs from the sixth embodiment in that the water supplying channel 14 is provided with at least one horizontal filter 4. The helical pipe 13 is disposed inside the horizontal filter 4. Both ends of the helical pipe 13 are connected to a second water inlet 41 and a second water outlet 42 of the horizontal filter 4.

[0033] As shown in FIG. 8, an eighth embodiment of the invention differs from the seventh embodiment in that a pressured water storage bucket 5 is inserted between the water supplying channel 14 and the horizontal filter 4. It stores the water that has been done with the first gas-liquid mixing in the pump 11. The pressured water storage bucket 5 stores a pressure for a second pressure enhancement on the outgoing water.

[0034] A ninth embodiment shown in FIG. 9 is different from the fourth embodiment in that a flow splitting connector 31 is disposed at the water outlet 112 to divide the water output from the water outlet 112 into the water supplying channel 14 and a second water supplying channel 32. The second water supplying channel 32 is connected to the second air inlet valve 151 on top of the gas-liquid mixing bucket 15. The water in the second water supplying channel 32 flows into the gas-liquid mixing bucket 15 via the second air inlet valve 151. Therefore, when the water level in the gas-liquid mixing bucket 15 gradually increases as the helical pipe 13 continues supplying water, the air in the shrinking closed space 17 therein is squeezed. The water entering from the top of the gas-liquid mixing bucket 15 thus mixes with the squeezed air in the closed space 17, greatly increasing the oxygen content of the water.

[0035] If the invention is used in an aquarium, aquacultural fields or aquaculture-related industries, there is no need to prepare other large air-exchange devices or pumps because the disclosed gas-liquid mixer can increase the oxygen content of water. Not only does the invention reduce the cost, it also saves the space for installing large air-exchange devices.


Claims

1. A gas-liquid mixer (1) for performing a gas-liquid mixing on water comprising a pump (11) having a water inlet (111) and a water outlet (112) in fluid communication with each other; wherein the water inlet (111) has at least one first air inlet valve (12) and the water outlet (112) is in fluid communication with a water supplying channel (14), the first air inlet valve (12) guides air into the pump (11) so that the air and the water mix with each other as the pump (11) increases its pressure, and the water outlet (112) outputs the air-mixed water to the water supplying channel (14),
characterized by a helical pipe (13) in fluid communication with the water supplying channel (14) for the water to enter the helical pipe (13) from the water supplying channel (14) to further mix with air by a crossing and spiraling movement.
 
2. The gas-liquid mixer of claim 1, wherein the pump (11) is a high-pressure pump.
 
3. The gas-liquid mixer of claim 1, wherein the first air inlet valve (12) is a retaining valve.
 
4. The gas-liquid mixer of claim 1, wherein the water supplying channel (14) is provided with an adjusting valve (3), preferably a retaining valve, for gauging the water flux and output pressure from the water supplying channel (14) to the helical pipe (13).
 
5. The gas-liquid mixer of claim 1 further comprising a gas-liquid mixing bucket (15) that has a water controlling valve (16), preferably disposed at the bottom of the gas-liquid mixing bucket (15), to form a closed space (17) therein, wherein the helical pipe (13) is disposed in the closed space (17), and the water controlling valve (16) has a water-entering portion (161) in fluid communications with both the water supplying channel (14) and the helical pipe (13) and a water-leaving portion (162), one end of the helical pipe (13) being preferably mounted on the water controlling valve (16).
 
6. The gas-liquid mixer of claim 5, wherein the water controlling valve (16) has a guiding hole (163) in fluid communications with the closed space (17) of the gas-liquid mixing bucket (15).
 
7. The gas-liquid mixer of claim 1, wherein the helical pipe (13) has a high-pressure water outlet (18) with a flat opening end (181) for the water to be ejected out of the opening end (181) of the high-pressure water outlet (18).
 
8. The gas-liquid mixer of claim 5, wherein the helical pipe (13) has a high-pressure water outlet (18) with a flat opening end (181) for the water to be ejected out of the opening end (181) of the high-pressure water outlet (18), the high-pressure water outlet (18) preferably corresponding to one side of the top edge of the gas-liquid mixing bucket (15).
 
9. The gas-liquid mixer of claim 5, wherein the gas-liquid mixing bucket (15) has at least a second air inlet valve (151), preferably a retaining valve, for guiding air into the closed space (17) for gas-liquid mixing.
 
10. The gas-liquid mixer of claim 5, wherein the gas-liquid mixing bucket (15) is disposed with a plurality of filtering units (19) for further filtering and mixing the water therein.
 
11. The gas-liquid mixer of claim 5, wherein the water-leaving portion (162) of the water controlling valve (16) of the gas-liquid mixing bucket (15) is connected with toilet equipment (2) that has at least one faucet (21) and the water processed by the gas-liquid mixer (1) is guided to the faucet (21).
 
12. The gas-liquid mixer of claim 1 used in a filter (3) having a first water inlet (31) and a first water outlet (32), wherein the water inlet (111) of the pump (11) and the first water outlet (32) of the filter (3) are connected, and the water first passes through the filter (3) before is enters the pump (11) via the water inlet (111).
 
13. The gas-liquid mixer of claim 1, wherein the water supplying channel (14) is provided with at least one horizontal filter (4) and the helical pipe (13) is disposed in the horizontal filter (4), and both ends of the helical pipe (13) are connected to a second water inlet (41) and a second water outlet (42) of the horizontal filter (4), respectively.
 
14. The gas-liquid mixer of claim 1, wherein the water supplying channel (14) has a pressured water storage bucket (5) for storing the water that has passed the first gas-liquid mixing in the pump (11), and for storing a pressure to increase the output pressure of water.
 
15. The gas-liquid mixer of claim 9 further comprising a flow splitting connector (31) to divide the water output from the water outlet (112) into the water supplying channel (14) and a second water supplying channel (32) that is connected to the second air inlet valve (151) of the gas-liquid mixing bucket (15).
 


Ansprüche

1. Gas-Flüssig-Mischer (1) zur Durchführung einer Gas-Flüssig-Mischung auf Wasser, mit einer Pumpe (11), die in Fluidverbindung miteinander einen Wassereinlass (111) und einen Wasserauslass (112) aufweist, wobei der Wassereinlass (111) mindestens ein erstes Lufteinlassventil (12) hat und der Wasserauslass (112) in Fluidverbindung mit einem Wasserversorgungskanal (14) steht, wobei das erste Lufteinlassventil (12) der Pumpe (11) Luft zuführt, so dass die Luft und das Wasser sich miteinander mischen, wenn die Pumpe (11) ihren Druck erhöht, und wobei der Wasserauslass (112) das mit Luft gemischte Wasser an den Wasserversorgungskanal (14) abgibt,
gekennzeichnet durch eine Rohrwendel (13) in Fluidverbindung mit dem Wasserversorgungskanal (14), wobei das Wasser aus dem Wasserversorgungskanal (14) in die Rohrwendel (13) eintritt, um sich durch kreuzende und spiralförmige Bewegung weiter mit der Luft zu mischen.
 
2. Gas-Flüssig-Mischer nach Anspruch 1, wobei die Pumpe (11) eine Hochdruckpumpe ist.
 
3. Gas-Flüssig-Mischer nach Anspruch 1, wobei das erste Lufteinlassventil (12) ein Rückhalteventil ist.
 
4. Gas-Flüssig-Mischer nach Anspruch 1, wobei der Wasserversorgungskanal (14) mit einem Einstellventil (3), vorzugsweise einem Rückhalteventil, versehen ist, um den Wasserfluss und den Auslassdruck aus dem Wasserversorgungskanal (14) in die Rohrwendel (13) zu justieren.
 
5. Gas-Flüssig-Mischer nach Anspruch 1 mit ferner einem Gas-Flüssig-Mischbehälter (15), der - vorzugsweise an seinem Boden - ein Wasserregulierventil (16) aufweist, um einen geschlossenen Raum (17) zu bilden, in dem die Rohrwendel (13) angeordnet ist, wobei das Wasserregulierventil (16) einen Wassereintrittsteil (161) in Fluidverbindung mit sowohl dem Wasserversorgungskanal (14) als auch der Rohrwendel (13) sowie einen Wasseraustrittsteil (162) aufweist, wobei ein Ende der Rohrwendel (13) vorzugsweise an dem Wasserregulierventil (16) montiert ist.
 
6. Gas-Flüssig-Mischer nach Anspruch 5, wobei das Wasserregulierventil (16) ein Führungsloch (163) in Fluidverbindung mit dem geschlossenen Raum (17) des Gas-Flüssig-Mischbehälters (15) aufweist.
 
7. Gas-Flüssig-Mischer nach Anspruch 1, wobei die Rohrwendel (13) einen Hochdruck-Wasserauslass (18) mit einem flachen Öffnungsende (181) aufweist, aus dem das Wasser ausgestoßen wird.
 
8. Gas-Flüssig-Mischer nach Anspruch 5, wobei die Rohrwendel (13) einen Hochdruck-Wasserauslass (18) mit einem flachen Öffnungsende (181) aufweist, aus dem das Wasser ausgestoßen wird, und wobei der Hochdruck-Wasserauslass (18) vorzugsweise einer Seite der Oberkante des Gas-Flüssig-Mischbehälters (15) entspricht.
 
9. Gas-Flüssig-Mischer nach Anspruch 5, wobei der Gas-Flüssig-Mischbehälter (15) mindestens ein zweites Lufteinlassventil (151), vorzugsweise ein Rückhalteventil, zum Einleiten von Luft in den geschlossenen Raum (17) zur Gas-Flüssig-Mischung aufweist.
 
10. Gas-Flüssig-Mischer nach Anspruch 5, wobei der Gas-Flüssig-Mischbehälter (15) mit mehreren Filtereinheiten (19) zum weiteren Filtern und Mischen des Wassers versehen ist.
 
11. Gas-Flüssig-Mischer nach Anspruch 5, wobei der Wasseraustrittsteil (162) des Wasserregulierventils (16) des Gas-Flüssig-Mischbehälters (15) mit einem Toilettengerät (2) verbunden ist, das mindestens einen Hahn (21) aufweist, dem das von dem Gas-Flüssig-Mischer (1) verarbeitete Wasser zugeführt wird.
 
12. Gas-Flüssig-Mischer nach Anspruch 1, verwendet in einem Filter (3), der einen ersten Wassereinlass (31) und einen ersten Wasserauslass (32) aufweist, wobei der Wassereinlass (111) der Pumpe (11) mit dem ersten Wasserauslass (32) des Filters (3) verbunden ist und das Wasser erst den Filter (3) durchsetzt, bevor es über den Wassereinlass (111) in die Pumpe (11) gelangt.
 
13. Gas-Flüssig-Mischer nach Anspruch 1, wobei der Wasserversorgungskanal (14) mit mindestens einem Horizontalfilter (4) versehen ist, in dem die Rohrwendel (13) angeordnet ist, und wobei die beiden Enden der Rohrwendel (13) mit einem zweiten Wassereinlass (41) beziehungsweise zweiten Wasserauslass (42) des Horizontalfilters (4) verbunden sind.
 
14. Gas-Flüssig-Mischer nach Anspruch 1, wobei der Wasserversorgungskanal (14) einen Wasserspeicher-Druckbehälter (5) aufweist, um das Wasser, das die erste Gas-Flüssig-Mischung in der Pumpe (11) durchsetzt hat, sowie einen Druck zur Erhöhung des Wasser-Ausgangsdrucks zu speichern.
 
15. Gas-Flüssig-Mischer nach Anspruch 1 mit ferner einem Strömungsteiler-Anschlussstück (31) zum Aufteilen des an dem Wasserauslass (112) austretenden Wassers auf den Wasserversorgungskanal (14) sowie einen mit dem zweiten Lufteinlassventil (151) des Gas-Flüssig-Mischbehälters (15) verbundenen zweiten Wasserversorgungskanal (32).
 


Revendications

1. Mélangeur gaz-liquide (1) pour effectuer un mélange gaz-liquide à base d'eau, comprenant une pompe (11) ayant une entrée (111) d'eau et une sortie (112) d'eau en communication fluidique l'une avec l'autre, dans lequel l'entrée (111) d'eau a au moins un premier clapet (12) d'entrée d'air et la sortie (112) d'eau est en communication fluidique avec une conduite (14) d'alimentation en eau, le premier clapet (12) d'entrée d'eau guide de l'air jusque dans la pompe (11) de façon que l'air et l'eau se mélangent l'un avec l'autre à mesure que la pompe (11) accroît sa pression, et la sortie (112) d'eau envoie l'eau mélangée à l'air dans la conduite (14) d'alimentation en eau,
caractérisé par un tuyau hélicoïdal (13) en communication fluidique avec la conduite (14) d'alimentation en eau pour que l'eau entre dans le tuyau hélicoïdal (13) depuis la conduite (14) d'alimentation en eau pour se mélanger davantage avec l'air par un mouvement d'entrecroisement et d'écoulement en spirale.
 
2. Mélangeur gaz-liquide selon la revendication 1, dans lequel la pompe (11) est une pompe haute pression.
 
3. Mélangeur gaz-liquide selon la revendication 1, dans lequel le premier clapet (12) d'entrée d'air est un clapet de retenue.
 
4. Mélangeur gaz-liquide selon la revendication 1, dans lequel la conduite (14) d'alimentation en eau est pourvue d'un clapet de réglage (3), de préférence un clapet de retenue, pour étalonner le flux d'eau et la pression de sortie depuis la conduite (14) d'alimentation en eau vers le tuyau hélicoïdal (13).
 
5. Mélangeur gaz-liquide selon la revendication 1, comprenant en outre un bac de mélange (15) gaz-liquide qui possède un régulateur (16) d'eau, disposé de préférence au fond du bac de mélange (15) gaz-liquide, pour y former un espace clos (17), le tuyau hélicoïdal (13) étant disposé dans l'espace clos (17), et le régulateur (16) d'eau ayant un moyen (161) de pénétration d'eau en communication fluidique avec la conduite (14) d'alimentation en eau ainsi qu'avec le tuyau hélicoïdal (13) et un moyen (62) d'évacuation d'eau, une extrémité du tuyau hélicoïdal (13) étant de préférence montée sur le régulateur (16) d'eau.
 
6. Mélangeur gaz-liquide selon la revendication 5, dans lequel le régulateur (16) d'eau a un trou de guidage (163) en communication fluidique avec l'espace clos (17) du bac de mélange (15) gaz-liquide.
 
7. Mélangeur gaz-liquide selon la revendication 1, dans lequel le tuyau hélicoïdal (13) a une sortie (18) d'eau à haute pression avec une extrémité d'ouverture plate (181) pour que l'eau soit expulsée hors de l'extrémité d'ouverture (181) de la sortie (18) d'eau à haute pression.
 
8. Mélangeur gaz-liquide selon la revendication 5, dans lequel le tuyau hélicoïdal (13) a une sortie (18) d'eau à haute pression avec une extrémité d'ouverture plate (181) pour que l'eau soit expulsée hors de l'extrémité d'ouverture (181) de la sortie (18) d'eau à haute pression, la sortie (18) d'eau à haute presssion correspondant de préférence à un côté du bord supérieur du bac de mélange (15) gaz-liquide.
 
9. Mélangeur gaz-liquide selon la revendication 5, dans lequel le bac de mélange (15) gaz-liquide a au moins une deuxième valve (151) d'entrée d'air, de préférence un clapet de retenue, pour guider de l'air jusque dans l'espace clos (17) pour le mélange du gaz et du liquide.
 
10. Mélangeur gaz-liquide selon la revendication 5, dans lequel le bac de mélange (15) gaz-liquide est muni d'une pluralité de dispositifs filtrants (19) pour filtrer et mélanger davantage l'eau présente dans celui-ci.
 
11. Mélangeur gaz-liquide selon la revendication 5, dans lequel le (162) d'évacuation d'eau du régulateur (16) d'eau du bac de mélange (15) gaz-liquide est raccordé à un équipement sanitaire (2) qui possède au moins un robinet (21), et l'eau traitée par le mélangeur (1) gaz-liquide est guidée jusqu'au robinet (21).
 
12. Mélangeur gaz-liquide selon la revendication 1, utilisé dans un filtre (3) ayant une première entrée (31) d'eau et une première sortie (32) d'eau, l'entrée (111) d'eau de la pompe (11) et la première sortie (32) d'eau du filtre étant reliées, et l'eau traversant d'abord le filtre (3) avant d'entrer dans la pompe (11) via l'entrée (111) d'eau.
 
13. Mélangeur gaz-liquide selon la revendication 1, dans lequel la conduite (14) d'alimentation en eau est munie d'au moins un filtre horizontal (4) et le tuyau hélicoïdal est disposé dans le filtre horizontal (4), et les deux extrémités du tuyau hélicoïdal (13) sont raccordées respectivement à une seconde entrée (41) d'eau et une seconde sortie (42) d'eau du filtre horizontal (4).
 
14. Mélangeur gaz-liquide selon la revendication 1, dans lequel la conduite (14) d'alimentation en eau possède un bac de stockage (5) d'eau pour pression pour stocker l'eau qui a subi le premier mélange gaz-liquide dans la pompe (11), et pour accumuler une pression afin d'accroître la pression de sortie de l'eau.
 
15. Mélangeur gaz-liquide selon la revendication 9, comprenant en outre un raccord diviseur (31) d'écoulement pour diviser l'eau qui sort de la sortie (112) d'eau pour entrer dans la conduite (14) d'alimentation en eau et une seconde conduite (32) d'alimentation en eau qui est raccordée au second clapet (151) d'entrée d'air du bac de mélange (15) gaz-liquide.
 




Drawing






































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description