FIELD OF THE INVENTION
[0001] The present invention relates to the field of digital imaging, and more particularly
to digital editing methods.
BACKGROUND OF THE INVENTION
[0002] Image segmentation is a branch of digital image processing that performs the task
of categorizing, or classifying, the elements of a digital image into one or more
class types. For medical imaging applications, it is common that image segmentation
is performed on the voxel (volume element) of a 3-dimensional image data set with
the classification types related to anatomical structure. In thoracic medical images,
it is convenient to segment the image voxels into classes such as bone, lung parenchyma,
soft tissue, bronchial vessels, blood vessels, etc. There are many reasons to perform
such a task, such as surgical planning, treatment progress, and patient diagnosis.
[0003] Of interest is the image segmentation technology that allows a user of a Picture
Archiving and Communications System (PACS) to segment a suspected cancerous pulmonary
lesion. Starting with a seed point, i.e., a voxel position that is known to be part
of a lesion, a region of contiguous voxels is grown, or developed, about the seed
point. For such lesion segmentation algorithms, the only voxel value know for certainty
that is characteristic of the lesion to be segmented is the seed point voxel. Thus,
the statistical properties of the voxels associated with lesion to be segmented, such
as the mean voxel value and the range of voxel values, must either be assumed a priori
from experience or approximated.
[0004] Pulmonary lesions often grow adjacent to vessels (arteries, veins, or airways). The
morphology of vessels and pulmonary lesions can be similar. Further complicating the
geometry is the fact that cancerous and benign lesions can grow fully around a vessel.
As a consequence, image segmentation algorithms often misclassify voxels in the vicinity
of the junction between lesion and vessel tissue. The misclassification of voxels
can also be the result of the uncertainties in the underlying statistics regarding
the both the lesion and vessel tissues.
[0005] The results of three dimensional (3D) image segmentation processing is typically
visualized with a computer graphics 3D routine that shows the set of segmented voxels
(segmentation map) as a 3D object from a single point perspective shaded by a light
source. This is usually accomplished by calculating a mesh model of connected points
corresponding to voxels that are on the surface, or exterior, of the segmentation
map. Alternatively, the volume rendering techniques can also be used to visualize
the 3-dimensionality of the segmentation map.
[0006] Interactive 3D editing tools have been developed for the computer graphics industry
and the medical imaging industry.
U.S. Patent No. 6,542,153 to Liu et al. discloses a method for constructing clipping planes used to modify segmented voxel
image data by projecting vertices of a region of interest (ROI) in one plane and transforming
the data within the ROI to allow all of a plurality of slices on the inside of the
ROI to be along one axis of a three axis coordinate system. The method disclosed by
Liu requires representing the inside of the ROI as a plurality of line segments, wherein
only two coordinates and the length of a line segment are stored. The system is computationally
intensive and complex for use in modifying the segmentation maps for pulmonary lesions.
[0007] The segmentation map resulting from the image segmentation processing is also viewed
in the form of sequential slices. Undesirable structures of segmentation maps are
most reliably removed using prior art manual editing methods. These methods typically
have the user of the PACS manually draw outlines of the structures to be removed on
every image slice of the segmentation map using careful hand-directed cursor manipulations.
A disadvantage of such methods is that manual editing is a very repetitive, tedious,
and time consuming process. When the number of image slices to be edited is large,
as in a typical study to be 3D reconstructed using CT imaging, manual editing consumes
expensive machine and operator time, notwithstanding that the operator is an expert.
[0008] Interactive 3D editing tools (such as 3D-Doctor found at www.3d-doctor.com) have
also been developed for modifying medical images. Such tools allow the user to modify
a segmentation map in a "cut mode. " The user clicks and drags with the mouse to form
a cut line and then uses a parameter dialog box to determine how many slices of the
segmentation map will be affected by the cut line. Although precise control can be
exercised with such a tool, there are many manual operations that need to be performed
to achieve an arbitrary planar cut.
[0009] Thus, a need exists for an interactive 3D editor that requires very little input
to modify segmentation maps for pulmonary lesions.
SUMMARY OF THE INVENTION
[0010] In an exemplary embodiment of the present disclosure, a digital image editing method
includes receiving a three-dimensional volume image of an anatomical object of interest,
wherein the volume image is characterized by first and second mutually exclusive segmentation
classes. The method also includes deriving a two-dimensional slice image from the
volume image, selecting a single point on the slice image within the second segmentation
class, and defining a plane in response to the selection of the single point, the
plane dividing the second segmentation class into a target portion corresponding to
the object and a remainder portion. In such an embodiment, the first segmentation
class corresponds to at least one of a parenchyma, a vessel, and a chest wall, and
the second segmentation class corresponds to a lesion. In addition, the target portion
corresponds to a lesion, and the remainder portion corresponds to at least one of
a parenchyma, a vessel, and a chest wall. In such a method, the single point lies
within the plane. Such a method further includes creating a three-dimensional rendering
of the target and remainder portions connected at the first plane. The method also
includes rendering the remainder portion transparent such that only the target portion
is displayed in the three-dimensional rendering. Such a method also includes defining
an additional plane in response to the selection of the single point, wherein the
plane and the additional plane each define a cross section of the object thereon.
Such a method further includes calculating a characteristic of each of the defined
cross sections, and choosing one of the plane and the additional plane based on the
calculated characteristics. In such a method, choosing one of the plane and the additional
plane includes selecting a plane that defines a minimum cross sectional area of a
contiguous portion of the object and that passes through the single point. In such
a method, the calculated characteristic is an area of the defined cross section.
[0011] In another exemplary embodiment of the present disclosure, a digital image editing
method, includes viewing a two-dimensional slice image of an anatomical object of
interest corresponding to a three-dimensional volume image of the object, wherein
the volume image is characterized by first and second mutually exclusive segmentation
classes, selecting a single point on the slice image within the second segmentation
class, and forming a plurality of planes in response to the selection of the single
point, each plane of the plurality of planes passing through the single point and
defining a cross section of the object thereon. Such a method also includes calculating
a characteristic of each cross section defined by the plurality of planes, selecting
a plane of the plurality of planes based on the calculated characteristics, and classifying
the second segmentation class along the selected plane. In such an exemplary method,
calculating a characteristic of each cross section includes calculating an area of
a contiguous portion of each cross section defined by the plurality of planes. In
such an exemplary method, selecting a plane of the plurality of planes includes selecting
a plane defining a minimum cross sectional area of a contiguous portion of the object.
Additionally, in such a method, the first segmentation class corresponds to at least
one of a parenchyma, a vessel, and a chest wall, and the second segmentation class
corresponds to a lesion. Such a method further includes forming a three-dimensional
rendering of the object including a target portion and a remainder portion connected
by the selected plane. The method also includes rendering the remainder portion transparent
such that only the target portion is displayed in the three-dimensional rendering.
[0012] In a further exemplary embodiment of the present disclosure, a digital editing method
includes receiving a three-dimensional volume image of an anatomical object of interest,
wherein the volume image is characterized by first and second mutually exclusive segmentation
classes, deriving a three-dimensional view from the volume image, selecting a single
point on the three-dimensional view within the second segmentation class, and defining
a plane in response to the selection of the single point, the plane dividing the second
segmentation class into a target portion corresponding to the object and a remainder
portion. In such an exemplary method, the first segmentation class corresponds to
a parenchyma and the second segmentation class corresponds to a lesion connected to
one of a vessel and a chest wall. Such a method also includes identifying an additional
point on the three-dimensional view, the single point and the additional point both
being disposed on the plane. Additionally, in such a method the additional point lies
along a line of sight vector passing through the single point.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] The foregoing and other objects, features, and advantages of the invention will be
apparent from the following more particular description of the embodiments of the
invention, as illustrated in the accompanying drawings. The elements of the drawings
are not necessarily to scale relative to each other.
FIG. 1 is a diagram showing a medical imaging communications network of connected
computers suitable for practicing embodiments of the present disclosure.
FIG. 2 is a diagram illustrating a segmentation map and a selected point.
FIG. 3 is a diagram showing the resulting cut line projection and potential lesion
and vessel regions.
FIG. 4 is a diagram showing the final lesion segmentation map with vessel tissue.
FIG. 5A is a diagram showing regions divided by a cutting plane.
FIG. 5B is a diagram showing fragmented regions.
FIG. 6A is a diagram showing an operator viewing a segmentation map on a display.
FIG. 6B is a diagram showing a 3-dimensional selection point on the segmentation map.
DETAILED DESCRIPTION OF THE INVENTION
[0014] Reference is made to commonly assigned application
U.S. Serial No. 61/050,752 (Docket No. 94764), entitled "METHOD FOR INTERACTIVELY DETERMINING A BOUNDING SURFACE
FOR SEGMENTING A LESION IN A MEDICAL IMAGE", provisionally filed on May 6, 2008, the
entire disclosure of which is incorporated herein by reference.
[0015] Reference is also made to commonly assigned application
U.S. Serial No. 61/050,723 (Docket No. 94765), entitled "STATISTICS COLLECTION FOR LESION SEGMENTATION", provisionally
filed on May 6, 2008, the entire disclosure of which is incorporated herein by reference.
[0016] Many medical imaging applications are implemented via a PACS. These systems provide
a way for displaying digital images acquired by a wide variety of medical imaging
modalities such as, but not limited to, projection radiography (x-ray images), computed
tomography (CT images), ultrasound (US images), and magnetic resonance (MR images).
Each of the above mentioned medical imaging modalities contain slightly different
diagnostic information. In particular, CT and MR images, when viewed and studied by
a radiologist, can reveal much detail about a patient's 3-dimensional internal anatomy.
Computer algorithm technology can also be applied to medical images to enhance the
rendering of the diagnostic information, to detect an abnormal condition, i.e., computer
aided detection (CAD), and to make measurements relating to the patient's condition,
i.e., computer aided measurement (CAM).
[0017] Exemplary methods of the present disclosure may employ a computer algorithm segmenting
a portion of a medical image with anatomical relevance. In an exemplary embodiment,
the methods described herein may be used for the segmentation of abnormal pulmonary
lesion tissue from normal tissue. In such an embodiment, a user of the PACS system,
usually a radiologist, may review thoracic CT exam on a medical PACS and may indicate
to the CAM segmentation software the position and orientation of a suspected pulmonary
lesion. Typically, the user supplies two point locations associated with the suspected
lesion while viewing an axial slice of the CT exam. Optionally, the user can supply
more than two points within the exam. The voxel positions indicated by the user can
be located near, but not necessarily exactly on or within, the boundary of the pulmonary
lesion. Alternatively, the user can supply two points, one or both of which are wholly
within the lesion tissue region. The CAM segmentation software embodying the technology
of the present disclosure may then identify voxels that are part of the pulmonary
lesion, i.e. a segmentation of the lesion tissue is performed. Once the region associated
with the pulmonary lesion has been segmented features of the lesion can be quantified
analytically such as the corresponding volumetric size.
[0018] Although exemplary embodiments of the present disclosure may be described as a software
program, those skilled in the art will readily recognize that the equivalent of such
software can also be constructed in hardware.
[0019] FIG. 1 shows a medical imaging communications network that includes multiple connected
computers. Such a network of computers provides a way of sending and receiving information
between any two or more connected computers. An image capture device generates medical
digital images of a patient (not shown). An image capture device 10a symbolically
represents a number of medical digital image modality devices such as, but not limited
to, a computed tomography scanning device (CT) or Magnetic Resonance imaging scanning
device (MR) that are capable of producing 3-dimensional digital images of patient
anatomy.
[0020] A patient may be positioned on a movable table within the capture device assembly
such that the patient can be moved relative to the signal source of the capture device.
The capture device receives the signals that have passed through the patient in raw
form, processes these signals, and produces a slice digital image. Each slice digital
image represents a cross sectional, or slice, through the patient anatomy. Repositioning
the patient relative to the source signal and acquiring other slice digital images
can generate a slice image series. Typically this is done by placing the patient on
a bed that moves relative to the imaging apparatus. A slice image series, assembled
in proper order, can represent the full 3-dimensional volume of an imaged patient.
[0021] Also connected to a communications network 110 is a digital radiographic (DR) capture
device 10b capable of producing digital x-ray images. As such, the images produced
by a DR capture device typically are one or more 2-dimensional digital images each
representing a different exposure and/or imaging path through the patient. For example,
the DR capture device 10b can be used to acquire multiple projection radiographic
digital images with its x-ray source located in different positions relative to the
patient. The resulting DR radiographic digital images can be processed to produce
a set of tomosynthesis slice digital images that represent a 3-dimensional digital
image of the patient.
[0022] The slice digital images (not shown) produced by the capture device 10a are transmitted
via the communications network 110 to an image archive computer 140 where, along with
patient history information, they become part of an electronic patient history record.
A function performed by the image archive computer 140 is the facilitation of transfer
or exchange of image information rather than the processing of information. The image
archive computer 140 serves as a large storage repository of digital images and other,
but unspecified, medical information. The arrows in the diagram of FIG. 1 represent
the exchange of information, which in general, is bi-directional i.e.; the flow of
information can be in either direction.
[0023] The slice images are later queried on a diagnostic workstation computer 120, sometimes
referred to as a PACS, for viewing and examination by a radiologist or similarly trained
medical professional. The diagnostic workstation computer 120 can have multiple electronic
displays connected for viewing medical images. Two such electronic display devices
42a and 42b are shown in FIG. 1. Also connected to the diagnostic workstation computer
120 are input devices 44a and 44b depicted here as keyboard and mouse devices, respectively.
Although embodiments of the present disclosure may be operable within the context
of a diagnostic workstation computer, it should be noted that any computing device
capable of displaying and processing image data might be used. For example, a mobile
computer 60 shown in FIG. 1 can be used with the present invention. Thus, it is not
necessary for the computer to be physically connected to the communications network
110.
[0024] A PACS can be defined as a system that acquires, transmits, stores, retrieves, and
displays digital images and related patient information from a variety of imaging
sources and communicates the information over a network. By this definition, the diagnostic
workstation computer 120 shown in FIG. 1 can represent a PACS. Similarly, the combination
of the diagnostic workstation computer 120, mobile computer 60, image archive computer
140, and communication network 110 can collectively be considered a PACS. In addition
to the patient digital images, PACS transmit, receive, and store other electronic
patient record information such as, but is not limited to, non-image information (meta-data)
such as age, sex, medical history, prescribed medications, symptoms, etc.
[0025] For the purposes of this disclosure, the collection of interconnected computers including
the communications network will be also be referred to as a "DICOM" network since
DICOM (
Digital Imaging and Communications in Medicine PS 3.3-1999, National Electrical Manufacturers
Association, 1999) formatted digital images are currently is the industry standard and the most prevalent
file encoding used for medical digital images. Typically, a 3-dimensional volume image
is constructed from a set of 2-dimensional slice digital images wherein each slice
digital image is encoded as an individual DICOM file.
[0026] Often an individual digital image data element, i.e., single value representing measured
image signal intensity, is referred to as a "voxel" for 3-dimensional images and a
"pixel" for 2-dimensional images. The term voxel is commonly used to characterize
a volume-element whereas the term pixel is commonly used to characterize a picture-element.
Exemplary embodiments of the present disclosure can be applied to 2-dimensional and
3-dimensional images. As such, for the purposes of the description herein, the terms
voxel and pixel should be considered interchangeable, i.e., describing an image elemental
datum capable of having a range of numerical values. Voxel and pixels can be said
to have the attributes both of location and value.
[0027] With the medical imaging system setup as described above and shown in FIG. 1, a medical
professional, such as a radiologist, uses the keyboard 44a or mouse 44b to indicate
to a software application program 150, running on the diagnostic workstation computer
120, the desired patient record to be loaded into memory. The CT digital image exam,
i.e., the set of CT slice digital images, is then retrieved from the image archive
computer 140 and displayed on the electronic display devices 42a and 42b. After viewing
the image data, the medical professional indicates to the system the location of a
suspected pulmonary lesion with a click of the mouse, input device 44b. Typically,
this is performed by sequentially scrolling through the 2-dimensional slices digital
images and selecting the slice digital image that best shows the suspected pulmonary
lesion.
[0028] Embodiments of the present disclosure may be used for the purpose of collecting statistical
information regarding an anatomical region or object of interest, such as lesion tissue,
i.e., localized abnormal tissue regions. However, any localized anatomical region
or object of interest within a set of medical diagnostic digital images can serve
as the focus region of the collection of statistical information. For example, an
anatomical region or object of interest could be an entire organ such as the liver.
[0029] Embodiments of the present disclosure may be used in conjunction with automatic segmentation
algorithms. Given that any automatic segmentation algorithm will make misclassification
judgments with regard to normal and abnormal tissue, there is a need for a fast recovery
tool that a trained observer can quickly repair a segmentation map. A typical use
case scenario would include a radiologist using a PACS to review patient CT cases.
Automatic segmentation of pulmonary lesions is initiated either by running a computer
aided detection (CAD) algorithm that automatically finds lesions or by the operator
viewing the image data and manually selecting a lesion to segment. In either scenario,
a segmentation map results from the automatic segmentation algorithm. A segmentation
map is essentially a classification label given to each voxel in the map as to the
identified tissue type. Each location in the segmentation map corresponds to a location
in the original image voxel data set. For exemplary pulmonary lesion segmentation
algorithms, the types of tissue that can be classified include; lesion, vessel, parenchyma,
and chest wall.
[0030] FIG. 2 depicts a segmentation map that could result from an automatic segmentation
algorithm. The user indicates seed point 200 to the automatic segmentation algorithm
that uses this point to classify, or label, the voxel regions within a CT exam. Region
201 is labeled as the parenchyma tissue, or just as background, meaning that any voxel
labeled as background is not part of a vessel or lesion. These two segmentation classes
may be mutually exclusive. Although there are probably vessels that exist within the
region 201, classifying those vessels may not be of interest since none of the vessels
directly contacts the lesion. Region 204 is labeled as lesion tissue. However, parts
of region 201 are misclassified as lesion tissue and are actually part of a vessel.
Regions 202 and 203 are correctly classified as corresponding to vessel tissue.
[0031] In an exemplary embodiment, the automatic segmentation results may be displayed as
colored outlines overlaid on top of the CT slice voxel data. This allows the observer
to view directly both the structure of the voxel data and the regions that the automatic
segmentation algorithm has identified as lesion and vessel. Tissue regions identified
as background are rendered as transparent. The operator of the PACS, usually a radiologist,
views the results of the automatic segmentation processing and decides if the segmentation
needs alteration. When the operator decides to alter the segmentation map, he or she
uses the mouse to make a single click, indicated by edit point 205. The image editing
algorithm uses the segmentation map and the designated edit point edit 205 to reclassify
region 204 as part lesion region 215 and part vessel region 216 as shown in FIG. 4.
[0032] The image-editing algorithm constructs a cutting plane in 3-dimensional space that
includes the edit point 205 shown in FIG. 2. Line 206, shown in FIG. 3, is the projection
of that 3-dimensional cutting plane. The cutting plane is used to divide the lesion
region 204 (shown in FIG. 2) into two parts; potential lesion region 207 and potential
vessel region 208. This division of the original lesion region 204 is performed in
a 3-dimensional sense, i.e. the region is divided as a 3-dimensional object. With
the original lesion region 204 divided into two parts, a decision must be made as
to which of the two parts remains classified as lesion tissue versus some other tissue
type. Since region 207 also contains the seed point 204, it becomes the part of lesion
region 204 that remains classified as lesion tissue. The other part of region 204
now becomes classified as vessel tissue since this region contacts two vessel regions
202 and 203 (shown in FIG. 2). Reclassified regions resulting from the action of the
cutting plane can be classified as chest wall tissue if the region to be reclassified
is adjacent with chest wall classified regions.
[0033] The act of dividing a region into two parts can result in some unexpected fragment
regions. FIG. 5A illustrates a typical scenario in which lesion region 209 is divided
by a cutting plane shown as projected line 210. As part of the reclassification processing,
each voxel in the CT image data set is assigned to be on the same side of the cutting
plane as the seed point or on the opposite side. FIG. 5B shows fragment regions 213
and 214 that have been assigned to be on the same side of the plane as seed point
211. Lesion region 212 is obtained by performing a connected component analysis starting
with seed point 211. However, since fragment regions 213 and 214 are not connected
with seed point 211 they are reclassified as vessel regions.
[0034] Referring again to FIG. 2, the operator of the PACS may decide to alter the segmentation
map that includes lesion and vessel regions. The operator selects edit point 205 without
having to specify the orientation of the resulting cutting plane. A cutting plane
algorithm uses the segmentation map and the specified edit point to determine automatically
the orientation of the cutting plane. A number of candidate cutting planes are constructed
and evaluated. For each candidate cutting plane, the cross sectional area that the
cutting plane makes with the segmentation map is calculated. After all candidate cutting
planes have been evaluated, the cutting plane with the lowest calculated cross sectional
area is selected as the cutting plane to be used. As each candidate cutting plane
is evaluated, on the cross sectional area of lesion regions is counted, i.e. cross
sectional area of vessel or other tissue type regions does not affect the selection
of the cutting plane orientation. Additionally, only the cross sectional area of connected
or contiguous regions with the seed point are counted as well. Thus, for the example
illustrated in FIG. 5A and FIG. 5B, the fragment regions 213 and 214 would not affect
the selection of the cutting plane orientation.
[0035] As part of the optimization of the orientation of the cutting plane, the orientation
of each candidate-cutting plane is described by an azimuth angle θ, and a clocking
angle φ in a polar coordinate system. The azimuth angle θ is varied from 0 to π/2
and the clocking angle f is varied from 0 to π. For the ring of points located on
the equator of the polar coordinate system (θ = 90 degrees), N
o φ angle points (typically 72) are evaluated. The number of points for each corresponding
latitude ring, the number of points evaluated diminishes given the relationship:

[0036] This relationship allows for the approximate change in solid angle sampling as a
function of the azimuth angle θ.
[0037] For a given candidate cutting plane described by θ and φ, a 2-dimensional grid of
points is laid out with the edit point at the center. Voxel values for grid locations
are determined by tri-linear interpolation with regard to the segmentation map value.
[0038] Embodiments of the present disclosure can also be used with other mathematical methods
that minimize the cross sectional area the cutting plane makes with the segmentation
map. For example, a Simplex optimization strategy can be used. This method starts
with initial values for angles θ and φ. Then values for q and f are proposed as "good"
directions to migrate these angle values based on an evaluation function. For this
scenario, the evaluation function is the value of the cross sectional area. The preferred
embodiment of the present invention uses the angle sampling approach described above.
A problem with the Simplex optimization approach is that the algorithm may identify
a local minimum with regard to the cross sectional area. The aforementioned method
globally samples possible values for the cutting plane and an approximation of the
minimum cross sectional area is guaranteed. If finer control is desired, the results
of the global approach can be used as a starting point for an optimization method,
as the starting point will be in the neighborhood of the true minimum cross sectional
slice.
[0039] The operator of a PACS can select the edit point while viewing the segmentation map
as a 3-dimensional object as per a single point perspective rendering. The graphical
user interface of the diagnostic workstation allows the operator to rotate, translate,
and zoom the perspective of segmentation maps. The operator can change the view of
the segmentation until a satisfactory view is obtained. This feature of the user interface
allows the operator to have confidence in the geometry relationships of the parts
of the segmentation map.
[0040] Referring to FIG. 6A, the operator 301 views a segmentation map on electronic display
device 42a (shown in FIG. 1) shown as item 302. Pictorially represented on electronic
display device 302 is the cursor position of the mouse which serves as the 2-dimensional
edit point. The 2-dimensional selection point is converted into a 3-dimensional edit
point using the same single point perspective equations that were used to generate
the 3-dimensional view of the segmentation map. The 3-dimensional selection point,
shown as point 305 in FIG. 6B, represents the closest point to the observer in the
graphics coordinate system wherein the observer is placed at the single point perspective.
The ray 304 is constructed along the line-of-sight vector emanating from the single
point perspective. Points 305 and 306 represent entrance and exit points with respect
to the ray 304. The 3-dimensional edit point 307 is constructed by taking the midpoint
between the entrance point 305 and exit point 306.
[0041] Embodiments of the present disclosure have advantages relative to prior art methods,
in particular, to the method described by
Igarashi et al. in the SigGraph 99 article "Teddy: A Sketching Interface for 3D Freeform
Design". For eample, embodiments of the present disclosure will work with an object having
any arbitrary shape. Embodiments of the present disclosure also enable the user to
specify the clipping surface or plane with the selection of a single point. The method
described by Igarashi et al, on the other hand, requires two points and the object
oriented precisely relative to the single point perspective. Embodiments of the present
disclosure also enable the user to select the single edit point from either a 2-dimensional
or 3-dimensional representation of the object to be edited. In an exemplary embodiment,
a graphical user interface presents the operator of the system 2-dimensional slice
presentation of the CT voxel data and a 3-dimensional view of the segmented anatomy
region of interest. The operator then can choose between the 2-dimensional and 3-dimensional
view for the selection of the edit point.
[0042] While the present disclosure includes descriptions of various preferred embodiments,
it should be understood by those having skill in the art that the descriptions herein
are merely exemplary and that various changes may be made and equivalents may be substituted
for elements thereof without departing from the scope of the invention. Therefore,
it is intended that the invention not be limited to the best mode of carrying out
this invention or to the particular embodiments disclosed herein, but that the invention
will include all embodiments falling within the scope and spirit of the appended claims.
PARTS LIST
[0043]
- 10a
- image capture device
- 10b
- image capture device
- 42a
- electronic display device
- 42b
- electronic display device
- 44a
- input control device
- 44b
- input control device
- 60
- mobile computer
- 110
- communications network
- 120
- diagnostic workstation computer
- 140
- image archive computer
- 150
- software application program
- 200
- seed point
- 201
- background region
- 202
- vessel region
- 203
- vessel region
- 204
- lesion region
- 205
- edit point
- 206
- line
- 207
- potential lesion region
- 208
- potential vessel region
- 209
- lesion region
- 210
- line
- 211
- seed point
- 212
- lesion region
- 213
- fragment region
- 214
- fragment region
- 215
- lesion region
- 216
- vessel region
- 301
- operator
- 302
- segmentation map
- 304
- ray
- 305
- point
- 306
- point
- 307
- point
1. A digital image editing method, comprising:
receiving a three-dimensional volume image of an anatomical object of interest, wherein
the volume image is characterized by first and second mutually exclusive segmentation classes;
deriving a two-dimensional slice image from the volume image;
selecting a single point on the slice image within the second segmentation class;
and
defining a plane in response to the selection of the single point, the plane dividing
the second segmentation class into a target portion corresponding to the object and
a remainder portion.
2. The method of claim 1, wherein the first segmentation class corresponds to at least
one of a parenchyma, a vessel, and a chest wall, and the second segmentation class
corresponds to a lesion.
3. The method of claim 1, wherein the target portion corresponds to a lesion, and the
remainder portion corresponds to at least one of a parenchyma, a vessel, and a chest
wall.
4. The method of claim 1, wherein the single point lies within the plate.
5. The method of claim 1, further including creating a three-dimensional rendering of
the target and remainder portions connected at the first plane.
6. The method of claim 5, further including rendering the remainder portion transparent
such that only the target portion is displayed in the three-dimensional rendering.
7. The method of claim 1, further including defining an additional plane in response
to the selection of the single point, wherein the plane and the additional plane each
define a cross section of the object thereon.
8. The method of claim 7, further including calculating a characteristic of each of the
defined cross sections, and choosing one of the plane and the additional plane based
on the calculated characteristics.
9. A digital image editing method, comprising:
viewing a two-dimensional slice image of an anatomical object of interest corresponding
to a three-dimensional volume image of the object, wherein the volume image is characterized by first and second mutually exclusive segmentation classes;
selecting a single point on the slice image within the second segmentation class;
forming a plurality of planes in response to the selection of the single point, each
plane of the plurality of planes passing through the single point and defining a cross
section of the object thereon;
calculating a characteristic of each cross section defined by the plurality of planes;
selecting a plane of the plurality of planes based on the calculated characteristics;
and
classifying the second segmentation class along the selected plane.
10. The method of claim 9, wherein calculating a characteristic of each cross section
comprises calculating an area of a contiguous portion of each cross section defined
by the plurality of planes.
11. The method of claim 9, wherein selecting a plane of the plurality of planes comprises
selecting a plane defining a minimum cross sectional area of a contiguous portion
of the object.
12. The method of claim 9, wherein the first segmentation class corresponds to at least
one of a parenchyma, a vessel, and a chest wall, and the second segmentation class
corresponds to a lesion.
13. The method of claim 9, further including forming a three-dimensional rendering of
the object comprising a target portion and a remainder portion connected by the selected
plane.
14. A digital image editing method, comprising:
receiving a three-dimensional volume image of an anatomical object of interest, wherein
the volume image is characterized by first and second mutually exclusive segmentation classes;
deriving a three-dimensional view from the volume image;
selecting a single point on the three-dimensional view within the second segmentation
class; and
defining a plane in response to the selection of the single point, the plane dividing
the second segmentation class into a target portion corresponding to the object and
a remainder portion.
15. The method of claim 14, wherein the additional point lies along a line of sight vector
passing through the single point.