(11) **EP 2 107 148 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

07.10.2009 Bulletin 2009/41

(21) Application number: 09156729.7

(22) Date of filing: 30.03.2009

(51) Int Cl.:

D06F 25/00 (2006.01) D06F 73/02 (2006.01)

D06F 58/20 (2006.01) D06F 39/00 (2006.01)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

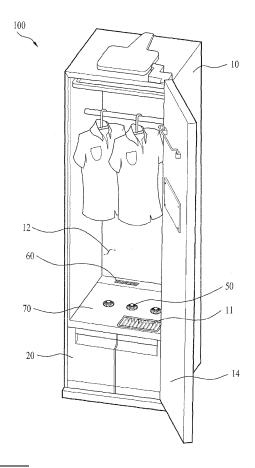
Designated Extension States:

AL BA RS

(30) Priority: 01.04.2008 KR 20080030388

(71) Applicant: LG Electronics Inc. Seoul 150-721 (KR)

(72) Inventors:


Yoo, Hea Kyung
 153-802 Seoul (KR)

- Kim, Dong Won
 153-802 Seoul (KR)
- Hong, Sog Kie
 153-802 Seoul (KR)
- Park, Dae Yun153-802 Seoul (KR)
- Kim, Jong Seok
 153-802 Seoul (KR)
- (74) Representative: Vossius & Partner Siebertstraße 4 81675 München (DE)

(54) Laundry treating machine

(57)A laundry treating machine (100) is disclosed. The present invention relates to a laundry treating machine capable of minimizing the number of parts required to discharge the generated condensate as possible and of simplifying the drainage path. A laundry treating machine includes a cabinet (10) in which an accomodating space (12) receiving laundry therein is formed, a moisture supply device (25) supplying moisture to the accomodating space, a water supply part connected with the moisture supply device to supply water, a water discharge part discharging water condensed from the moisture supplied by the moisture supply device or water remaining in the moisture supply device, a circulation duct (26) to draw-in air of the accomodating space and discharging the air into the accomodating space, and a heat exchanging part provided in the circulation duct, the heat exchanger (23) in which circulated air is dehumidified or heated.

[Figure 1]

EP 2 107 148 A1

[0001] This application claims the benefit of Korean Patent Application No. 10-2008-0030388, filed on April 1, 2008, which is hereby incorporated by reference as if fully set forth herein.

1

[0002] The present invention relates to a laundry treating machine. More particularly, the present invention relates to a laundry treating machine capable of supplying moisture to laundry and supplying hot air to the laundry having received the moisture in order to dry the laundry, such that unpleasant odor, wrinkles, or humidity remaining on the laundry may be removed.

[0003] Laundry treating machines are electric appliances that treat clothes, cloth items and the like (hereinafter laundry) received in an accomodating space provided in a cabinet. Here, the term 'treating laundry received in the accomodating space' means a series of processes of supplying moisture and air or hot air to the laundry received in the accomodating space to remove unpleasant odor, wrinkles and humidity remaining on the laundry and to give satisfaction to a user who will wear the treated laundry.

[0004] For example, if the user puts on the same clothes more than once, unpleasant odors, wrinkles, or humidity may happen to remain on the clothes. The unpleasant odor of the clothes must give an unpleasant feeling to the user, who will put on the clothes again. To remove the unpleasant odors, wrinkles, or humidity, the clothes might be washed after every use. However, the repetitive washing of the clothes could shorten the wearable life of the clothes and could increase the maintenance cost.

[0005] There might be wrinkles even on the clothes, which have been dried after being washed. These wrinkled clothes cannot be worn immediately, and the user is inconvenienced by having to iron the clothes to remove the wrinkles.

[0006] To solve the above problems there is needed a laundry treating machine capable of removing the unpleasant odor, wrinkles, or humidity.

[0007] In such a laundry treating machine, moisture may be supplied and air, including hot air, may be circulated among the clothes to dry the moisturized laundry, and to remove the unpleasant odor, wrinkles, and humid-

[0008] The unpleasant odor, wrinkles and humidity may be removed only by exposing the laundry to wind or hot air. At this time, the moisture may be supplied to the laundry to substantially maximize the removal effect.

[0009] If the moisture is supplied to the laundry received in the laundry treating machine, minute water elements are combined with odor elements remaining deep in fibrous tissues of the fabric and the water elements combined with the odor elements are separated and discharged from the laundry during the drying. By such a process, the unpleasant odor may be removed from the laundry.

[0010] Through the above processes, the unpleasant odor, the wrinkles, and humidity may be removed from the clothes and thus the user can put on the clothes, feeling pleasant and fresh.

[0011] Such a laundry treating machine, which is able to supply the moisture to laundry received in its accomodating space 12, should have a structure capable of receiving water. Also, the laundry treating machine must preferably drain condensed or contaminated water, which may be generated during the process of drying the laundry.

[0012] The amount of water supplied to the laundry, condensed from the supplied moisture, and contaminated during the treating period in the laundry treating machine may not be substantially much, compared with a washing machine.

[0013] The place where the supplied moisture condenses may be a place other than inside the accomodating space, where air is dehumidified. For example, in case that the supplied moisture is steam, the steam that is supposed to reach the received laundry might condense in various places on the steam supply path.

[0014] If condensed water remains in the accomodating space or if it otherwise collects in the cabinet, drying efficiency and user satisfaction may not be obtained.

[0015] Because of that, it is necessary to develop a method of efficiently supplying water required to generate the moisture and to discover a method of draining the water that condensed or remains in the cabinet during the moisture supply process and the drying process. Especially, it is required to provide a laundry treating machine capable of minimizing the number of parts required to discharge the generated condensate as possible and of simplifying the drainage path.

[0016] Accordingly, the present invention is directed to a laundry treating machine.

[0017] Additional advantages and features of the disclosure will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The advantages and features of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

[0018] To achieve these advantages and features, and in accordance with the purpose of the invention, as embodied and broadly described herein, a laundry treating machine includes a cabinet in which an accomodating space to receive laundry therein is formed; a moisture supply device configured to supply moisture to the accomodating space; a water supply part connected with the moisture supply device to supply water; a water discharge part discharging water condensed from the moisture supplied by the moisture supply device or water remaining in the moisture supply device; a circulation duct configured to draw-in air from the accomodating space and discharge the air back into the accomodating space;

20

and a heat exchanging part provided in the circulation duct, the heat exchanger in which circulated air is dehumidified or heated.

[0019] The moisture supply device may be a water spraying device or a steam generator.

[0020] At least one of the water supply part and the water discharge part may be a detachable water tank.

[0021] The circulation duct and the moisture supply device may be provided in a mechanism compartment provided in the cabinet and the mechanism compartment is partitioned from the accomodating space. An inlet and an outlet may be formed at a bottom of the accomodating space, which partitions off inner space of the cabinet into the accomodating space and the mechanism compartment, the inlet sucking air inside the accomodating space into the circulation duct and the outlet discharging the air inside the circulation duct into the accomodating space. [0022] The laundry treating machine may further include a water collecting tank collecting water condensed from the moisture supplied by the moisture supply device or water remaining in the moisture supply device and transferring the collected water to the water discharge part, if the water discharge is the detachable water tank. [0023] The circulation duct may be connected with the water collecting tank and water condensed inside the circulation duct is collected in the water collecting tank.

[0024] The moisture supply device may be a steam generator and a steam spraying unit is provided in the accomodating space to supply steam generated in the steam generator, and water condensed and remaining in the steam generator is collected in the water collecting tank.

[0025] The water condensed in the steam spraying unit may be collected in the water collecting tank, passing the circulation duct connected with the steam spraying unit.
[0026] A cutoff valve selectively cutting off flow of condensed water may be provided at a pipe connecting the steam spraying unit with the circulation duct.

[0027] The water condensed in the accomodating space may be collected in the water collecting tank, passing the circulation duct.

[0028] The laundry treating machine may further include a drain pump pumping the water collected in the water collecting tank to the water discharge part configured of the water tank.

[0029] The water collecting tank may include a water level sensor measuring a water level of the collected water.

[0030] If the moisture supply device is a steam generator, a valve selectively cutting off the flow of water may be provided in at least one of a pipe connecting the water supply part and the steam generator and a pipe connecting the steam generator and the water collecting tank.

[0031] The steam spraying unit may be provided at a bottom of the accomodating space in plural.

[0032] The heat exchanging part may be a heat exchanger composing a heat pump, together with a compressor, and the heat exchanger may include a dehu-

midifying part dehumidifying air passing the circulation duct in a refrigerant evaporation process and a heating part heating air passing the circulation duct in a refrigerant condensation process.

[0033] A fan may be provided at a front end or rear end of the circulation duct.

[0034] The fan may be provided in a ventilation duct guiding air having passed the circulation duct to the accommodating space, connected with a rear end of the circulation duct.

[0035] In another aspect, a laundry treating machine includes an accomodating space receiving laundry therein; a circulation duct circulating air inside the accommodating space and dehumidifying or heating the circulated air; a steam generator supplying steam to the accomodating space; a water supply tank supplying moisture to the steam generator, the water supply tank being detachable; a water collecting tank collecting water condensed from the steam supplied by the steam generator or water remaining in the steam generator; and a drain tank to which the collected water of the water collecting tank is drained, the drain tank being detachable.

[0036] A steam spraying unit supplying the steam generated in the steam generator to the accomodating space may be provided in the accomodating space and the water condensed from the steam supplied to the accomodating space, the steam spraying unit and the circulation duct may be collected in the water collecting tank.

[0037] The accomodating space and the steam spraying unit may be connected with the circulation duct and the circulation duct is connected with the water collecting tank such that the water condensed from the steam supplied to the accomodating space and the steam spraying unit may be collected in the water collecting tank, passing the circulation duct.

[0038] It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

[0039] The accompanying drawings, which are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the disclosure and together with the description serve to explain the principle of the disclosure. In the drawings:

[0040] FIG. 1 is a perspective view illustrating a laundry treating machine according to an exemplary embodiment of the invention;

[0041] FIG. 2 is a perspective view of the components housed in a mechanism compartment provided in the laundry treating machine of FIG. 1; and

[0042] FIG. 3 is a schematic illustration of physical paths that permit a flow of steam and water to various parts of the laundry treating machine according to an embodiment of the invention.

[0043] Reference will now be made in detail to the embodiments of the present invention, examples of which

are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. **[0044]** A laundry treating machine according to the present invention may include a moisture supply device supplying moisture to the accomodating space 12 receiving the laundry. The moisture supply device supplying moisture to the laundry received in the accomodating space 12 may be a moisture supply device supplying moisture, for example, sprayed water or steam generated by heating water. That is, the moisture supplying device may be any types only capable of supplying moisture to the laundry received in the accomodating space 12 uniformly.

[0045] From now on, a steam generator will be exemplified as the moisture supplying device and the steam generator generates steam that will be supplied to the accomodating space. Nothing is meant to restrict the scope of the invention to use with steam generators.

[0046] A laundry treating machine drying laundry after supplying steam to treat the laundry and a steam dryer tumbling laundry by using a drum provided therein will be explained by focusing on a case that uses a detachable drain tank.

[0047] A case including a water drainage part for a user to drain condensed water to a drain directly may be included a scope of the present invention. The amount of water used to supply moisture to the accomodating space 12 is not so much and an embodiment presenting a detachable water tank type water supply source like the water drain tank will be explained. In addition, a case using water supply facilities as a water supply source will be included the scope of the present invention.

[0048] In reference to corresponding drawings, an embodiment of a laundry treating machine including a steam generator is used as a moisture supply device and including a detachable water tank as a water supply part and a water drain tank as a water drain part will be described in detail.

[0049] FIG. 1 is a perspective view of a laundry treating machine 100 according to an embodiment of the invention, and FIG. 2 is a perspective view of the components housed in a mechanism compartment 20 of the laundry treating machine 100 of FIG. 1.

[0050] As shown in FIG. 1, the laundry treating machine 100 according to an embodiment of the invention includes an accomodating space 12 in which clothes are received, and a mechanism compartment 20 that is disposed at a lower portion of the accomodating space 12. The mechanism compartment 20 is provided with various components, which provide moisture, circulate air, heat air, and dehumidify air in the accomodating space 12. These processes are carried out to accomplish the goal of de-wrinkling clothes, and removing odors or moisture from the clothes placed in the accomodating space 12. [0051] The accomodating space 12 and mechanism compartment 20 may be provided in one cabinet 10, and the accomodating space 12 is accessed by a door 14,

which may selectively be opened or closed.

[0052] At least some of the components housed in the mechanism compartment 20 may draw-in air from the accomodating space 12 and re-supply it back to the accomodating space 12. In a bottom surface 70 of the accomodating space 12, an inlet 11 through which air in the accomodating space 12 is introduced and an outlet 60 through which air to be re-supplied is discharged, are provided.

[0053] Inlet 11 and outlet 60 are provided in the bottom surface 70 of the accomodating space 12. The mechanism compartment 20 is disposed below the accomodating space 12.

[0054] Also, a steam spraying unit 50, by which steam generated from the steam generator 25 is provided in the mechanism compartment 20 and adapted to spray steam into the accomodating space 12.

[0055] A net-shaped structure may be installed at the inlet 11 and outlet 60 in order to prevent foreign materials above a certain size from introducing from the outside.

[0056] Fig. 2 is a perspective view of the components housed in a mechanism compartment 20 provided in the laundry treating machine 100 of FIG. 1 according to an embodiment of the invention.

[0057] The mechanism compartment 20 of the laundry treating machine includes a steam generator 25 as a moisture supply device. The steam generator 25 generates steam to be supplied to the accomodating space 12 in which clothes are received. A hot air supply device 22, which draws-in humid air from the accomodating space 12 and dehumidifies or heats it in order to dry or heat the received clothes.

[0058] The hot air supply device 22 may use a heat pump and or an electric heater. Here, even in case of using the heat pump, an electric heater could be used additionally to heat the circulated air sufficiently. The heat pump used in the laundry treating machine according to the present invention includes a compressor and a heat exchanger. The compressor compresses refrigerant. The heat exchanger dehumidifies circulated air through refrigerant evaporating and condensing processes and then heats the dehumidified air.

[0059] Air circulated along a circulation duct 26 by the hot air supply device may be dehumidified or heated by heat-exchanging with refrigerant at a heat exchanger 23 provided therein.

[0060] Of course, the circulation duct 26 has a blowing function that circulates unheated air by simply blowing the air. This blowing function is performed by a ventilation duct 28 having a fan so that air having passed the circulation duct 26 is discharged through the outlet 60.

[0061] The hot air supply device, including the circulation duct 26 is classified into a heat pump using type and an electric heater using type, based on how to heat dehumidified air.

[0062] In either case, a heat pump or an electric heater is used as a means for heating air to be re-supplied to the accomodating space 12. A dehumidification process

25

30

35

is performed by condensing humid air introduced through the inlet 11 formed at the bottom of the accomodating space 12.

[0063] As shown in Fig. 2, in case the heat pump including a compressor 22 and a heat exchanger is provided to heat the dehumidified air, a heat exchanger 23 may be provided which includes a condensing part 23b that dehumidifies humid air by evaporating refrigerant compressed from a compressor 22 and a heating part 23 a that heats the dehumidified air by condensing the refrigerant are provided in the circulation duct 26.

[0064] Even when the heat pump is used to dehumidify and heat humid air, a separate electric heater (not shown) may also be further provided to sufficiently heat the dehumidified air as mentioned above.

[0065] Also, the laundry treating apparatus having a drying function may be classified into a circulating-type laundry treating machine and an exhausting-type laundry treating machine, based on how each machine dries clothes.

[0066] That is, the laundry treating machine may be classified into an exhausting-type and a circulating-type according to whether humid air is discharged to the outside after being drawn-in to the heat exchanger or whether the air is re-supplied to the accomodating space 12. However, the laundry treating device 100 according to the present invention is the circulating-type that circulates and dehumidifies air in the accomodating space 12. The circulating-type laundry treating machine will be explained below.

[0067] Therefore, the air introduced into the circulation duct 26 is dehumidified by the condensing part 23b and it is heated by the heating part 23a, and it is re-supplied to the accomodating space 12 via the ventilation duct 28. [0068] An outlet hole 24 which is fluidly communicated with the outlet 60 of the accomodating space 12 is formed at the ventilation duct 28, and an inlet hole 21 which is fluidly communicated with the inlet 11 of the accomodating space 12 is formed at the other end of the circulation duct 26.

[0069] The heat exchanger 23 according to the present invention dehumidifies humid air circulated through the accomodating space 12 by using refrigerant supplied from the compressor 22 during an evaporation process of the refrigerant, and reheats the air dehumidified through a condensation process of the refrigerant.

[0070] The compression of the refrigerant is required between the evaporation and condensation processes. The compression of the refrigerant is carried out at the compressor 22 provided in the mechanism compartment 20

[0071] In the mechanism compartment 20 shown in FIG. 2, a drain tank 71 which is detachable from the mechanism compartment 20 is provided as a water drain part. Water condensed at the heat exchanger 23 is temporarily collected in a water collecting tank 29 disposed below the heat exchanger 23, drainage water collected in the water collecting tank 29 is flowed to the drain tank 71 and

is stored therein.

[0072] The water collecting tank 29 also has a function of temporarily storing remaining water or condensate water from the accomodating space 12 in order to discharge remained water in the steam generator 25 or condensate water of the accomodating space to the drain tank 71, as well as the water collecting tank 29 collects condensate water of the heat exchanger in the circulation duct 26.

[0073] The drain tank 71 can be an outside sewerage pipe instead of being a detachable tank. However, the drain tank 71 configured as a detachable water tank will be explained because, otherwise, the laundry treating machine 100 would need to be installed at a location where a sewer system was available.

[0074] A user of the laundry treating machine 100 selectively separates the drain tank 71 from the mechanism compartment 20 by considering the capacity of the drain tank 71, and therefore he can discharge drainage water stored therein. The movement of drainage water from the water collecting tank 29 to the drain tank 71 may be performed by a drain pump 27 and the like. The drain pump 27 can be embedded in the water collecting tank 29.

[0075] Also, the water collecting tank 29 may include a water-level sensor (not shown) which is able to measure the level of water by sensing whether electric current is flowed through electrodes in the water collecting tank 29. The reason why this water-level sensor is provided is to determine a point of time that drains water in the water collecting tank 29 off. That is, since condensate water condensed at the heat exchanger 23 and so on is not drained into the drain tank 71 but is stored in the water collecting tank 29, water in the water collecting tank 29 is required to be drained into the drain tank 71 when the water collecting tank is full of water, and therefore the water-level sensor may be provided to determine the level of water in the water collecting tank.

[0076] The reason why the separate water collecting tank is provided will be explained. If the drain tank 71 can be disposed below the heat exchanger 23, the water collecting tank 29 can be abbreviated, however the drain tank may be provided at an upper portion of the mechanism compartment by using the pump in order to allow the drain tank 71 to be detachably coupled to the mechanism compartment 20.

[0077] That is, it is necessary to make up for height difference by means of the drain pump 27, since the drain tank 71 is preferably disposed above the mechanism compartment 20 so that the user can easily detach and attach the drain tank 71 from and to the laundry treating machine 100.

[0078] In one embodiment, the drain tank 71 and a water supply tank 90 may be detachably installed. It is preferable that they are configured to be drawn from or pivoted around the mechanism compartment in a state where they are installed in a drawer (not shown). In one embodiment, the tanks are in a drawer that is movably

or rotatably provided at the mechanism compartment 20. **[0079]** Rather than to allow the drain tank 71 to be detachable smoothly, the other reason why the water collecting tank is provided will be explained. As mentioned above, the water collecting tank 29 may include the water level sensor and the water collected in the water collecting tank may be pumped by the pump and the like. However, the portion where the steam supplied by the steam generator 25 is condensed is not limited to the heat exchanger 23 of the circulation duct 26 and it may be an inside of the accomodating space 12 or an inside of the steam spraying unit 50.

[0080] To drain the water condensed in the accomodating space 12 and the steam spraying unit 50 into the drain tank 29, the condensed water should be collected at each predetermined portion of them and a drain pump capable of pumping the collected water should be provided. If a pipe connecting the two elements and the drain pump should be provided, the inner structure of the mechanism compartment 20 would be complex and the production cost would be increased accordingly. Because of that, the water condensed at both the accomodating space 12 and the steam spraying unit 50 may collected at the water collecting tank 29 and it may be conveniently drained by using a single drain pump.

[0081] This is possible because, in the exemplary embodiment, the water collecting tank 29 is provided in the lower portion of the mechanism compartment 20, to make natural drainage possible without the auxiliary drain pump 27. At this time, the length of the connection pipe should be increased to connect the water collecting tank 29 with both of the accomodating space 12 and the steam spraying unit 50. Because of that, the contaminated or condensed water may be collected in the water collecting tank 29 via the air circulation duct 26 positioned nearest to the insiders of the accommodating space 12 and the steam spraying unit 50. The air circulation duct 26 includes the heat exchanger 23 and the condensed water may be collected in the dehumidifying part 23b of the heat exchanger 23. As a result, if the water collecting tank 29 is connected with a lower portion of the air circulation duct 26 and both of the accomodating space 12 and the steam spraying unit 50 are connected with the circulation duct 29, the water condensed from the supplied steam will be collected in the water collecting tank 29 directly or via the air circulation duct 26. Accordingly, the length of the connection pipe may be minimized and the inner structure of the mechanism compartment 20 may be simplified, with reduced production cost.

[0082] Since the contaminated drainage water is transferred from the water collecting tank 29 to the drain tank 71 by using the drain pump and the like, the size of the water collecting tank 29 can be smaller than the drain tank 71.

[0083] The steam to be supplied to the clothes received in the accomodating space 12 is generated as the steam generator 25 provided in the mechanism compartment 20 heats water supplied from the water supply tank

90 provided in the mechanism compartment 20, and is supplied to the accomodating space 12.

[0084] The water supply tank 90 can be configured as a water tank which is detachable from the mechanism compartment, the same as the drain tank 71 in Fig. 2.

[0085] Because the amount of water necessary to produce steam is not voluminous and installation is required where no waterworks is available, a detachable water supply tank 90 is preferably used. Of course, in case the waterworks is located adjacent to the laundry treating machine 100, the water supply tank 90 may also be directly connected to the waterworks.

[0086] The water supply tank 90 supplies water to the steam generator 25 and the steam generator 25 sprays steam into the received clothes via the steam spraying unit 50.

[0087] In the embodiment shown in FIG. 2, the steam spraying unit 50 through which steam generated from the steam generator 25 is sprayed is described as a single seam spraying unit 50. Although a plurality of steam injection units 50 are installed at the bottom surface 70 of the accomodating space 12 in accordance with the embodiment of the invention as illustrated in FIG. 1. However, one steam injection unit 50 will be explained for the sake of convenience, as shown in FIG. 2.

[0088] The drawing-in or the discharge of air in the accomodating space through the circulation duct 26 is carried out by a fan in the ventilation duct 28 located adjacent to the circulation duct 26.

[0089] The air in the accomodating space, which is drawn-in through the inlet hole 21 fluidly communicated with the inlet 11 in the accomodating space 12, is transferred to the outlet hole 24 via the heat exchanger 23 and it is discharged to the accomodating space 12 through the outlet hole of the accomodating space 12.

[0090] The steam generator 25 according to the present embodiment generates steam as a specific amount of water accommodated in a water tank of a specific size is heated by an embedded heater. However, according to the present invention, any device capable of producing steam can be used as the steam generator. For example, it is also possible to heat water by directly installing a heater to the periphery of a water supply hose through which water passes, i.e. without storing water in a specific space.

[0091] If the remaining water is discharged to the drain tank 71, it will be drained via the water collecting tank 29 as mentioned above.

[0092] The steam generator 25 sprays steam into the accomodating space, in which clothes are received, via the steam spraying unit 50.

[0093] The steam spraying unit 50 is connected with the steam generator 25, and it can be configured that condensate water thereof is discharged to the drain tank

[0094] In order to directly drain the condensate water from steam into the drain tank 71, the condensate water from steam may be directly connected to the water col-

55

40

lecting tank 29 or be connected with the circulation duct 26 connected with the water collecting tank 29.

[0095] In the latter case, it is possible to drain the condensate water from steam together with condensate water condensed at the condensing part 23b into the drain tank 71 via the water collecting tank 29. A method of simplifying the structure is used by considering the length of pipes that connect each of parts.

[0096] Even though the condensate water condensed in the steam spraying unit 50 can be discharged to the drain tank 71 right after the condensate water is generated, it is preferable to allow the condensate water to be evaporated by leaving it in the steam spraying unit 50 for a predetermined time rather than to discharge it right away. This preference is because the condensate water from steam is at a very high temperature state. The reason why the water condensed from steam is left for the predetermined time period is so as to avoid changing the temperature of the supplied steam or to make the supplied steam to be re-gasified (i.e., evaporated).

[0097] Also, if the condensate water stays, the supplied steam can be easily injected because the space in the steam injection unit 50 is diminished. Therefore, the condensate water from steam, which is collected in the steam spraying unit 50, can remain in the steam spraying unit 50 for a predetermined time.

[0098] In order to let the condensate water in the steam spraying unit 50 remain in that unit, a cutoff valve 82 may be provided between the condensate water outlet and the drain tank 71.

[0099] This is because the produced condensate water is prevented from being discharged through the condensate water outlet 53 by the cutoff valve 82, right after the condensate water is produced. Also, the cutoff valve 82 is preferably a magnetic valve which is controlled by the controller 80 (FIG. 2) of the laundry treating machine 100.

[0100] Further, the condensate water condensed at the steam spraying unit 50 is not directly discharged to the drain tank 71 but is discharged thereto via the water collecting tank 29. In case the condensate water is discharged to the pump 27 after being temporarily stored in the water collecting tank 29, the condensate water can be discharged together with condensate water from the heat exchanger 23, and therefore it is convenient.

[0101] Also, the condensate water collected in the steam injection unit 50 can be directly drained to the water collecting tank 29, however it can be also drained to the water collecting tank via the air circulation duct 26. The latter is applicable when the length of pipes defining a discharge path of the condensate water is shortened or the structure is simplified by stopping over the circulation duct 26.

[0102] The movement of condensate water from the water collecting tank 29 to the drain tank 71 is carried out by the drain pump 27 connecting both sides. The difference in height is compensated by the drain pump 27, since the drain tank 71 is located higher than the

water collecting tank 29.

[0103] The drain tank 71 according to the present embodiment is provided as a detachable water tank, however water can be directly discharged from the water collecting tank in a state where sewerage system is available

[0104] Therefore, it is preferable that a pipe, which is provided to discharge condensate water from the water collecting tank 29, is selectively connected to the detachable drain tank 71 or sewerage system (not shown).

[0105] FIG. 3 is a schematic illustration of physical paths that permit a flow of steam and water to various parts of the laundry treating machine 100 according to an embodiment of the invention.

[0106] When the detachable water supply tank is used, the time period for which the water inside the water supply tank can be kept may be substantially long, but after the long period of time expires, bacteria would breed. Water containing bacteria may not be supplied to the laundry and the water inside the water supply tank 90 should be drained. The water of the water supply tank 90 may be drained by the user directly after being separated from the laundry treatment devise. Alternatively, the water inside the water supply tank 90 may be drained to the drain tank 90 via a drain passage of the laundry treating machine 100.

[0107] As shown in FIG. 3, the water supply tank 90 is coupled to the steam generator 25 to supply water thereto. Also, the steam generator 25 is connected with the water collecting tank 29 to drain its remaining water. As a result, the water of the water supply tank 90 may be drained to the water collecting tank 29, using such the path.

[0108] According to the embodiment shown in FIGS. 2 and 3, the steam generator 25 is coupled to the water collecting tank 29. Here, the steam generator 25 also may be connected with water supply tank 90, bypassing the circulation duct 26. In other words, as shown in FIG. 3, the process of draining water inside the detachable water supply tank 90 into the detachable drain tank 71 is routed through the steam generator 25. Thus, as the steam generator 25 is coupled to both the water collecting tank 29 and the drain tank 71, water in the water supply tank 90 can be discharged through the draining path provided for draining water from the water collection and drain tanks 29 and 71, respectively.

[0109] The laundry treating machine according to the exemplary embodiment of FIGs. 2 and 3 is thus configured such that any water remaining in the steam generator 25 can be drained into the water collecting tank 29. Of course, it is also possible to drain it into the water collecting tank 29 via the condensate water accommodating space of the air circulation duct 26, as described above.

[0110] As illustrated in FIGs. 2 and 3, a first valve 95 is provided between the steam generator 25 and the water supply tank 90. As the first valve 95 is opened, water in the water supply tank 90 can be supplied into the steam

generator. Therefore, in the embodiment of FIGs. 2 and 3, a water supply tank draining step of a method of controlling the laundry treating machine 100 would require the opening of the first valve 95.

[0111] The first valve provided between the steam generator 25 and the water supply tank 90 can be applicable when the natural supply of water from the water supply tank 90 to the steam generator is available, however a separate water supply pump (not shown) can be provided when the height of the steam generator 25 is equal to or higher than that of the water supply tank 90.

[0112] If such a water supply pump is provided, the physical location of the steam generator 25 and the water supply tank 90 in the mechanism compartment 20, or in any portion of the laundry treating machine 100, can be unrestrictedly determined.

[0113] Also, a drain valve 85 (FIG. 3) may be provided between the steam generator 25 and the water collecting tank 29. The drainage from the steam generator 25 to the water collecting tank 29 may be performed by opening the drain valve 85. Therefore, when a drain signal is received by the controller 80, the controller 80 can execute commands stored in a memory 82, which cause the laundry treating machine 100 to drain water from the water supply tank 90 into the water collecting tank 29 by opening the water supply valve 95 and drain valve 85.

[0114] Referring to Fig. 2, the height of each component of the laundry treating machine 100 may be selected such that the water collecting tank 29 is provided at a bottom of the mechanism compartment 20 and thus the drainage from the water supply tank 90 into the water collecting tank 29 can be performed by opening the valves without the need of a separate pump. However, if a difference in hydraulic pressure, which would enable water to be drained from the water supply tank 90 to the water collecting tank 29 via the steam generator 25, does not exist in sequential processes of draining, a pump and the like would be needed to perform a draining operation. [0115] In one embodiment, a method of draining water collected in the water collecting tank 29 into the drain

[0116] The drain pump 27 may compensate for a height difference between the water collecting tank 29 and the drain tank 71. Therefore, depending on the position of the components in the laundry treating machine 100, if natural drainage is available, the drainage may be controlled simply by operating certain control valve(s) 95, 85. However, if natural drainage is not available, drain pump 27 would be needed.

tank 71 may be performed by drain pump 27, which may

be provided between the water collecting tank 29 and

the drain tank 71.

[0117] As described above, the draining processes from the water supply tank 90, the steam generator 25 and the water collecting tank 29 to the drain tank 71 have been discussed. These draining processes are performed by opening the corresponding control valves and by operating the drain pump.

[0118] According to the laundry treating machine 100

of the present invention, moisture is supplied to the received laundry and hot air is supplied to the laundry having received the moisture, such that the laundry is dried. Through such the method, unpleasant odor, wrinkles, or humidity remaining the laundry may be removed to provide the user with the satisfaction of pleasant feeling.

[0119] In such the method, the laundry treating machine 100 according to the present invention can appropriately supply water required to generate the moisture, which will be supplied to the received laundry, and discharge the water condensed or remaining after the processes of the moisture supply and the system may be drained efficiently.

[0120] In addition, the laundry treating machine 100 according to the present invention can minimize the number of parts required to discharge the condensate water generated therein and can simplify the drainage path.

[0121] It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims

35

40

45

50

1. A laundry treating machine comprising:

a cabinet in which an accommodating space configured to receive laundry therein is formed; a moisture supply device configured to supply moisture to the accommodating space;

a water supply part connected with the moisture supply device and configured to supply water to the moisture supply device;

a water discharge part configured to discharge water condensed from the moisture supplied by the moisture supply device or water remaining in the moisture supply device subsequent to a moisture supply operation;

a circulation duct configured to draw-in air from the accomodating space and discharge the air back into the accomodating space; and

a heat exchanging part provided in the circulation duct, wherein air circulating through the heat exchanging part is dehumidified or heated.

- 2. The laundry treating machine according to claim 1, wherein the moisture supply device is a water spraying device or a steam generator, and/or wherein at least one of the water supply part and the water discharge part is a detachable water tank.
- **3.** The laundry treating machine according to claim 2, wherein the circulation duct and the moisture supply

20

30

40

45

50

55

device are provided in a mechanism compartment provided in the cabinet, the mechanism compartment is partitioned from the accomodating space, and an inlet and an outlet are formed at a bottom of the accomodating space which partitions off inner space of the cabinet into the accomodating space and the mechanism compartment, the inlet drawing in air from the accommodating space into the circulation duct and out of the outlet where the air is discharged into the air inside the circulation duct into the accommodating space.

15

4. The laundry treating machine according to claim 2 or 3, further comprising:

> a water collecting tank collecting water condensed from the moisture supplied by the moisture supply device or water remaining in the moisture supply device subsequent to a moisture supply operation; and

> a detachable water discharge tank configured to transfer collected water to the water discharge part, and wherein preferably the circulation duct is fluidly coupled to the water collecting tank and water condensed inside the circulation duct is collected in the water collecting tank.

- 5. The laundry treating machine according to claim 4, wherein the moisture supply device is a steam generator and a steam spraying unit is provided in the accomodating space to supply steam generated by the steam generator to the accomodating space, and water condensed and remaining in the steam generator is collected in the water collecting tank and wherein preferably the water condensed in the steam spraying unit is collected in the water collecting tank, through the air circulation duct coupled to the steam spraying unit, and wherein preferably a cutoff valve selectively cuts off flow of condensed water and the cutoff valve is provided at a pipe connecting the steam spraying unit with the air circulation duct.
- 6. The laundry treating machine according to claim 4 or 5, wherein the water condensed in the accomodating space is collected in the water collecting tank, passing the circulation duct, and further preferably comprising:

a drain pump pumping the water collected in the water collecting tank to the water discharge part.

- 7. The laundry treating machine according to any of claims 4 to 6, wherein the water collecting tank comprises a water level sensor adapted to measure a water level of the collected water.
- 8. The laundry treating machine according to any of claims 5 to 7, wherein if the moisture supply device

is a steam generator, a valve selectively cutting off the flow of water is provided in at least one of a pipe connecting the water supply part and the steam generator and a pipe connecting the steam generator and the water collecting tank.

- 9. The laundry treating machine according to any of claims 5 to 8, wherein the steam spraying unit is provided at a bottom of the accomodating space in plu-
- 10. The laundry treating machine according to any of claims 1 to 9, wherein the heat exchanging part is a heat exchanger comprised of:

a heat pump, a compressor, and

a heat exchanger, comprised of:

a dehumidifying part adapted to dehumidify air passing through the circulation duct in a refrigerant evaporation process; and a heating part adapted to heat air passing through the circulation duct in a refrigerant condensation process.

- 11. The laundry treating machine according to claim 10, wherein a fan is provided at a front end or rear end of the circulation duct and wherein preferably the fan is provided in a ventilation duct guiding air having passed the circulation duct to the accomodating space, connected with a rear end of the circulation duct.
- **12.** A laundry treating machine comprising:

an accomodating space receiving laundry there-

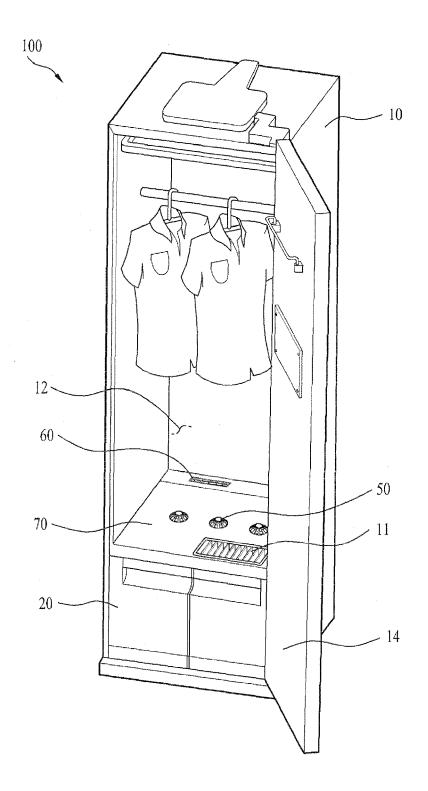
a circulation duct circulating air inside the accomodating space and dehumidifying or heating the circulated air;

a steam generator supplying steam to the accomodating space;

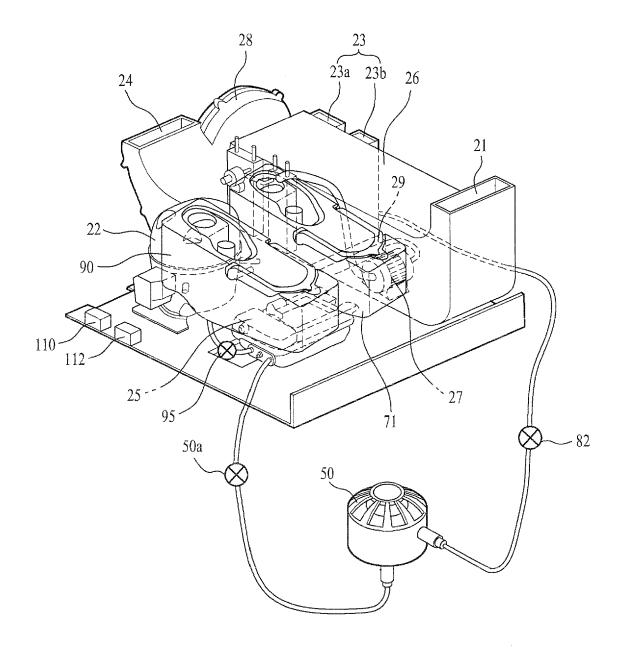
a water supply tank supplying moisture to the steam generator, the water supply tank being detachable;

a water collecting tank collecting water condensed from the steam supplied by the steam generator or water remaining in the steam generator; and

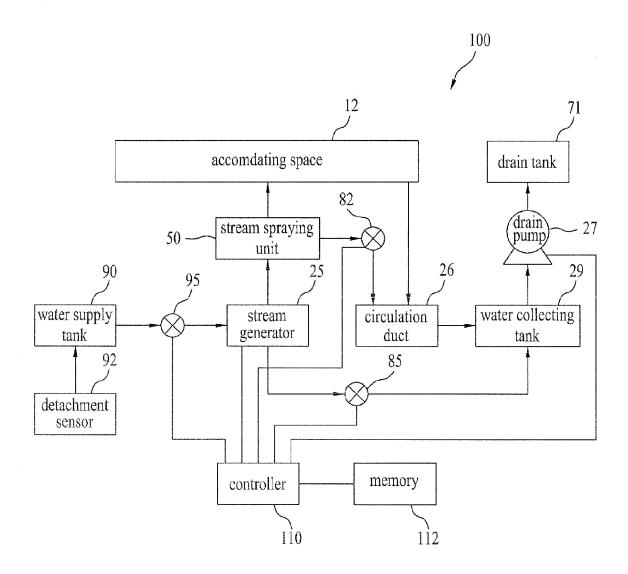
a drain tank to which the collected water of the water collecting tank is drained, the drain tank being detachable.


13. The laundry treating machine according to claim 12, wherein a steam spraying unit supplying the steam generated in the steam generator to the accomodating space is provided in the accomodating space and

the water condensed from the steam supplied to the accomodating space, the steam spraying unit and the circulation duct being adapted to collect water for the water collecting tank.


14. The laundry treating machine according to claim 13, wherein the accomodating space and the steam spraying unit are operationally coupled via the circulation duct and the circulation duct is operationally coupled to the water collecting tank such that water condensed from the steam supplied to the accomodating space and the steam spraying unit is collected in the water collecting tank, after passing through the circulation duct.

15. A method of treating laundry comprising method steps corresponding to any of the features of claims 1 to 14.


[Figure 1]

[Figure 2]

[Figure 3]

EUROPEAN SEARCH REPORT

Application Number EP 09 15 6729

Category	Citation of document with in of relevant pass	Relevant to claim	CLASSIFICATION OF TH APPLICATION (IPC)			
X Y	•	ISUNG ELECTRONICS CO LTD	1-8, 11-15 9,10	INV. D06F25/00 D06F58/20		
Χ	DE 102 60 151 A1 (E HAUSGERAETE [DE]) 1	1-4, 12-15	D06F73/02 D06F39/00			
Α	* the whole documer		5-11			
Х		G ELECTRONICS INC [KR]; SON CHANG WOO [KR]; 2007 (2007-12-21)	1-3,7, 12-15			
Α	* the whole documer		4-6,8-11			
Х	WO 2008/010670 A (L BAE SANG HUN [KR]; CHOI) 24 January 20	G ELECTRONICS INC [KR]; MOON JUNG WOOK [KR];	1-3, 12-15			
Α	* the whole documer		4-11			
Х	WO 2008/030053 A (L KIM PYOUNG HWAN [KR JEONG) 13 March 200	G ELECTRONICS INC [KR]; R]; SHIN SU HEE [KR];	1-3, 12-15	TECHNICAL FIELDS		
Α	* the whole documer	nt *	4-11	SEARCHED (IPC)		
Х	WO 03/074778 A (CEV 12 September 2003 (* the whole documer	(2003-09-12)	1-15	5501		
Ρ,Χ	EP 1 936 023 A (LG 25 June 2008 (2008- * the whole documer		1-3, 12-15			
Υ	WO 2006/091057 A (L JEONG SEONG HAI [KR [KR]; A) 31 August	R]; CHOI SOUNG BONG	9			
A * the whole docum			1-8, 10-15			
		-/				
	T					
	The present search report has	·		Evernings		
	Place of search	Date of completion of the search	C~ :	Examiner		
	Munich	15 July 2009	Spi	tzer, Bettina		
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background		E : earlier patent dool after the filling date her D : dooument cited in L : dooument cited fol	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons			

EUROPEAN SEARCH REPORT

Application Number EP 09 15 6729

	DOCUMENTS CONSIDER	ED TO BE RELEVANT				
Category	Citation of document with indic of relevant passage		Relevant to claim			
Υ	DE 44 32 489 A1 (SCHL 14 March 1996 (1996-0	ATTL ALICE [DE])	10			
Α	* the whole document	*	1-9, 11-15			
A	EP 1 441 059 A (ELECT [BE]) 28 July 2004 (2 * the whole document	004-07-28)	1-15			
Α	WO 2006/100335 A (IBA AIZPURU BORDA AITOR [ETXEZARRETA) 28 September 2006 (20 * the whole document	ES]; OTXOA-AIZPURUA 06-09-28)	1-15			
				TECHNICAL FIELDS SEARCHED (IPC)		
	The present search report has bee	•				
Place of search Munich		Date of completion of the search 15 July 2009	Sp	Spitzer, Bettina		
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category		E : earlier patent o after the filing o D : document cited L : document cited	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons			
A : technological background O : non-written disclosure P : intermediate document			& : member of the same patent family, corresponding document			

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 09 15 6729

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15-07-2009

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 1734170	A	20-12-2006	KR US	20060129849 2006277690		18-12-20 14-12-20
DE 10260151	A1	01-07-2004	WO EP US	2004059070 1579052 2007006484	A1	15-07-20 28-09-20 11-01-20
WO 2007145451	Α	21-12-2007	EP KR	2027327 20070118527		25-02-20 17-12-20
WO 2008010670	Α	24-01-2008	EP	2044255	A2	08-04-20
WO 2008030053	Α	13-03-2008	AU CA EP KR	2007293788 2661322 2061920 20080022962	A1 A2	13-03-20 13-03-20 27-05-20 12-03-20
WO 03074778	А	12-09-2003	AU EP US	2002234830 1501975 2005115120	A1	16-09-20 02-02-20 02-06-20
EP 1936023	Α	25-06-2008	AU US	2007240150 2008141552		03-07-20 19-06-20
WO 2006091057	Α	31-08-2006	US	2008256989	A1	23-10-20
DE 4432489	A1	14-03-1996	NON	E		
EP 1441059	Α	28-07-2004	NON	E		
WO 2006100335	Α	28-09-2006	ES	2281239	A1	16-09-20

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 2 107 148 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• KR 1020080030388 [0001]