

EP 2 112 288 A2 (11)

E04B 1/76 (2006.01)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

(51) Int Cl.: E04B 1/24 (2006.01) 28.10.2009 Patentblatt 2009/44

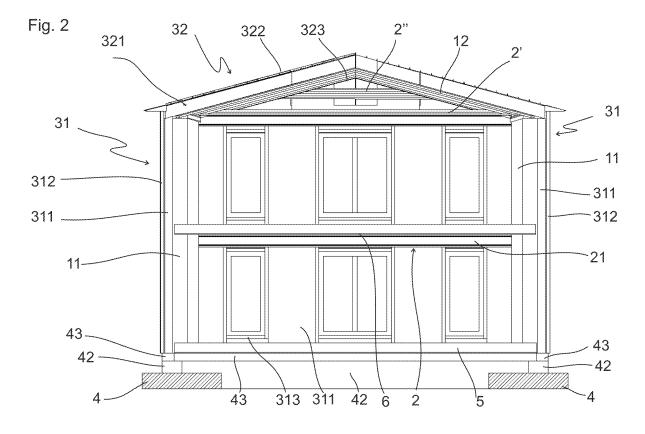
(21) Anmeldenummer: 09401005.5

(22) Anmeldetag: 20.04.2009

(72) Erfinder: Heffner, Rolf-Dieter 21635 Jork (DE)

(84) Benannte Vertragsstaaten: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30) Priorität: 21.04.2008 DE 202008000041 U


(71) Anmelder: Heffner, Rolf-Dieter 21635 Jork (DE)

(74) Vertreter: Hansen, Jochen Patentanwaltskanzlei Hansen Eisenbahnstrasse 5 21680 Stade (DE)

(54)Gebäude

Die Erfindung betrifft ein Gebäude, insbesondere für Wohn- und/oder Bürozwecke, mit einem Tragwerk zur Aufnahme der Gebäudelasten und Zugkräfte, bestehend aus mindestens drei zweischenkligen Tragelementen (1), dessen von den beiden Schenkeln eingeschlossener Winkel (α) > 90° ist, wobei jedes Tragelement (1) mit dem ersten Schenkel (11) eine Vertikalstütze des Tragwerks und mit dem zweiten Schenkel (12) einen

Dachträger des Tragwerks bilden und die freien Enden des zweiten Schenkels (16) jedes Tragelementes (1) an einem höchsten Raumpunkt (16) zusammentreffen und dort miteinander verbunden sind, und mit einer wärmegedämmten, einen Innenraum (30) aufspannenden Gebäudehülle (3) bestehend aus Wandelementen (31) und Dachelementen (32), wobei das Tragwerk im Innenraum (30) entkoppelt von der Gebäudehülle (30) angeordnet

20

40

Beschreibung

[0001] Die Erfindung betrifft ein Gebäude, insbesondere für Wohn- und/oder Bürozwecke, mit einem Tragwerk zur Aufnahme der Gebäudelasten und Zugkräfte, bestehend aus mindestens drei zweischenkligen Tragelementen, dessen von den beiden Schenkeln eingeschlossener Winkel > 90° ist, wobei jedes Tragelement mit dem ersten Schenkel eine Vertikalstütze des Tragwerks und mit dem zweiten Schenkel einen Dachträger des Tragwerks bilden und die freien Enden des zweiten Schenkels jedes Tragelementes an einem höchsten Raumpunkt zusammentreffen und dort miteinander verbunden sind, und mit einer wärmegedämmten, einen Innenraum aufspannenden Gebäudehülle bestehend aus Wandelementen und Dachelementen.

1

[0002] Aus der DE 102 46 705 A1 ist ein wie im Oberbegriff angegebenes Tragwerk für Gebäude bekannt. Neben dem Tragwerk sind in dieser Schrift auch Dachund Wandelemente beschrieben, die aus dem Tragwerk ein Einfamilienhaus mit einer geschlossenen Gebäudehülle entstehen lassen.

[0003] Bei dem bisherigen Bestreben das die Gebäudelasten und Zugkräfte aufnehmende Tragwerk vollständig in der Gebäudehülle einzulassen, quasi die Gebäudehülle im Bereich der Tragelemente "auszusparen" führt auch bei hochdämmenden Werkstoffen für die Gebäudehülle bzw. für die Teile der Gebäudehülle im Bereich der Tragelemente gleichwohl zu unerwünschten Wärmebrücken oder zu einem ganz erheblichen Mehraufwand, bei gleichwohl nur befriedigender Wärmedämmlösung.

[0004] Ferner ist aus dem DE 297 17 165 U1 ein Fertighausbaukasten mit Skelettkonstruktion bekannt, bei dem die tragende Skelettkonstruktion und fassadengroße davor montierte Außenwandelemente in zwei voneinander unabhängigen, einander nicht durchdringenden Schichten der Gebäudehülle angeordnet sind, welche sich in einer mit Ausnahme der Fenster- und Türöffnungen durchgängigen, allseitig gebäudeumhüllenden Schicht aus aussteifenden Platten berühren. Die Gesamtkonstruktion benötigt somit neben dem Skelett aussteifende Platten, um insgesamt die Gebäudelasten aufnehmen zu können. Die aussteifenden Platten sind unmittelbar auf der Skelettkonstruktion aufgebracht und mit dieser fest verbunden.

[0005] Die DE 42 11 435 A1 sowie die DE 93 06 726 U1 betreffen ein Integrationsbauverfahren und einen Baustein für seine Durchführung bzw. ein aus Raumkörpern zusammengesetztes Gebäude. In beiden Schriften handelt es sich um eine Art Fertigbaukonstruktion, bei der räumliche Bausteine in einzelner Geschosshöhe zusammengesetzt werden und anschließend von einer Gebäudehülle umgeben werden.

[0006] Ausgehend von der DE 102 46 705 A1 ist es Aufgabe der Erfindung, das Gebäude mit dem bekannten Tragwerk so weiterzubilden, dass bei möglichst einfach gestalteten Bauelementen eine optimale und gleichmä-

ßige Wärmedämmung erreicht werden kann und jegliche Wärmebrücken vermieden werden.

[0007] Gelöst wird diese Aufgabe mit einem Gebäude gemäß Anspruch 1. Dadurch, dass das Tragwerk vollständig im Innenraum entkoppelt von der Gebäudehülle innerseitig der gedämmten Gebäudehülle angeordnet ist, wird eine wärmeleitende Schwächung der Gebäudehülle durch Stukturen des Tragwerks vermieden. Die Gebäudehülle dient nicht der Versteifung des Tragwerks und kann selbst in geeigneter Weise auf die gewünschte Wärmedämmwirkung ausgerichtet werden, da sie weder Gebäudelasten noch Zugkräfte des gesamten Gebäudes aufnehmen muss. Die wärmedämmende Gebäudehülle bestehend aus Wand- und Dachelementen muss lediglich sich selbsttragend ausgestaltet werden. Entsprechend sind als Wandelemente beispielsweise Porenbetonplatten mit vorgesetzter Hartschaumdämmung und darauf angeordneter Fassadenoberfläche geeignet. Beispielsweise kann die Fassadenoberfläche eine faserverstärkte Putzschicht, ein Stein- oder Fliesenbesatz, Bleche oder dergleichen sein. Die Dachelemente können aus Sandwichelementen mit Hartschaumkern gebildet sein. Selbstverständlich sind alle ausreichend eigenstabile Baustoffe mit hoher Dämmwirkung für den Aufbau der Dachund/oder Wandelemente nutzbar.

[0008] Das vollständig innerhalb der gedämmten Gebäudehülle angeordnete Tragwerk bleibt erfindungsgemäß im beheizten Innenraum des Gebäudes. Neben den wärmedämmtechnischen Vorteilen aufgrund der nicht mehr vorhandenen Wärmebrücken, ist bei dieser Konstruktion auch vorteilhaft, dass das Tragwerk somit erheblich geringeren Temperaturschwankungen ausgesetzt ist, da der Innenraum des Gebäudes üblicherweise stets in einem Bereich üblicher Raumtemperatur um ca. 20 °C gehalten wird. Entsprechend entfallen thermische Beanspruchungen des Tragwerks, insbesondere durch thermische Lastwechselreaktionen.

[0009] Dabei kann das Tragwerk gleichwohl optisch in die Gebäudehülle integriert ausgebildet werden, wobei wichtig ist, dass jegliche Kopplung des Tragwerks mit den Wand- und/oder Dachelementen vermieden wird. Die Wand-/Dachelemente werden also nicht fest auf dem Tragwerk verbolzt, sondern lediglich aufgelegt, angelegt und ggf. durch weitgehend mechanisch entkoppelte Elemente gesichert. Gleichzeitig wird durch das Auflegen der Dachelemente und das Anlegen oder beabstandete Anordnen der Wandelemente zum Tragwerk eine optimale thermische Entkopplung erreicht.

[0010] Eine weitere Entkopplung des Tragwerks, hier der Vertikalstützen von den Wandelementen, wird dadurch erreicht, dass die Vertikalstützen des Tragwerks beabstandet zu den Wandelementen freistehend im Innenraum angeordnet sind. Dabei wird das in den Innenraum ragende Tragwerk gestalterisch in die Gesamtraumgestaltung aufgenommen. Bevorzugt beträgt der horizontale Abstand der Vertikalstützen zu den Wandelementen 0,1 cm bis 100 cm, insbesondere 5 cm bis 50 cm. Dabei kann das Tragwerk gestalterisch sogar her-

vorgehoben werden, um dem Innenraum eine besondere Note zu geben.

[0011] Wenn jede Vertikalstütze an einem Aufstandspunkt auf einem Einzelfundament aufgestellt ist, benötigt das Gebäude keine durchgehende Fundamentplatte, was eine erhebliche Kostenersparnis bedeutet. Selbstverständlich kann die Gründung auch auf einer durchgehenden Ortbeton-Fundamentplatte oder auch Kellerdekke erfolgen.

[0012] Dadurch, dass außenseitig vom Aufstandspunkt der Vertikalstütze auf dem Einzelfundament ein Traglast aufnehmendes Stabelement jeweils zwischen aneinandergrenzenden Einzelfundamenten angeordnet ist, wobei das Stabelement die Wandelemente der gedämmten Gebäudehülle trägt, wird das Eigengewicht der Wandelemente entlang einer Gebäudeaußenseite über dieses Stabelement auf die beiden an den Gebäudeekken angeordneten Einzelfundamente geleitet. Bei einem vorher in üblicher Bauweise erstellten Keller können die Wandelemente auch auf dem Kellerdeckenrand aufgestellt werden.

[0013] Wenn auf den Stabelementen innenseitig der Wandelemente eine selbsttragende Bodenplatte angeordnet ist, wobei die Vertikalstützen die Bodenplatte durch erste Aussparungen durchdringen, wird ein den Untergrund zwischen den Einzelfundamenten überbrükkender Boden in Form der selbsttragenden Bodenplatte gebildet, der seine Lasten über die Stabelemente auf die Einzelfundamente überträgt. Eine erste Aussparung in der Bodenplatte für jede Vertikalstütze ist zur unmittelbaren Einleitung der auf der Vertikalstütze lastenden Gebäudelasten auf das Einzelfundament erforderlich. Um einen fußkalten Boden zu vermeiden, weist die Bodenplatte an ihrer Unterseite eine Wärmedämmung auf.

[0014] Zur thermischen Entkopplung des Einzelfundamentes zu den Wandelementen und/oder zur Bodenplatte, ist zwischen Stabelement bzw. Kellerdecke und darauf aufgesetzten Wandelementen bzw. Bodenplatte ein Dämmstreifen, insbesondere aus Foamglas eingelegt. Hierdurch erfolgt eine vollständige thermische Trennung in der horizontalen Ebene.

[0015] Eine weiter verbesserte Versteifung des Tragwerks wird erreicht, wenn die Tragelemente durch wenigstens eine horizontal angeordnete Rahmenanordnung miteinander verbunden sind. Dabei kann die Rahmenanordnung aus einzelnen, zwischen den Tragelementen angeordneten Verbindungsstreben oder aus einem einstückigen Rahmen gebildet sein. Mit dieser Rahmenanordnung können ohne jegliche weitere Versteifung Scherkräfte noch besser aufgenommen und Verwindungen des Tragwerks verhindert werden.

[0016] Dadurch, dass auf der Rahmenanordnung eine selbsttragende Geschossdeckenplatte aufliegt, wobei die Vertikalstützen die Geschossdeckenplatte durch eine Aussparung durchdringen, wird die Rahmenanordnung gleichzeitig als Auflage für eine einzulegende Geschossdecke verwendet. Da die Vertikalstützen innerhalb der gedämmten Gebäudehülle und insbesondere freiste-

hend im Innenraum angeordnet sind, ist eine Durchdringung in Form eines Ausschnittes innerhalb der Geschossdeckenplatte für die Vertikalstützen erforderlich.

[0017] Um möglichst lange freitragende Bereiche bei nicht zu großem Gewicht und gleichzeitig wohnraumgeeigneten akustischen Eigenschaften bereitzustellen, ist

nicht zu großem Gewicht und gleichzeitig wohnraumgeeigneten akustischen Eigenschaften bereitzustellen, ist die Geschossdeckenplatte und/oder die Bodenplatte eine frei gespannte Decke, insbesondere Hohlspanndekke.

[0018] Dadurch, dass das Tragwerk aus Stahlträgern gebildet ist, wobei die Vertikalstützen sowie die Rahmenanordnung(en) bevorzugt aus Doppel-T-Profilen und die Dachträger bevorzugt aus Rund- oder Halbrundrohren gebildet sind, wird ein kostengünstig und präzise herzustellendes Tragwerk angegeben. Ein Tragwerk aus Stahlträgern kann die bei einem Gebäude auftretenden Gebäudelasten und Zugkräfte bei relativ kleinen Querschnitten aufnehmen. Somit bleibt das im Innenraum sichtbare Tragwerk ausreichend filigran.

[0019] Wenn die Vertikalstützen im Bereich der Aussparung der Bodenplatte ein Mittel zur thermischen Trennung aufweisen, können etwaige Wärmeverluste im Bereich der Aufstandspunkte der Vertikalstützen auf den Einzelfundamenten verhindert werden. Beispielsweise ist das Mittel zur thermischen Trennung ein ggf. stahlbewehrtes Elastomerlager.

[0020] Das erfindungsgemäße Gebäude zeichnet sich durch die thermische Trennung von Tragwerk und Gebäudehülle aus. Das Tragwerk nimmt alle Gebäudelasten und Zugkräfte auf und führt sie in den Untergrund. Dabei bleibt der Innenraum innerhalb des Tragwerks von jeglicher Tragkonstruktion frei, um eine vollständig individuelle Aufteilung von Decken und Wänden zu ermöglichen. Durch diese Freiheit können etwaige Decken und Wände auch bei späteren Renovierungen, Umnutzungen oder dergleichen entfernt, verändert oder geöffnet werden. Ferner eignet sich das erfindungsgemäße Gebäude für einen hohen Grad an Vorfertigung, womit eine hohe Maßhaltigkeit, ein passgenauer Aufbau und somit die für einen sog. Passivhausstandard erforderliche Dichtigkeit der Gebäudehülle problemlos erreicht werden kann.

[0021] Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der beiliegenden Zeichnungen detailliert beschrieben.

[0022] Darin zeigt:

- Fig. 1 ein erfindungsgemäßes Gebäude in einem Längsschnitt, teils ohne Gebäudehülle, und
- Fig. 2 eine Ansicht in ein Gebäude gemäß Figur 1, bei dem die vordere Gebäudehülle entfernt ist.

[0023] In den Fig. 1 und 2 ist eine Ausführungsform des erfindungsgemäßen Gebäudes in Form eines zweigeschossigen Einfamilienhauses mit einer quadratischen Grundfläche von 9 x 9 m mit einem flachen Zeltdach dargestellt. Fig. 1 zeigt einen Querschnitt durch die-

20

ses Gebäude. Das Gebäude ist auf Einzelfundamenten 4 aufgestellt. Im dargestellten Ausführungsbeispiel sind vier Einzelfundamente, je ein Einzelfundament 4 an jeder Gebäudeecke, angeordnet. Auf jedem Einzelfundament 4 ist auf einem Aufstandspunkt 41 ein annähernd L-förmiges Tragelement 1 aufgestellt. Die vier Tragelemente 1 treffen sich am höchsten Raumpunkt 16 des Gebäudes und sind dort miteinander verbunden. Jedes Tragelement 1 ist zweischenklig aufgebaut. Dabei bildet der erste Schenkel eine Vertikalstütze 11 und der zweite Schenkel einen Dachträger 12 des Tragwerks. Die beiden Schenkel 11, 12 sind über eine Abwinklung 15 miteinander verbunden. Der Winkel α , den die beiden Schenkel zueinander aufspannen ist > 90° und im hier dargestellten Ausführungsbeispiel ca. α = 110°.

[0024] Das Tragwerk weist weiter eine aus vier Verbindungsstreben 21 gebildete Rahmenanordnung 2 auf Höhe einer vorzusehenden Geschossdecke auf. Ferner ist im Bereich der Abwinklung 15 eine weitere horizontale Versteifung des Tragwerks mit einer Rahmenanordnung 2' sowie auf halber Länge der Dachträger 12 eine weitere Rahmenanordnung 2" angeordnet.

[0025] Dieses Tragwerk ist so ausgelegt, dass es sämtliche Gebäudelasten und Zugkräfte aufnehmen kann. Um dieses Tragwerk herum ist nun eine wärmegedämmte Gebäudehülle 3 angeordnet. Die Gebäudehülle 3 umschließt einen Innenraum 30, in dem neben dem Tragwerk keine weiteren lastaufnehmenden konstruktiven Elemente vorgesehen sind. Die Einteilung von Geschossdecken, Wänden und dergleichen kann somit vollständig frei in diesem Innenraum 30 gewählt werden. [0026] Die Gebäudehülle 3 besteht aus Wandelementen 31 und Dachelementen 32. Die Wandelemente 31 bestehen aus einem wärmedämmenden Plattenelement, siehe Fig. 2, beispielsweise aus einer Porenbetonplatte und einem Fassadenaufbau 312 aus einem Hartschaumkern und einer Fassade, beispielsweise faserverstärkter Putz, Dekorplatten aus Blech, Kunststoff oder dergleichen. Ferner sind Fensterelemente 313 vorgesehen.

[0027] Die Dachelemente 32 bestehen ebenfalls aus einem wärmedämmenden Plattenelement 321, das in diesem Fall beispielsweise eine Sandwichplatte mit Hartschaumkern ist. Auf diesem wärmedämmenden Plattenelement 321 ist dann die Dacheindeckung 322 aufgebracht. Ggf. können auch Dachfensterelemente 323 vorgesehen werden. In Fig. 2 ist ein Fensterelement 323 in dem vom Betrachter wegzeigenden Dachteil gezeigt. Die Dachelemente 32 liegen auf Formteilen auf, die auf den Dachträgern 12 der Tragelemente 1 und den Rahmenanordnungen 2' und 2" aufliegen. Sie überragen die Tragwerkkonstruktion so weit, dass die vertikalen Wandelemente 31 beabstandet zu den Vertikalstützen 11 frei außenseitig vor der Tragkonstruktion angeordnet werden können.

[0028] Die Wandelemente 31 sind auf einem Stabelement 42, das an den Außenseiten des Gebäudes jeweils von Einzelfundament 4 zu Einzelfundament 4 reicht, auf-

gestellt. Zur thermischen Trennung ist zwischen den Wandelementen 31 und dem Stabelement 42 ein Dämmstreifen 43, beispielsweise ein Foamglasstreifen eingefügt. In der Ansicht in Fig. 2 ist die Auflage des Stabelementes 42 auf den beiden in der Gebäudenansicht angeordneten Einzelfundamenten 4, 4 dargestellt. Darüber ist der Foamglasstreifen 43 wiedergegeben.

[0029] Wie in der Schnittdarstellung in Fig. 1 zu sehen ist, liegt auf dem Dämmstreifen 43, hier Foamglasstreifen eine frei tragende Bodenplatte 5 auf, die den Boden des Erdgeschosses bildet. Die Bodenplatte 5 besteht beispielsweise aus einer Hohlspanndecke und ist unterseitig mit einer Wärmedämmung 51, beispielsweise aus einem Hartschaum versehen. Ferner sind in der Bodenplatte 5 an den Positionen der Vertikalstützen 11 jeweils Aussparungen 52 vorgesehen, durch die die Vertikalstützen 11 vom Innenraum 30 bis zum jeweiligen Einzelfundament 4 hindurchgeführt sind. Im Bereich der Aussparung 52 der Bodenplatte 5 ist in der Vertikalstütze 11 ein Mittel zur thermischen Trennung 17, beispielsweise ein stahlbewehrtes Elastomerlager angeordnet. Somit wird auch eine Wärmebrücke zwischen dem beheizten Innenraum 30 des Gebäudes und dem Fundament 4 und somit dem Baugrund vermieden.

[0030] Ferner ist auf der Rahmenanordnung 2 auf Höhe der ersten Geschossdecke eine Geschossdeckenplatte 6 aufgelegt, die wiederum an den Positionen der Vertikalstützen 11 Aussparungen 61 aufweist. Durch jede Aussparung 61 durchdringt eine Vertikalstütze 11 die Geschossdeckenplatte 6. Die Geschossdeckenplatte 6 ist beispielsweise eine Hohlspanndecke.

Bezugszeichenliste

[0031]

- 1 Tragelement
- 11 erster Schenkel, Vertikalstütze
- 12 zweiter Schenkel, Dachträger
- 40 13 unteres freies Ende
 - 14 oberes freies Ende
 - 15 Abwinklung, Bogenbereich
 - 16 höchster Raumpunkt
 - 17 Mittel zur thermischen Trennung

. .

45

2, 2', 2" Rahmenanordnung

- 21 Verbindungsstreben
- 3 wärmegedämmte Gebäudehülle
- 30 Innenraum
 - 31 Wandelement
 - 311 wärmedämmendes Plattenelement
 - 312 Fassadenaufbau
- 313 Fensterelement
- 5 32 Dachelement
 - 321 wärmedämmendes Plattenelement
 - 322 Dacheindeckung
- 323 Dachfensterelement

15

20

30

35

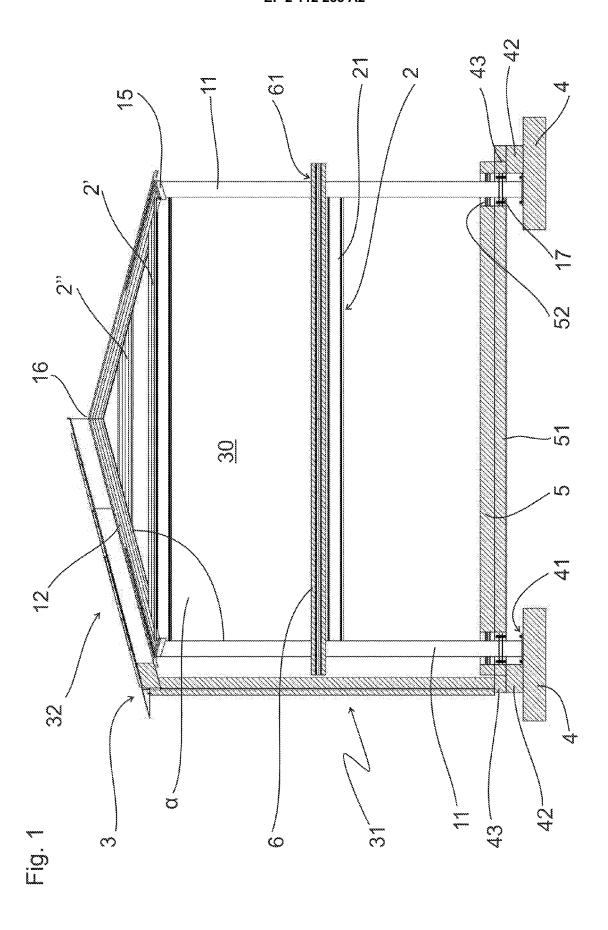
40

45

50

55

- 4 Einzelfundament
- 41 Aufstandspunkt
- 42 Stabelement
- 43 Dämmstreifen
- 5 Bodenplatte
- 51 Wärmedämmung
- 52 erste Aussparung
- 6 Geschossdeckenplatte
- 61 zweite Aussparung
- α Winkel


Patentansprüche


- Gebäude, insbesondere für Wohn- und/oder Bürozwecke.
 - mit einem Tragwerk zur Aufnahme der Gebäudelasten und Zugkräfte, bestehend aus mindestens drei zweischenkligen Tragelementen (1), dessen von den beiden Schenkeln eingeschlossener Winkel (α) >90° ist, wobei jedes Tragelement (1) mit dem ersten Schenkel (11) eine Vertikalstütze des Tragwerks und mit dem zweiten Schenkel (12) einen Dachträger des Tragwerks bilden und die freien Enden des zweiten Schenkels (16) jedes Tragelementes (1) an einem höchsten Raumpunkt (16) zusammentreffen und dort miteinander verbunden sind, und mit einer wärmegedämmten, einen Innenraum (30) aufspannenden Gebäudehülle (3) bestehend aus Wandelementen (31) und Dachelementen (32), dadurch gekennzeichnet, dass das Tragwerk im Innenraum (30) entkoppelt von der Gebäudehülle (30) angeordnet ist.
- 2. Gebäude nach Anspruch 1, dadurch gekennzeichnet, dass die Dachelemente (32) auf den zweiten Schenkeln (12) des Tragwerks aufliegen.
- Gebäude nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wandelemente (31) an den Vertikalstützen (11) anliegen.
- 4. Gebäude nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vertikalstützen (11) des Tragwerks (1) beabstandet zu den Wandelementen (31) freistehend im Innenraum (30) angeordnet sind.
- 5. Gebäude nach Anspruch 4, dadurch gekennzeichnet, dass der horizontale Abstand der Vertikalstützen (11) zu den Wandelementen (31) 0,1 cm bis 100 cm, insbesondere 5 cm bis 50 cm beträgt.
- **6.** Gebäude nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet**, **dass** jede Vertikalstütze (11) an einem Aufstandspunkt (41) auf einem

Einzelfundament (4) aufgestellt ist.

- Gebäude nach Anspruch 6, dadurch gekennzeichnet, dass außenseitig vom Aufstandspunkt (41) der Vertikalstütze (11) auf dem Einzelfundament (4) ein Traglast aufnehmendes Stabelement (42) jeweils zwischen Einzelfundamenten (4) entlang einer Außenwand angeordnet ist, wobei das Stabelement (42) die Wandelemente (31) der gedämmten Gebäudehülle (3) trägt.
 - 8. Gebäude nach Anspruch 7, dadurch gekennzeichnet, dass auf den Stabelementen (42) innenseitig der Wandelemente (31) eine selbsttragende Bodenplatte (5) angeordnet ist, wobei die Vertikalstützen (11) die Bodenplatte (5) durch erste Aussparungen (52) durchdringen.
 - 9. Gebäude nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass zwischen Stabelement (42) und darauf aufgesetzten Wandelementen (31) bzw. Bodenplatte (5) ein Dämmstreifen (43), insbesondere aus Foamglas eingelegt ist.
 - 10. Gebäude nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Tragelemente (1) durch wenigstens eine horizontal angeordnete Rahmenanordnung (2) miteinander verbunden sind.
 - 11. Gebäude nach Anspruch 10, dadurch gekennzeichnet, dass auf der Rahmenanordnung (2) eine selbsttragende Geschossdeckenplatte (6) aufliegt, wobei die Vertikalstützen (11) die Geschossdeckenplatte (6) durch zweite Aussparungen (61) durchdringen.
 - **12.** Gebäude nach Anspruch 11, **dadurch gekennzeichnet**, **dass** die Geschossdeckenplatte (6) und/ oder die Bodenplatte (5) eine frei gespannte Decke, insbesondere Hohlspanndecke ist.
 - 13. Gebäude nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Tragwerk aus Stahlträgern gebildet ist, wobei die Vertikalstützen (11) sowie die Rahmenanordnung(en) (2) bevorzugt aus Doppel-T-Profilen und die Dachträger (12) bevorzugt aus Rund- oder Halbrundrohren gebildet sind.
 - 14. Gebäude nach Anspruch 6 und insbesondere 12, dadurch gekennzeichnet, dass die Vertikalstützen (11) im Bereich der Aussparung (52) der Bodenplatte (5) ein Mittel zur thermischen Trennung (17) aufweisen.
 - **15.** Gebäude nach Anspruch 14, dadurch gekennzeichnet, dass das Mittel zur thermischen Trenzeichnet

nung (17) ein ggf. stahlbewehrtes Elastomerlager ist.

EP 2 112 288 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- DE 10246705 A1 [0002] [0006]
- DE 29717165 U1 **[0004]**

- DE 4211435 A1 **[0005]**
- DE 9306726 U1 [0005]