

(19)

(11)

EP 2 116 493 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:

Corrected version no 1 (W1 B1)
Corrections, see
Claims EN 1, 2

(51) Int Cl.:

B65H 1/02 (2006.01) **B65H 3/06 (2006.01)**
B65H 3/52 (2006.01)

(48) Corrigendum issued on:

29.10.2014 Bulletin 2014/44

(45) Date of publication and mention
of the grant of the patent:

25.06.2014 Bulletin 2014/26

(21) Application number: **09011067.7**

(22) Date of filing: **03.09.2004**

(54) Paper sheet separation and transfer apparatus

Papierbogenaufnahme- und Übertragungsgerät

Appareil de séparation et de transfert de feuilles de papier

(84) Designated Contracting States:
DE FR GB SE

(72) Inventors:

- **Mitsuya, Yusuke**
Tokyo 105-8001 (JP)
- **Naruoka, Yoshihiko**
Tokyo 105-8001 (JP)
- **Asari, Yukio**
Tokyo 105-8001 (JP)

(30) Priority: **03.09.2003 JP 2003311594**

(74) Representative: **Horn Kleimann Waitzhofer**
Ganghoferstrasse 29a
80339 München (DE)

(43) Date of publication of application:
11.11.2009 Bulletin 2009/46

(56) References cited:

EP-A- 1 077 190 US-A- 4 030 723
US-A- 4 436 298 US-A- 5 462 267

(73) Proprietor: **Kabushiki Kaisha Toshiba**
Minato-ku,
Tokyo 105-8001 (JP)

EP 2 116 493 B9

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The present invention relates to a paper sheet separation and transfer apparatus which separates a plurality of stacked paper sheets such as postal matters, bills and plain-paper copies, one by one, and takes each sheet out onto a transfer path.

[0002] As a conventional paper sheet separation and transfer apparatus, a separation and transfer apparatus having a separation unit to prevent overlapped paper sheet feeding has been known. (For example, refer to Jpn. Pat. Appln. KOKAI Publication No. 2003-81463.) This separation and transfer apparatus has a take-out roller which rotates and contacts a paper sheet at one end of a stack, and takes it out onto a transfer path, and a transfer path which transfers the taken-out paper sheet. On the transfer path of the downstream side of the take-out roller, a separation unit and a transfer unit are arranged close to each other along the paper sheet take-out direction.

[0003] The separation unit has a feed roller which contacts the paper sheet taken out onto the transfer path on the same side as the take-out roller and rotates forward, and a separation roller which is located opposite to the feed roller through the transfer path and separates second and subsequent paper sheets taken out together with the first sheet by giving them a reverse force (a tangential force).

[0004] The transfer unit has a drive roller which accepts the transfer direction end of a paper sheet passed through a nip between the feed roller and separation roller, and rotates forward, thereby pulling out the paper sheet from the nip of the separation unit and feeding it, and a pinch roller which is arranged opposite to the drive roller through the transfer path.

[0005] In the separation and transfer apparatus with the above structure, when stacked paper sheets are taken out onto the transfer path, the take-out roller is rotated first, and a paper sheet at one end of a stack is taken out onto the transfer path. In this case, by the friction between paper sheets, second and subsequent paper sheets may be taken out together with the first paper sheet. The taken-out second and subsequent paper sheets are separated by the separation unit, and transferred to a processing unit in a later stage through the transfer path.

[0006] The separation unit feeds forward the preceding first paper sheet by the feed roller, and rotates the separation roller in the reverse direction contacting the second and subsequent sheets overlapped with the first sheet, and separates these second and subsequent paper sheets by pushing them in the reverse direction.

[0007] However, in the above conventional unit, if the take-out roller takes out two paper sheets with different size and thickness, overlapped paper sheets may not be completely separated by one separation unit.

[0008] United States Patent Nr. US 4,030,723 discloses a high speed, vacuum-controlled sheet-material separating and feeder system, which handles a wide range

of mixed thicknesses and sizes of envelopes and sheets. The vacuum feeding of this system reduces frictional wear on the feed and separating rollers. The sheets are stacked at one end of the system, and are fed to a first of two vacuum-controlled separator mechanisms. The first separator mechanism is adjusted for thicker sheets of the range. Sheets leaving the first separator are then fed to the second of the two separator mechanisms. The second separator is adjusted for thinner sheets of the range. Sheets leaving the second separator are ejected one at a time, in seriatim, where they then can be fed to other sheet handling equipment for processing.

[0009] Furthermore, EP 1 077 190 A2, US 5 462 267 A and US 4 436 298 A disclose further paper sheet separation devices.

[0010] It is an object of the present invention to provide a paper sheet separation and transfer apparatus which can separate and transfer stacked paper sheets with certainty.

[0011] In order to achieve the above object, according to an embodiment of the present invention, there is provided a paper sheet separation and transfer apparatus comprising the features recited in claim 1. Further embodiments are recited in the dependent claims.

[0012] The invention can be more fully understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:

30 FIG. 1 is a schematic illustration showing a separation and transfer apparatus according to a first embodiment of the present invention;

FIG. 2 is a block diagram of a control system which controls operation of the separation and transfer apparatus of FIG. 1;

35 FIG. 3 is a flowchart for explaining a first operation example of the separation and transfer apparatus of FIG. 1;

FIG. 4 is a flowchart for explaining a second operation example of the separation and transfer apparatus of FIG. 1;

40 FIG. 5 is a schematic illustration showing a separation and transfer apparatus according to a second embodiment of the present invention;

FIG. 6 a flowchart for explaining a third operation example of the separation and transfer apparatus of FIG. 5;

45 FIG. 7 is a graph showing changes with time of the rotation speed of a separation roller in the state that the separation roller is co-rotated;

FIG. 8 is a graph showing changes with time of the rotation speed of a separation roller during the separating operation; and

50 FIG. 9 is a flowchart for explaining a fourth operation example of the separation and transfer apparatus of FIG. 5.

[0013] Hereinafter, detailed explanation will be given on embodiments of the present invention with reference

to the accompanying drawings.

[0014] FIG. 1 shows a schematic construction of a paper sheet separation and transfer apparatus 1 (hereinafter, simply referred to as a separation and transfer apparatus 1) according to the present invention.

[0015] The separation and transfer apparatus 1 has a housing 2 which contains a plurality of stacked paper sheets P. A take-out roller (take-out-unit) 3 is provided at the position contacting a paper sheet P1 at one end of the stack of paper sheets P contained in the housing 2. Each roller shown in FIG. 1 has two rollers separated from each other in the axial direction.

[0016] The take-out roller 3 is fixed to the rotary shaft through a one-way clutch 4, and the rotary shaft is fixed to the front end of a press arm 5. The rotary shaft of a press motor 6 is fixed to the base end of the press arm 5. Thus, the press arm 5 is swung by driving the press motor 6, and the take-out roller 3 is pressed to the paper sheet P1 at one end of the stack. The press arm 5 and press motor 6 function as a press mechanism of the present invention.

[0017] In this embodiment, a torque control motor is adopted for the press motor 6, and the pressing force of the take-out roller 3 to the paper sheet P1 can be changed optionally. The take-out roller 3 is freely rotatable in the arrow direction (the forward direction) in the drawing by the action of one-way clutch 4. Therefore, when transferring the paper sheet P in the arrow T direction (forward) in the drawing, the take-out roller 3 rotates together with the paper sheet P, and does not generate a reverse force disturbing the transfer of the paper sheet P, that is, a force along the tangential direction of the take-out roller (hereinafter, simply referred to as a tangential force).

[0018] A take-out motor 9 is connected to the rotary shaft of the take-out roller 3 through a plurality of pulleys 7 and timing belts 8. Namely, by driving the take-out motor 9, the take-out roller 3 is rotated in the arrow direction in the drawing. In this embodiment, a position control motor is adopted for the take-out motor 9, and the rotation speed, direction and amount (angle) of the take-out roller 9 can be controlled optionally.

[0019] On the opposite side of the housing 2 against the take-out roller 3, a backup plate 10 is provided to move a plurality of paper sheets P in the stack by pressing a paper sheet P at the other end of the stack, and to supply a paper sheet P1 at one end of the stack to a predetermined take-out position. The backup plate 10 is urged in the stacking direction by an actuator described later.

[0020] A guide member 11 is provided at the position adjacent to the housing 2, or the position opposite to the front end of the take-out direction of a plurality of paper sheets P. The guide member 11 is bent toward the nip of a first separation unit described later, and functions to guide the front end of each paper P in the transfer direction to the nip.

[0021] When the take-out roller 3 pressed by the press motor 6 to the paper sheet P at one end of the stack is

rotated forward by the take-out motor 9, the paper sheet P1 supplied by the backup plate 10 to the predetermined take-out position is taken out onto a transfer path 12. In this time, by the friction between the paper sheets P, second and subsequent sheets may be taken out together with the first paper sheet P1.

[0022] On the transfer path 12 of the downstream side of the take-out roller 3, a first separation unit 13, a second separation unit 14 and a pull-out unit 15 are sequentially arranged close to each other along the transfer direction T.

[0023] The first separation unit 13 has a first feed roller 16 which contacts the paper sheet P taken out onto the transfer path 12 and rotates forward along the transfer direction T, and a first separation roller 17 which is arranged opposite to the first feed roller 16 through the transfer path 12. The first separation roller 17 is pressed by a predetermined pressure to the first feed roller 16 in the state that no paper sheet P exists on the transfer path 12.

[0024] The first feed roller 16 is arranged on the same side as the take-out roller 3 against the transfer path 12, that is, the upper side of the transfer path 12 in the drawing. The first feed roller 16 is attached to the rotary shaft through a one-way clutch 18. Therefore, when the paper sheet P is transferred in the arrow T direction along the transfer path 12, the first feed roller 16 rotates freely forward together with the paper sheet P, and does not generate a force (a tangential force) in the direction of disturbing the transfer of the paper sheet P.

[0025] A first feed motor 21 is connected to the rotary shaft of the first feed roller 16 through a plurality of pulleys 19 and timing belts 20. Namely, by driving the first feed motor 21, the first feed roller 16 is rotated. In this embodiment, a position control motor is adopted for the first feed motor 21, and the rotation speed, direction and amount (angle) of the first feed roller 16 can be controlled optionally.

[0026] To the rotary shaft of the first separation roller 17, a first separation motor 24 is connected through a plurality of pulleys 22 and timing belts 23. The first separation motor 24 gives the first separation roller 17 a force in the direction to rotate the first separation roller 17 in the arrow direction in the drawing (the reverse direction).

[0027] In this embodiment, a torque control motor is adopted for the first separation motor 24, and a reverse separating force given by the first separation motor 24 to the first separation roller 17, that is, a separating force given by the first separation roller 17 to the paper sheet P in the tangential direction (hereinafter, sometimes referred to as a separation tangential force) can be changed optionally.

[0028] However, a separation force given by the first separation motor 24 to the first separation roller 17 is set to the degree that the first separation roller 17 rotates forward together with the first feed roller 16, in the state that there is no paper sheet P to transfer on the transfer path 12, or the state that one paper sheet P is transferred.

In other words, even if the first separation motor 24 tries to rotate the first separation roller 17 in the reverse direction, when no paper sheet P exists in the nip 13a in the space to the first feed roller 16, or when one paper sheet P exists, the first separation roller 17 is rotated forward.

[0028] When a plurality of paper sheets P is fed overlapped to the first separation unit 13, the preceding first paper sheet P1 is fed in the arrow T direction by the first feed roller 16 around which the first paper sheet P1 is rotated forward, the first separation roller 17 gives a separating force (a separating tangential force) reverse to the direction T to the second and subsequent paper sheets P taken out together with the first paper sheet P1 in being overlapped therewith, and the second and subsequent paper sheets P are separated from the first paper sheet P1. Of course, if the second and subsequent paper sheets P are not taken out together when the first paper sheet P1 is taken out, the first separation roller 17 rotates together with the first paper sheet P1, and the first paper sheet P1 passes through the first separation unit 13.

[0029] The second separation unit 14 provided on the downstream side of the first separation unit 13 along the paper sheet transfer direction T has the same structure as the first separation unit 13. Thus, the same reference numerals are given to the components having the similar functions, and detailed explanation will be omitted. However, to simplify the explanation, different reference numerals are given to specific components. Namely, the second separation unit 14 has a second feed roller 25 driven and rotated by a second feed motor 27, and a second separation roller 26 given a separation force by a second separation motor 28. A position control motor is adopted for the second feed roller 27, and a torque control motor is adopted for the second separation motor 28. The second separation unit 14 functions to separate a plurality of paper sheets which are fed overlapped without being separated by the first separation unit 13.

[0030] The pull-out unit 15 provided on the downstream side of the second separation unit 14 along the transfer direction T has a pull-out roller 29 and a pinch roller 30. The pull-out roller 29 is provided on the same side as the take-out roller 3 against the transfer path 12 (the upper side in the drawing). The pinch roller 30 is pressed by a predetermined pressure to the pull-out roller 29 through the transfer path 12.

[0031] A pull-out motor 33 is connected to the rotary shaft of the pull-out roller 29 through a plurality of pulleys 31 and timing belts 32. Namely, by driving the pull-out motor 33, the pull-out roller 29 is rotated in the arrow direction in the drawing. In this embodiment, a position control motor is adopted for the pull-out motor 33, and the rotation speed and amount (angle) of the pull-out roller 29 can be controlled optionally.

[0032] When the front end in the transfer direction of the paper sheet P passed through the second separation unit 14 is fed to the nip between the pull-out roller 29 and pinch roller 30, the paper sheet P is pulled out from the

second separation unit 14 by the pull-out unit 15. The paper sheet P pulled out by the pull-out unit 15 is transferred to a not-shown processing unit in the later stage and processed there.

[0033] On the transfer path 12, a first sensor 34 (a first detector) and a second sensor 35 (a second detector) are provided. Each sensor 34 and 35 has a light emitting part and a light receiving part, detects the passage of the paper sheet P by the fact that the paper sheet P interrupts the light from the light emitting part to the light receiving part.

[0034] The first sensor 34 is provided at the position where the light crosses the transfer path 12 between the nip 13a located between the first feed roller 16 and first separation roller 17 (hereinafter, called the nip 13a of the first separation unit 13) and a nip 14a located between the second feed roller 25 and second separation roller 26 (hereinafter, called the nip 14a of the second separation unit 14). The second sensor 35 is provided at the position where the light crosses the transfer path 12 between the nip 14a of the second separation unit 14 and a nip 15a located between the pull-out roller 29 and pinch roller 30 (hereinafter, called the nip 15a of the pull-out unit 15).

[0035] FIG. 2 shows a block diagram of a control system which controls the operation of the separation and transfer apparatus 1 with the above structure.

[0036] The separation and transfer apparatus 1 has a control unit 40 which controls the apparatus. The control unit 40 is connected with a mechanism controller 41, a motor controller 42 and a drive amplifier 43. The mechanism controller 41 is connected with an actuator 44 of the aforementioned backup plate 10.

[0037] The motor controller 42 is connected with the press motor 6 which presses the take-out roller 3 to the paper sheet P1, the take-out motor 9 which rotates the take-out roller 3, a first feed motor 21 which rotates the first feed roller 16, a first separation motor 24 which gives the first separation roller 17 a reverse separation force, the second feed motor 27 which rotates the second feed roller 25, the second separation motor 28 which gives the second separation roller 26 a reverse separation force, and a pull-out motor 33 which rotates the pull-out roller 29.

[0038] The drive amplifier 43 is connected with the aforementioned first sensor 34 and second sensor 35. Thus, the output signals from the sensors 34 and 35 are sent to the control unit 40.

[0039] Next, a first operation example of the separation and transfer apparatus 1 with the above-mentioned structure will be explained with reference to the flowchart of FIG. 3.

[0040] First, the control unit 40 controls the motor controller 42, drives the press motor 6, first feed motor 21, first separation motor 24, second feed motor 27, second separation motor 28 and pull-out motor 33, presses the take-out roller 3 to the paper sheet P1 at one end of the stack by a predetermined pressure, rotates forward the

first feed roller 16, second feed roller 25 and pull-out roller 29 at a predetermined speed, and gives a predetermined separation torque to the first separation roller 17 and second separation roller 26 (Step 1). In this state, as the paper sheet P is not transferred through the transfer path 12, the first separation roller 17 rotates together with the first feed roller 16, and the second separation roller 26 rotates together with the second feed roller 25.

[0041] In this state, the control unit 40 controls the motor controller 42, drives the take-out motor 9 and rotates the take-out roller 3 forward at a predetermined speed, and takes out the paper sheet P1 at one end of the stack contacted and rotated by the take-out roller 3 onto the transfer path 12 (Step 2). In this case, the second and subsequent paper sheets may be taken out overlapped together with the first paper sheet P1 onto the transfer path 12.

[0042] In steps 1 and 2, the motor controller 42 controls the rotation speeds of the motors 9, 21, 27 and 33, so that the peripheral speeds of the take-out roller 3, first feed roller 16, second feed roller 25 and pull-out roller 29 become V1, V2, V3 and V4, respectively. Here, the motor controller 42 controls the rotation speeds of the rollers 3, 16, 25 and 29, so that the peripheral speeds V1, V2, V3 and V4 of the rollers satisfy the following expression:

$$V1 \leq V2 \leq V3 \leq V4$$

[0043] As explained above, by making the peripheral speeds of the rollers 3, 16, 25 and 29 different, a transfer gap can be taken between the paper sheets P taken out continuously onto the transfer path 12. Further, by making the speeds of the rollers different to satisfy the above expression, a buckle in the paper sheet P on the way of transfer can be prevented. However, if the peripheral speed difference is too large, the transfer gap will become unnecessarily large. Therefore, it is necessary to adjust the speed difference to an appropriate value.

[0044] When a certain time passes after detecting that the front end in the transfer direction of the paper sheet P1 taken out onto the transfer path 12 in step 2 has reached the first sensor 34 by passing through the nip 13a of the first separation unit 13 (Step 3; YES), the control unit 40 decelerates the take-out motor 9 and first feed motor 21, and decelerates the peripheral speeds of the take-out roller 3 and first feed roller 16 (Step 4). After the deceleration, the peripheral speeds V1' and V2' of the take-out roller 3 and feed roller 16 satisfy the following expression:

$$V1' \leq V2' < V2$$

[0045] The above certain time is the time from the arrival of the front end in the transfer direction of the paper

sheet P1 at the first sensor 34 to the arrival at the nip 14a of the second separation unit 14, that is, the time determined by the peripheral speed of the first feed roller 16 and the distance from the position where the first sensor

5 34 crosses the transfer path 12 to the nip 14a of the second separation unit 14. In other words, in step 4, the control unit 40 decelerates the take-out motor 9 and first feed motor 21 at the timing that the front end of the paper sheet P1 in the transfer direction reaches the nip 14a of the second separation unit 14. The term "decelerate" mentioned here and the term "decelerate" described in the Claims indicate the control to decelerate the roller rotating forward, and include all states from stop of the roller after deceleration to start of rotation in the reverse direction.

[0046] Thereafter, the control unit 40 detects that the rear end of the paper sheet P1 in the transfer direction passes through the first sensor 34 (Step 5; YES), and accelerates the take-out motor 9 and first feed motor 21 10 to return the peripheral speeds of the take-out roller 3 and first feed roller 16 to V1 and V2, respectively (Step 6). Then, the control unit 40 repeats the control of steps 2 to 6 until all paper sheets P contained in the housing 2 are taken out (Step 7: NO).

[0047] Further, the control unit 40 monitors the time that the paper sheet P passes through the first sensor 34, while executing the control in the above steps 2 to 6, and when the passing time becomes longer than a certain predetermined value continuously over a predetermined 15 numbers of time, the control unit 40 judges that there is a possibility that the overlapped feed of the paper sheet P occurs frequently exceeding the separating capacity in the first separation unit 13, and controls the press motor 6 to decrease the pressing force of the take-out roller 3 to the paper sheet P.

[0048] As described above, in the first operation example, the peripheral speeds of the take-out roller 3 and first feed roller 16 are "decelerated" at the time when the front end in the transfer direction of the paper sheet P1 taken out onto the transfer path 12 reaches the nip 14a of the second separation unit 14, and if there are second and subsequent paper sheets taken out together with the paper sheet P1, it is possible to prevent a defect of causing a wrinkle in the paper sheet P on and after the second sheet during the separating operation in the second separation unit 14.

[0049] Conversely, when the "decelerate" control explained in the first operation example is not adopted, for example, in the state that the first paper sheet P1 and second paper sheet P2 are being separated in the second separation unit 14 and that the rear end of the paper sheet P1 in the transfer direction passes through the nip 13a of the first separation unit 13, the front end of the second paper sheet P2 is returned to the reverse direction by the second separation roller 26 of the second separation unit 14, and the rear end of the second paper sheet P2 is fed forward by the first feed roller 16 of the first separation unit 13, and the second paper sheet P2

buckles and causes a wrinkle between two nips 13a and 14a.

[0050] Namely, in this case, if the above mentioned "decelerate" control of the present invention is adopted, the peripheral speed of the first feed roller 16 which feeds forward the rear end of the second paper sheet P2 can be delayed at least, decreasing the possibility of buckling the second paper sheet P2 between the nips 13a and 14a. As described above, the term "decelerate" mentioned here includes "stop" and "reverse", and for example, when the paper sheet P is a relatively flimsy bill, it is possible to prevent substantially a defect of causing a wrinkle in the second paper sheet P2 by "stopping" the take-out roller 3 and "reversing" the first feed roller 16 to meet the peripheral speed of the second separation roller 26.

[0051] Namely, it is necessary to select appropriate degree of "deceleration" of the take-out roller 3 and first feed roller 16 according to the physical characteristics of the paper sheet P, such as flexibility, material, thickness and hardness. For example, when separating and transferring relatively thick and hard paper sheets P such as postal matter, the above-mentioned buckling can be prevented simply by "decelerating" slightly the take-out roller 3 and first feed roller 16. The buckling problem may also be solved by decreasing the pressing force of the take-out roller 3 by the press motor 6 instead of "decelerating" the take-out roller 3.

[0052] In the above-mentioned first operation example, explanation has been given of the case that two rollers 3 and 16 are "decelerated" by monitoring only the output of the first sensor 34. However, the separation and transfer apparatus 1 of this embodiment has two separation units 13 and 14, and it is unknown which separation unit separates the second and subsequent paper sheets P taken out together with the first paper sheet P1. Thus, the processing time of the paper sheet P may become unnecessarily long under certain conditions.

[0053] FIG. 4 is a flowchart showing a second operation example, in which the outputs of the first and second sensors 34 and 35 are monitored, the output signals of two sensors 34 and 35 are ored, and two rollers 3 and 16 are "decelerated". This second operation example is the same as the aforementioned first operation example except that the processing of step 5 is different.

[0054] Namely, in the processing of step 5' different from the first operation example, the control unit 40 monitors the output of the first sensor 34 and detects that the rear end of the first paper sheet P1 in the transfer direction passes, and monitors the output of the second sensor 35 and detects that the rear end of the first paper sheet P1 in the transfer direction passes. When one of the first and second sensors 34 and 35 detects the passage of the rear end of the first paper sheet P1 in the transfer direction (Step 5'; YES), the control unit 40 return the peripheral speeds of the rollers 3 and 16.

[0055] By the above operation of the control unit 40, for example, when the second paper sheet P2 is taken

out together with the first paper sheet P1 and these two overlapped sheets are not separated by the first separation unit 13 but separated by the second separation unit 14, the control unit 40 "decelerates" continuously two rollers 3 and 16 until the rear end of the second paper sheet P2 in the transfer direction passes through the first sensor 34 in the first operation example, but in the second operation example, the peripheral speeds of the rollers 3 and 16 can be returned to the original speed at the time when the second sensor 35 detects the passage of the rear end of the first paper sheet P1 in the transfer direction. Namely, in this case, the time of "decelerating" the two rollers 3 and 16 can be reduced by adopting the second operation example.

[0056] As described above, by adopting the second operation example, the same effect as that obtained when adopting the first operation example can be obtained, and the processing time can be reduced.

[0057] FIG. 5 shows a schematic construction of a separation and transfer apparatus 50 according to a second embodiment of the present invention. In the separation and transfer apparatus 50, the first and second separation motors 24 and 28 contain encoders 51 and 52 (state detection unit), respectively. In other words, the separation and transfer apparatus 50 has the same structure as the aforementioned separation and transfer apparatus 1 except that the encoders 51 and 52 are used instead of the first and second sensors 34 and 35. Thus, the same reference numerals are given to the components having the same functions as in the separation and transfer apparatus 1, and detailed explanation of these components will be omitted.

[0058] The encoder 51 contained in the first separation motor 24 detects the rotation speed of the first separation roller 17, and the encoder 52 contained in the second separation motor 28 detects the rotation speed of the second separation roller 26. The output ends of two encoders 51 and 52 are connected to the control unit 40. In other words, in this embodiment, the control unit 40 always monitors the rotation speeds of the first and second separation rollers 17 and 26 through the encoders 51 and 52.

[0059] FIG. 6 shows a flowchart for explaining a third operation example of the separation and transfer apparatus 50 with the above structure. This third operation example is basically the same as the first operation example except that the state of the paper sheet P is detected by the encoder 52.

[0060] Namely, after rotating the take-out roller 3 and taking out the first paper sheet P1 (Steps 1 and 2), the control unit 40 monitors the output of the encoder 52 contained in the second separation motor 28 (Step 3), regards the drop of the rotation speed of the second separation roller 26 as a trigger (Step 3; YES), "decelerates" the take-out motor 9 and first feed motor 21, and "decelerates" the peripheral speeds of the take-out roller 3 and first feed roller 16 (Step 4). The term "decelerate" mentioned here includes "stop" and "reverse" as in the first

embodiment.

[0061] When no paper sheet P exists in the nip 14a and when one paper sheet P exists in the nip 14a, the second separation roller 26 rotates together with the second feed roller 25 at the same speed. FIG. 7 shows changes with time of the rotation speed of the second separation roller 26 in the state rotated together with the second feed roller 25. On the other hand, when a plurality of overlapped paper sheets P passes through the nip 14a of the second separation unit 14, that is, when a plurality of paper sheets P is separated by the second separation unit 14, the rotation speed of the second separation roller 26 is changed with time as shown in FIG. 8. Namely, by monitoring the changes in the rotation speed of the second separation roller 26 through the encoder 52, it is possible to detect the state of the paper sheet P passing through the nip 14a of the second separation unit 14.

[0062] After "decelerating" two rollers 3 and 16 in step 4, the control unit 40 regards the return of the rotation speed of the second separation roller 26 to the original speed (the arrow A in FIG. 8) as a trigger (Step 5; YES), judges that the first and second paper sheets P1 and P2 are separated, and accelerates the take-out motor 9 and first feed motor 21 so as to return the peripheral speeds of the take-out roller 3 and first feed roller 16 to V1 and V2, respectively (Step 6).

[0063] The control unit 40 repeats the controls of steps 2 to 6 until all paper sheets P contained in the housing 2 are taken out (Step 7; NO).

[0064] When the rotation speed of the second separation roller 26 is lowered (Step 3; YES), the control unit 40 controls the first separation motor 24 to reduce the separation force given to the first separation roller 17. Namely, when the rotation speed of the second separation roller 26 is lowered as described above, the separation of the paper sheet P2 in the second separation unit 14 can be judged, and the separating operation in the first separation unit 13 becomes basically unnecessary.

[0065] Further, when the rotation speed of the second separation roller 26 is lowered (Step 3; YES), the control unit 40 controls the press motor 6 to decrease the pressing force of the take-out roller 3 on the paper sheet P2. By this operation, the forward force (tangential force) given to the separated paper sheet P2 can be decreased further, and the paper sheet P2 can be easily returned in the reverse direction.

[0066] The control unit 40 regards the return of the rotation speed of the second separation roller 26 to the original speed as a trigger (Step 5; YES), judges that the separating operation is finished, returns the separation force given to the first separation roller 17 to the original value, and returns the pressing force of the take-out roller 3 to the paper sheet P to the original value.

[0067] By operating the separation and transfer unit 50 according to the third operation example as explained above, the same effect as the first operation example can be obtained, and the state of the paper sheet P in the second separation unit 14 can be grasped more ex-

actly, enabling more reliable separation and transfer.

[0068] In the above third operation example, explanation has been given on a method of preventing a wrinkle caused by the buckling of the paper sheet P2 between the nips 13a and 14a of the first and second separation units 13 and 14, by monitoring the state of the paper sheet P in the second separation unit 14. The paper sheet P may buckle between the position where the take-out roller 3 contacts and rotates with the paper sheet P, and the nip 13a of the first separation unit 13.

[0069] FIG. 9 is a flowchart showing a fourth operation example for preventing a buckle of the paper sheet P between the take-out roller 3 and nip 13a. According to the drawing, after the first paper sheet P1 is taken out onto the transfer path 12 (Steps 1, 2), the control unit 40 regards the drop of the rotation speed of the first separation roller 17 of the first separation unit 13 as a trigger (Step 3; YES), and controls the take-out motor 9 to "decelerate" the take-out roller 3 (Step 4). The term "deceleration" includes "stop" and "reverse".

[0070] The control unit 40 regards the return of the rotation speed of the first separation roller 17 to the original speed as a trigger after the end of the separating operation in the first separation unit 13 (Step 5; YES), and controls the take-out motor 9 to return the peripheral speed of the take-out roller 3 to the original speed (Step 6). The control unit 40 repeats the control of steps 2 to 6 until all paper sheets P contained in the housing 2 are taken out (Step 7; NO).

[0071] When the rotation speed of the second separation roller 26 is lowered (Step 3; YES), the control unit 40 controls the first separation motor 24 to reduce the separation force given to the first separation roller 17. Namely, when the rotation speed of the second separation roller 26 is lowered as described above, the separation of the paper sheet P2 in the second separation unit 14 can be judged, and the separating operation in the first separation unit 13 becomes basically unnecessary.

[0072] In addition, when the rotation speed of the first separation roller 17 is lowered, the control unit 40 controls the first separation motor 24 and reduces the separating force given to the first separation roller 17. Namely, when the rotation speed of the first separation roller 17 is lowered, the rotation speed of the take-out roller 3 is decelerated, the pressing force of the take-out roller 3 is reduced, and the paper sheet can be easily separated. Therefore, the paper sheet is prevented from being moved back excessively, by reducing the separating force of the first separation roller 17.

[0073] When the rotation speed of the first separation roller 17 is lowered (Step 3; YES), the control unit 40 controls the press motor 6 so as to lower the pressing force of the take-out roller 3 on the paper sheet P, and makes it easy to return the paper sheet P2 in the reverse direction. Further, when the rotation speed of the first separation roller 17 is returned to the original speed (Step 5; YES), the control unit 40 controls the press motor 6 so as to return the pressing force of the take-out roller 3

to the original value.

[0074] As explained above, in the fourth operation example, since the take-out roller 3 is "decelerated" and the pressing force of the take-out roller 3 is lowered at the time when the separating operation is started in the first separation unit 13, the second paper sheet P2 taken out together with the first paper sheet P1 can be easily returned, and the buckling of the paper sheet P2 between the nip of the take-out roller 3 and nip 13a of the first separation unit 13 can be prevented.

[0075] Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.

[0076] For example, in the above embodiment, explanation has been given of the case that the overlapped state of paper sheet P is detected by using the sensors 34 and 35 or encoders 51 and 52. The invention is not to be limited to this. The overlapped state of paper sheet P may be detected by detecting the thickness of paper sheet P. Further, the second embodiment uses the encoders 51 and 52 of the type incorporated in the separation motors 24 and 28, but an external encoder may be used. Or, it is permitted to use a tachogenerator for detecting the rotation speed.

[0077] Further, the stacking direction of the paper sheet P is shown vertical in FIG. 1 and FIG. 5, but the horizontal direction is permitted, and the stacking is not to be limited to the gravity direction. Further, in the above embodiment, the paper sheets P are taken out one by one onto the transfer path 12 by contacting and rotating the take-out roller 3 with the stacked paper sheets P, but a take-out belt can be used instead of the take-out roller 3. It is also permitted to use a pair of pull-out belts instead of the pull-out roller 29 and pinch roller 30.

Claims

1. A paper sheet separation and transfer apparatus comprising:

a take-out unit (3) adapted to rotate and contact a paper sheet at one end of a stack of a plurality of paper sheets, and to take out the paper sheet onto a transfer path;
 a first separation unit (13) having a first feed roller (16) adapted to contact the paper sheet taken out onto the transfer path and to rotate forward, and a first separation roller (17) which is pressed to the first feed roller through the transfer path, and is adapted to separate second and following paper sheets taken out together with the first paper sheet by giving a reverse separating

force, the first separation roller receiving a force rotating in a reverse direction relative to the direction in which the paper sheet is transferred; a second separation unit (14) having a second feed roller (25) adapted to contact the paper sheet passed through the first separation unit and to rotate forward, and a second separation roller (26) which is pressed to the second feed roller through the transfer path, and is adapted to separate second and following paper sheets taken out together with the first paper sheet by giving a reverse separating force, the second separation roller receiving a force rotating in a reverse direction relative to the direction in which the paper sheet is transferred; and a first detector (34) adapted to detect that a preceding paper sheet reaches the second separation unit; **characterized by** a control unit (40) adapted to rotate the first feed roller (16) in the reverse direction, when the first detector (34) detects that the preceding paper sheet reaches the second separation unit (14).

25 2. The paper sheet separation and transfer apparatus according to claim 1, **characterized in that** the control unit (40) is adapted to return the peripheral speed of the first feed roller (16) to the original speed, when the first detector (34) detects that the rear end of a paper sheet in the transfer direction passes through the second separation unit (14).

3. The paper sheet separation and transfer apparatus according to claim 1, **characterized by** further comprising:

a second detector (35) adapted to detect that a paper sheet passes along the transfer direction in the downstream side of the second separation unit (14), and wherein the control unit (40) is adapted to return the peripheral speed of the first feed roller (16) to the original speed, when the first detector (34) or second detector (35) detects that the rear end of a paper sheet passes in the transfer direction through the second separation unit (14).

40 4. The paper sheet separation and transfer apparatus according to claim 1, **characterized in that** the control unit (40) is adapted to decelerate the peripheral speed of the take-out unit (3), when the first detector (34) detects that the preceding paper sheet reaches the second separation unit (14).

45 5. The paper sheet separation and transfer apparatus according to claim 4, **characterized in that** the control unit (40) is adapted to return the peripheral speed of the take-out unit (3) to the original speed, when

the first detector (34) detects that the rear end of a paper sheet passes the transfer direction through the second separation unit (14).

6. The paper sheet separation and transfer apparatus according to claim 4 or 5, **characterized by** further comprising a press mechanism (6) adapted to press the take-out unit (3) to a paper sheet, the control unit (40) is adapted to control the press mechanism (6) to lower the pressing force of the take-out unit (3), when the first detector (34) detects that the preceding paper sheet reaches the second separation unit (14). 5

7. The paper sheet separation and transfer apparatus according to claim 6, the control unit (40) is adapted to control the press mechanism (6) to return the pressing force of the take-out unit (3) to the original force, when the first detector (34) detects that the rear end of a paper sheet passes in the transfer direction through the second separation unit (14). 15 20

Patentansprüche

1. Papierbogentrennungs- und transportvorrichtung, aufweisend:

eine Entnahmeeinheit (3), die eingerichtet ist, zu rotieren und einen Papierbogen an einem Ende eines Stapels aus mehreren Papierbögen zu kontaktieren, und den Papierbogen auf einen Transportweg herauszunehmen; 30
 eine erste Trenneinheit (13) mit einer ersten Zuführrolle (16), die eingerichtet ist, den auf den Transportweg herausgenommenen Papierbögen zu kontaktieren und vorwärts zu rotieren, und eine erste Trennrolle (17), die über den Transportweg hinweg gegen die erste Zuführrolle gedrückt ist, und eingerichtet ist, durch Ausüben einer entgegengesetzten Trennkraft zweite und weitere Papierbögen, die zusammen mit dem ersten Papierbogen entnommen wurden, zu trennen, wobei die erste Trennrolle eine Kraft 35
 empfängt, die in Bezug auf die Richtung, in der der Papierbogen transportiert wird, in entgegengesetzter Richtung rotiert; 40
 eine zweite Trenneinheit (14) mit einer zweiten Zuführrolle (25), die eingerichtet ist, den Papierbogen, der die erste Trenneinheit passiert hat, zu kontaktieren und vorwärts zu rotieren, und eine zweite Trennrolle (26), die über den Transportweg hinweg gegen die zweite Zuführrolle gedrückt ist, und eingerichtet ist, durch Ausüben einer entgegengesetzten Trennkraft zweite und weitere Papierbögen, die zusammen mit dem ersten Papierbogen entnommen wurden, zu trennen, wobei die zweite Trennrolle eine Kraft 45
 50
 55

empfängt, die in Bezug auf die Richtung, in der der Papierbogen transportiert wird, in entgegengesetzter Richtung rotiert; und einen ersten Detektor (34), der eingerichtet ist, zu erfassen, dass ein vorausgehender Papierbogen die zweite Trenneinheit erreicht; **gekennzeichnet, durch:**

eine Steuereinheit (40), die eingerichtet ist, die erste Zuführrolle (16) in der entgegengesetzten Richtung zu rotieren, wenn der erste Detektor (34) erfasst, dass ein vorausgehender Papierbogen die zweite Trenneinheit (14) erreicht.

2. Papierbogentrennungs- und transportvorrichtung gemäß Anspruch 1, **dadurch gekennzeichnet, dass** die Steuereinheit (40) eingerichtet ist, die Umlaufgeschwindigkeit der ersten Zuführrolle (16) auf die ursprüngliche Geschwindigkeit zurückzustellen, wenn der erste Detektor (34) erfasst, dass das hintere Ende eines Papierbogens in der Transportrichtung die zweite Trenneinheit (14) passiert.

25 3. Papierbogentrennungs- und transportvorrichtung gemäß Anspruch 1, **dadurch gekennzeichnet, dass** ferner vorgesehen ist:

ein zweiter Detektor (35), der eingerichtet ist, zu erfassen, dass ein Papierbogen in der Transportrichtung auf der stromabwärtigen Seite der zweiten Trenneinheit (14) passiert; und wobei die Steuereinheit (40) eingerichtet ist, die Umlaufgeschwindigkeit der ersten Zuführrolle (16) auf die ursprüngliche Geschwindigkeit zurückzustellen, wenn der erste Detektor (34) oder der zweite Detektor (35) erfasst, dass das hintere Ende eines Papierbogens in der Transportrichtung die zweite Trenneinheit (14) passiert.

4. Papierbogentrennungs- und transportvorrichtung gemäß einem der Anspruch 1, **dadurch gekennzeichnet, dass** die Steuereinheit (40) eingerichtet ist, die Umlaufgeschwindigkeit der Entnahmeeinheit (3) zu drosseln, wenn der erste Detektor (34) erfasst, dass ein vorausgehender Papierbogen die zweite Trenneinheit (14) erreicht.

5. Papierbogentrennungs- und transportvorrichtung gemäß Anspruch 4, **dadurch gekennzeichnet, dass** die Steuereinheit (40) eingerichtet ist, die Umlaufgeschwindigkeit der Entnahmeeinheit (3) auf die ursprüngliche Geschwindigkeit zurückzustellen, wenn der erste Detektor (34) erfasst, dass das hintere Ende eines Papierbogens in der Transportrichtung die zweite Trenneinheit (14) passiert.

6. Papierbogentrennungs- und transportvorrichtung

gemäß Anspruch 4 oder 5, **dadurch gekennzeichnet, dass** sie ferner einen Andruckmechanismus (6) aufweist, der eingerichtet ist, die Entnahmeeinheit (3) an einen Papierbogen anzudrücken, wobei die Steuereinheit (40) eingerichtet ist, den Andruckmechanismus (6) derart anzusteuern, dass die Andruckkraft der Entnahmeeinheit (3) verringert wird, wenn der erste Detektor (34) erfasst, dass ein vorausgehender Papierbogen die zweite Trenneinheit (14) erreicht.

7. Papierbogentrennungs- und transportvorrichtung gemäß Anspruch 6, **dadurch gekennzeichnet, dass** die Steuereinheit (40) eingerichtet ist, den Andruckmechanismus (6) derart anzusteuern, dass die Andruckkraft der Entnahmeeinheit (3) auf die ursprüngliche Kraft zurückgestellt wird, wenn der erste Detektor (34) erfasst, dass das hintere Ende eines Papierbogens in der Transportrichtung die zweite Trenneinheit (14) passiert.

Revendications

1. Appareil de séparation et de transfert de feuilles de papier comprenant :
 - une unité d'extraction adaptée pour tourner et entrer en contact avec une feuille de papier à une extrémité d'un pile d'une pluralité de feuilles de papier, et pour extraire la feuille de papier sur un chemin de transfert ;
 - une première unité de séparation (13) ayant un premier rouleau d'alimentation (16) adapté pour entrer en contact avec la feuille de papier extraite sur le chemin de transfert et tourner vers l'avant, et un premier rouleau de séparation (17) qui est pressé vers le premier rouleau d'alimentation à travers le chemin de transfert, et est adapté pour séparer la seconde feuille de papier et les feuilles de papier suivantes extraites conjointement avec la première feuille de papier en exerçant une force de séparation inverse, le premier rouleau de séparation recevant une force tournant dans une direction inverse par rapport à la direction dans laquelle la feuille de papier est transférée ;
 - une seconde unité de séparation (14) ayant un second rouleau d'alimentation (25) qui est adapté pour entrer en contact avec la feuille de papier passée à travers la première unité de séparation et tourner vers l'avant, et un second rouleau de séparation (26) qui est pressé vers le second rouleau d'alimentation à travers le chemin de transfert, et est adapté pour séparer la seconde feuille de papier et les feuilles de papier suivantes extraites conjointement avec la première feuille de papier en exerçant une force de sépa-
2. Appareil de séparation et de transfert de feuilles de papier selon la revendication 1, **caractérisé par le fait que** l'unité de commande (40) est adaptée pour ramener la vitesse périphérique du premier rouleau d'alimentation (16) à la vitesse originale lorsque le premier détecteur (34) détecte que l'extrémité arrière d'une feuille de papier dans la direction de transfert passe à travers la seconde unité de séparation (14).
3. Appareil de séparation et de transfert de feuilles de papier selon la revendication 1, **caractérisé par le fait qu'il comprend en outre :**
 - un second détecteur (35) adapté pour détecter qu'une feuille de papier passe le long de la direction de transfert dans le côté aval de la seconde unité de séparation (14), et dans lequel l'unité de commande (40) est adaptée pour ramener la vitesse périphérique du premier rouleau d'alimentation (16) à la vitesse originale lorsque le premier détecteur (34) ou le second détecteur (35) détecte que l'extrémité arrière d'une feuille de papier passe dans la direction de transfert à travers la seconde unité de séparation (14).
4. Appareil de séparation et de transfert de feuilles de papier selon la revendication 1, **caractérisé par le fait que** l'unité de commande (40) est adaptée pour ralentir la vitesse périphérique de l'unité d'extraction (3) lorsque le premier détecteur (34) détecte que la feuille de papier précédente atteint la seconde unité de séparation (14).
5. Appareil de séparation et de transfert de feuilles de papier selon la revendication 4, **caractérisé par le fait que** l'unité de commande (40) est adaptée pour ramener la vitesse périphérique de l'unité d'extraction (3) à la vitesse originale lorsque le premier détecteur (34) détecte que l'extrémité arrière d'une feuille de papier passe dans la direction de transfert à travers la seconde unité de séparation (14).

ration inverse, le second rouleau de séparation recevant une force tournant dans une direction inverse par rapport à la direction dans laquelle la feuille de papier est transférée ; et

- un premier détecteur (34) adapté pour détecter qu'une feuille de papier précédente atteint la seconde unité de séparation, **caractérisé par** une unité de commande (40) adaptée pour faire tourner le premier rouleau d'alimentation (16) dans la direction inverse lorsque le premier détecteur (34) détecte que la feuille de papier précédente atteint la seconde unité de séparation (14).

15 2. Appareil de séparation et de transfert de feuilles de papier selon la revendication 1, **caractérisé par le fait que** l'unité de commande (40) est adaptée pour ramener la vitesse périphérique du premier rouleau d'alimentation (16) à la vitesse originale lorsque le premier détecteur (34) détecte que l'extrémité arrière d'une feuille de papier dans la direction de transfert passe à travers la seconde unité de séparation (14).

20 3. Appareil de séparation et de transfert de feuilles de papier selon la revendication 1, **caractérisé par le fait qu'il comprend en outre :**

- un second détecteur (35) adapté pour détecter qu'une feuille de papier passe le long de la direction de transfert dans le côté aval de la seconde unité de séparation (14), et dans lequel l'unité de commande (40) est adaptée pour ramener la vitesse périphérique du premier rouleau d'alimentation (16) à la vitesse originale lorsque le premier détecteur (34) ou le second détecteur (35) détecte que l'extrémité arrière d'une feuille de papier passe dans la direction de transfert à travers la seconde unité de séparation (14).

25 4. Appareil de séparation et de transfert de feuilles de papier selon la revendication 1, **caractérisé par le fait que** l'unité de commande (40) est adaptée pour ralentir la vitesse périphérique de l'unité d'extraction (3) lorsque le premier détecteur (34) détecte que la feuille de papier précédente atteint la seconde unité de séparation (14).

30 5. Appareil de séparation et de transfert de feuilles de papier selon la revendication 4, **caractérisé par le fait que** l'unité de commande (40) est adaptée pour ramener la vitesse périphérique de l'unité d'extraction (3) à la vitesse originale lorsque le premier détecteur (34) détecte que l'extrémité arrière d'une feuille de papier passe dans la direction de transfert à travers la seconde unité de séparation (14).

6. Appareil de séparation et de transfert de feuilles de papier selon la revendication 4 ou 5, **caractérisé par le fait qu'il comprend en outre un mécanisme de presse (6) adapté pour presser l'unité d'extraction (3) vers une feuille de papier, l'unité de commande (40) étant adaptée pour commander le mécanisme de presse (6) pour diminuer la force de presse de l'unité d'extraction (3) lorsque le premier détecteur (34) détecte que la feuille de papier précédente atteint la seconde unité de séparation (14).** 5 10

7. Appareil de séparation et de transfert de feuilles de papier selon la revendication 6, **caractérisé par le fait que l'unité de commande (40) est adaptée pour commander le mécanisme de presse (6) pour ramener la force de presse de l'unité d'extraction (3) à la force originale lorsque le premier détecteur (34) détecte que l'extrémité arrière d'une feuille de papier passe dans la direction de transfert à travers la seconde unité de séparation (14).** 15 20

25

30

35

40

45

50

55

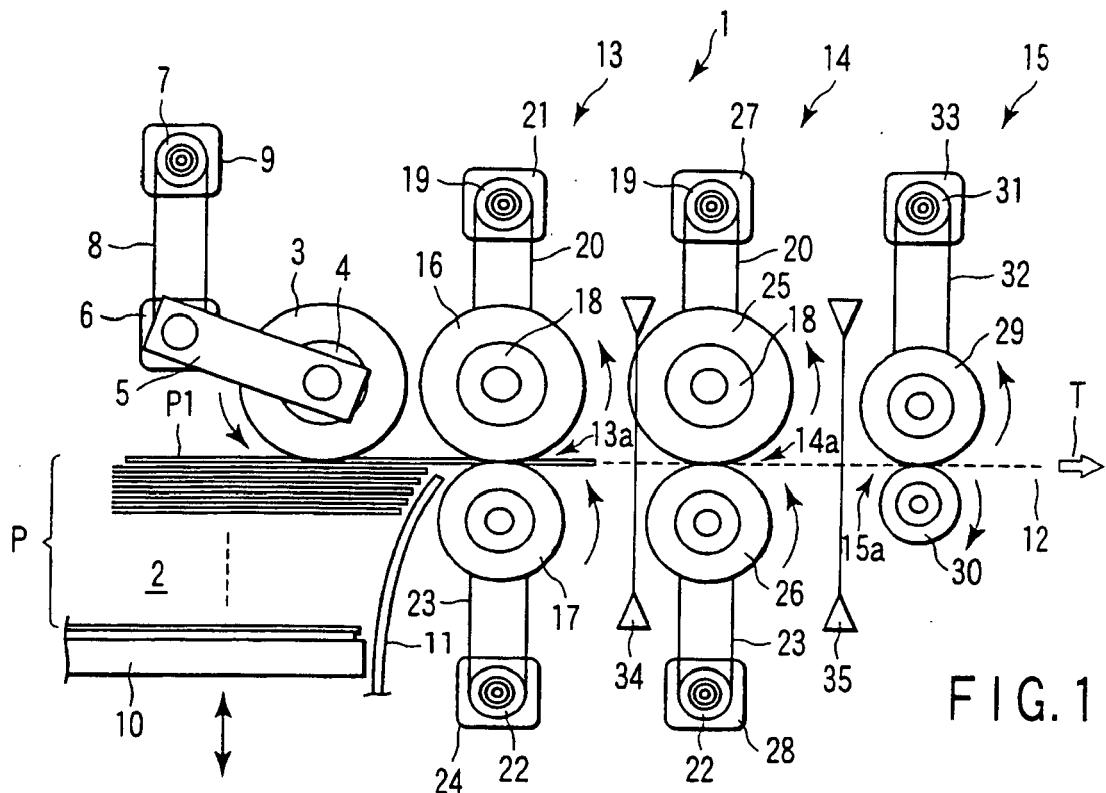


FIG. 1

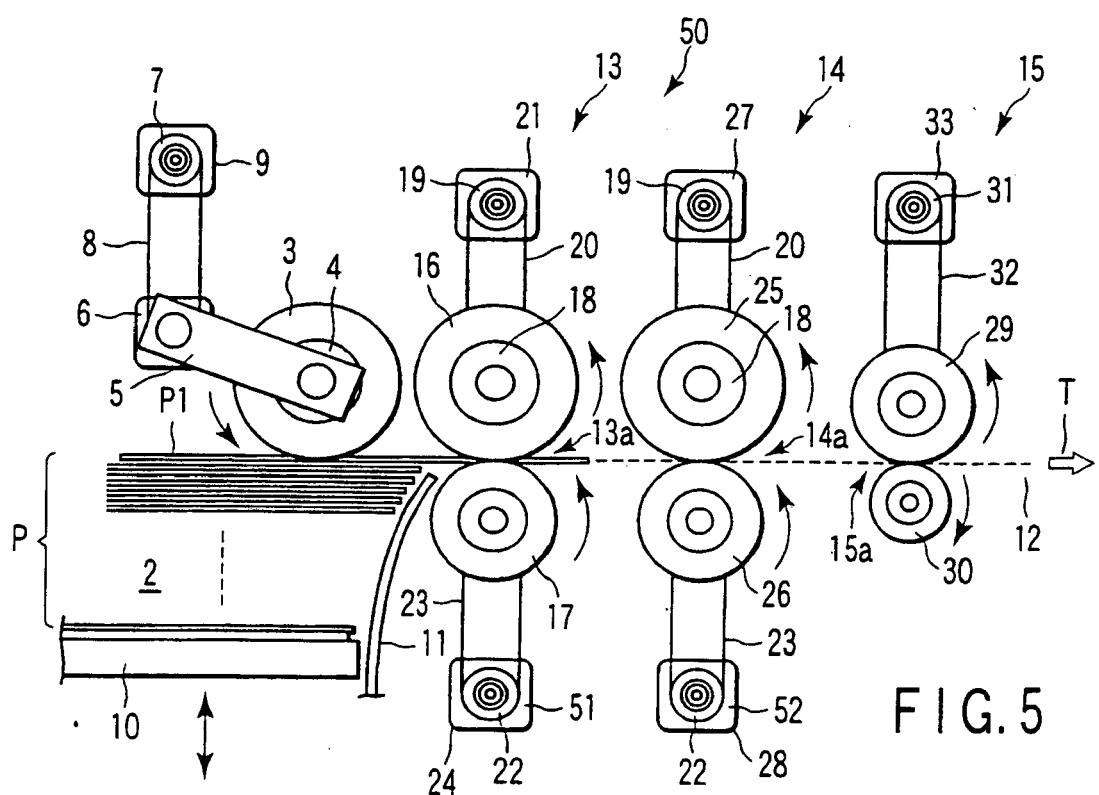


FIG. 5

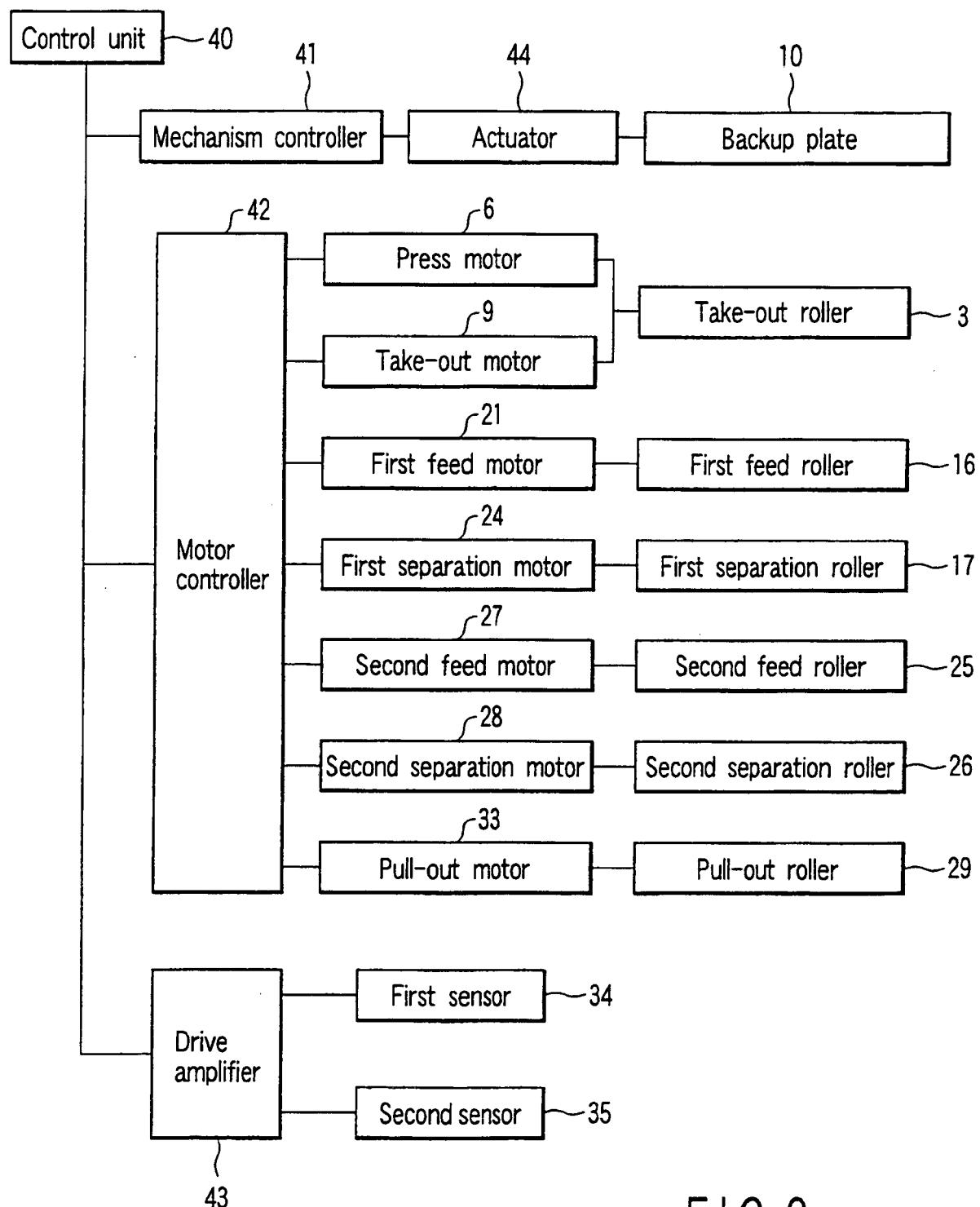


FIG. 2

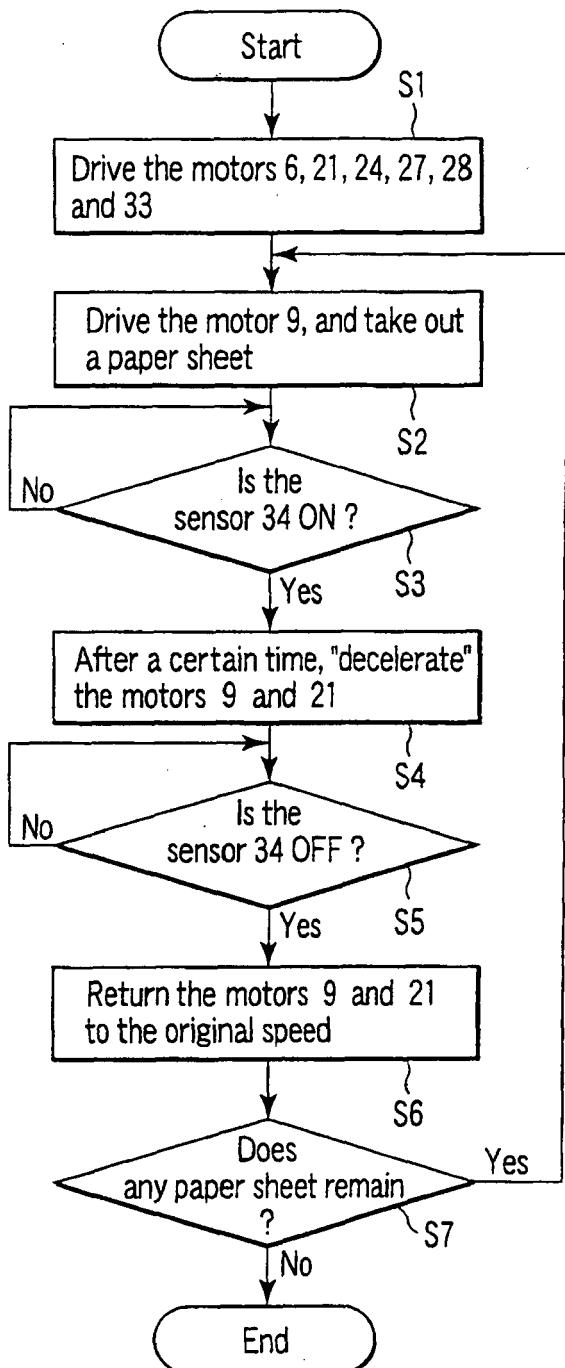


FIG. 3

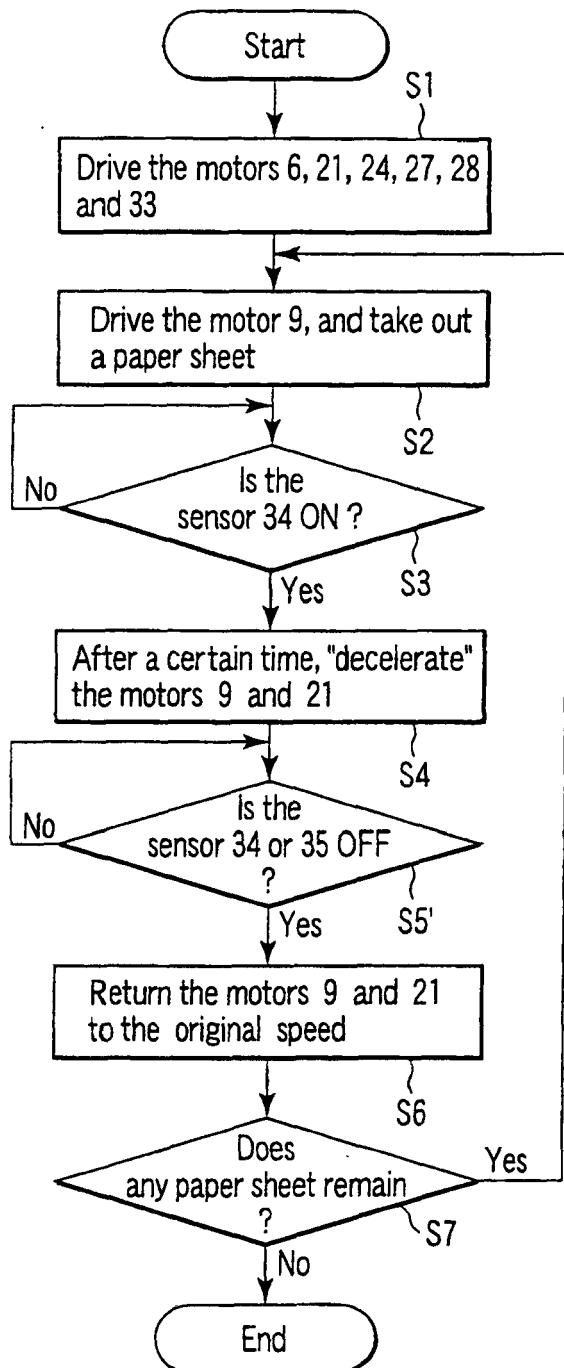


FIG. 4

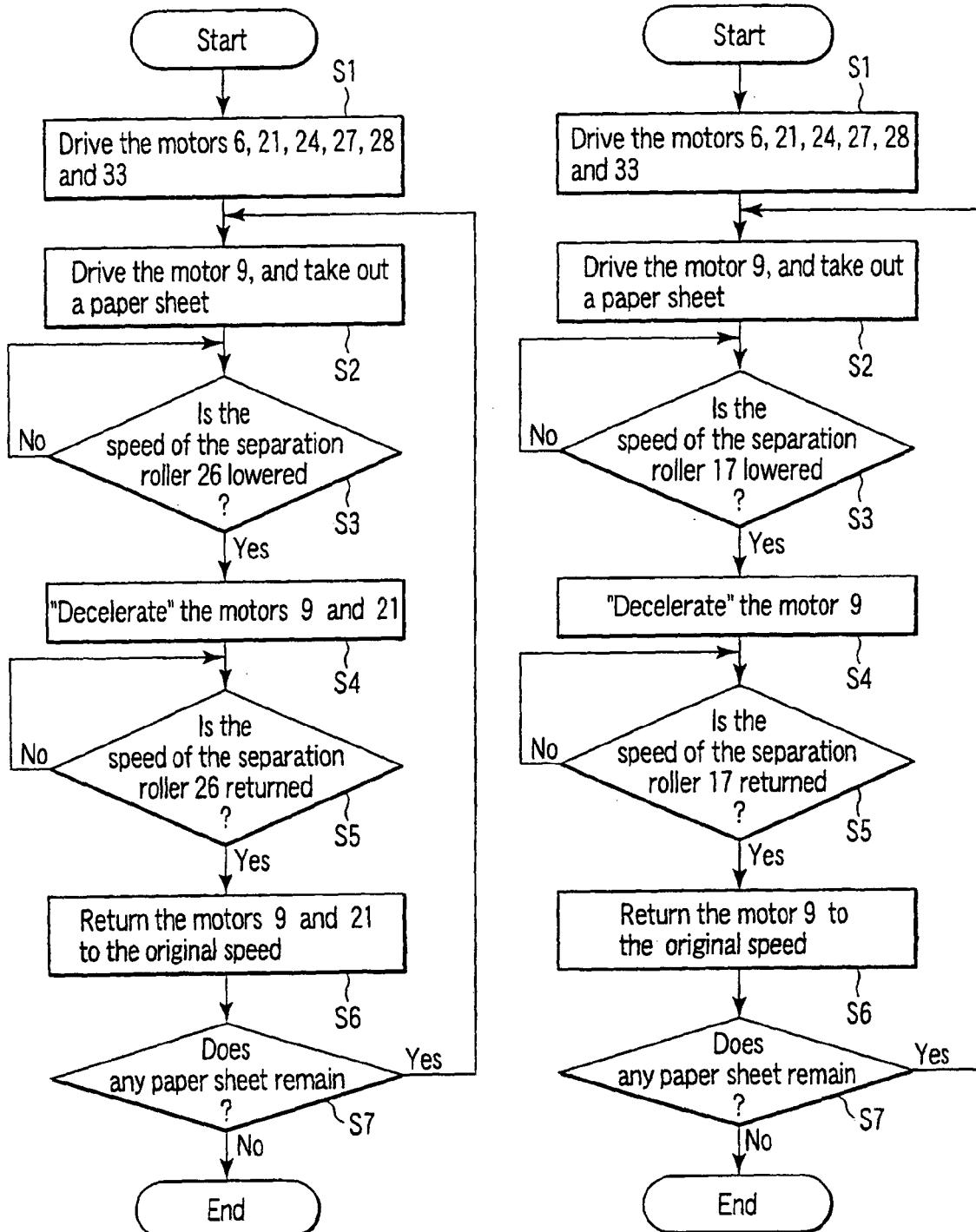


FIG. 6

FIG. 9

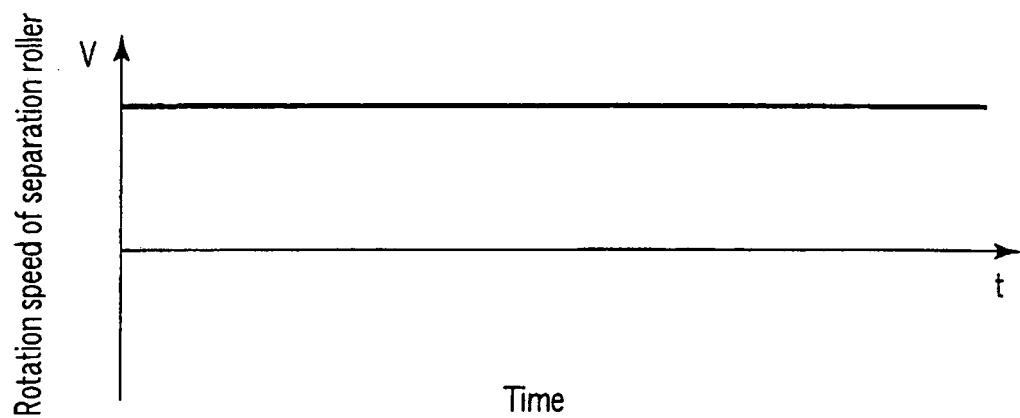


FIG. 7

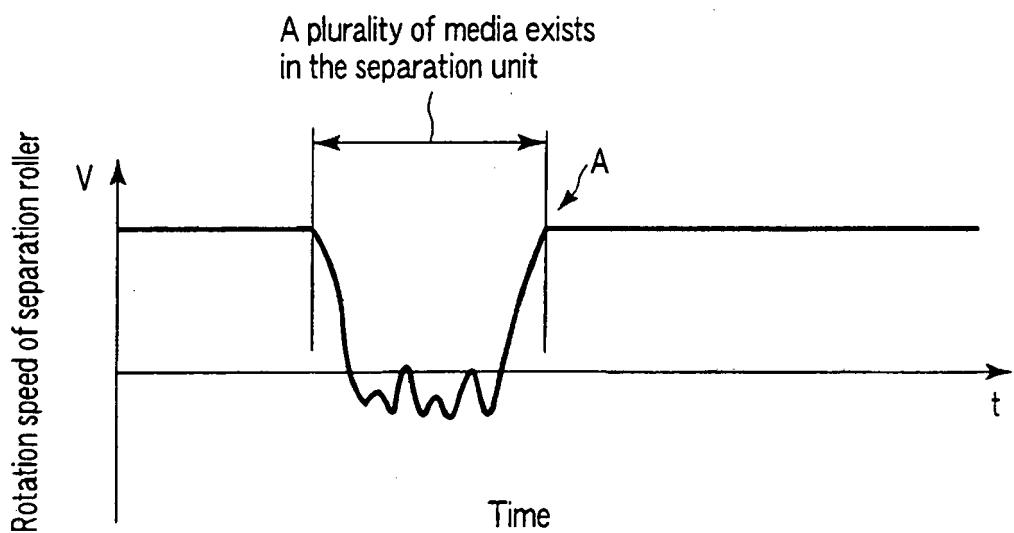


FIG. 8

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2003081463 A [0002]
- US 4030723 A [0008]
- EP 1077190 A2 [0009]
- US 5462267 A [0009]
- US 4436298 A [0009]