

(11) EP 2 128 277 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: **02.12.2009 Bulletin 2009/49**

(51) Int Cl.: *C21D 8/02* (2006.01)

C21D 8/00 (2006.01)

(21) Application number: 08164667.1

(22) Date of filing: 19.09.2008

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Designated Extension States:

AL BA MK RS

(30) Priority: 29.05.2008 SE 0801262

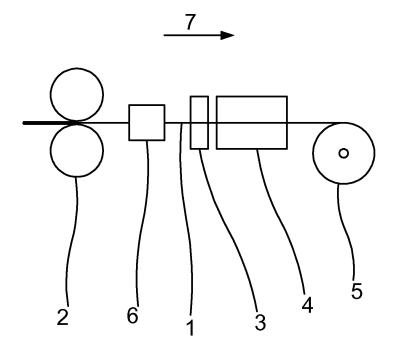
(71) Applicant: Aga AB 181 81 Lidingö (SE) (72) Inventors:

Gartz, Mats
 192 63, Sollentuna (SE)

 Ritzen, Ola 184 94, Åkersberga (SE)

• Carlsson, Anders 635 09, Eskilstuna (SE)

(74) Representative: Örtenblad, Bertil Tore Noréns Patentbyra AB P.O. Box 10198


100 55 Stockholm (SE)

(54) Method for annealing metal strips

(57) Method for use when hot rolling steel strips (1), where the strip (1) in a first step is hot rolled, in a second step is annealed, and where it finally is coiled for storage, transport or additional processing.

The invention is **characterised in that** the annealing is caused to take place in an annealing furnace (4) through which the strip (1) is transported after the hot rolling but before the coiling.

Fig. 1

[0001] The present invention relates to hot rolling of steel strips. More precisely, the invention relates to a method for annealing of steel strips in connection with such hot rolling.

1

[0002] Today, strips of stainless steel are manufactured by rolling in for example Steckel type rolling mills, in which the strip is hot rolled in several steps between which steps the strip is coiled. Another type of rolling mills is those of tandem type, in which hot rolling takes place at several parallel stations. Typically, hot rolling takes place at a temperature of about 900°C - 1200°C, and is followed firstly by an annealing step at typically about 1100°C - 1200°C and thereafter by a pickling step.

[0003] Conventionally, strips have been let to cool down between hot rolling and annealing, and the strip has been reheated to the desired annealing temperature. This has resulted in an unnecessarily large energy consumption, as well as unnecessarily heavy material deterioration, among other things as a consequence of oxide scaling, and consequently leading to increased needs for cleaning and pickling.

[0004] In the article "Direktglühen - neue Strasse im Fertigungsverfahren von ferritischem, rostfreiem Stahl in Betrieb genommen", published in the journal GAS-WÄRME International (53) No. 7/2004, a method is disclosed in which the coiled steel strip is placed in an annealing furnace immediately following the last hot rolling step. Hereby, a large part of the thermal energy of the strip may be recovered for the annealing step.

[0005] However, it takes a non negligible period of time to heat such a steel strip coil from rolling temperature to annealing temperature, since heat conduction in the material is limited. Furthermore, during the heating process there are additional energy losses from which the material cannot benefit.

[0006] It is also possible to heat a rolled cooiled strip by the use of induction heating. This is associated with smaller losses of energy. However, such heating is sensitive for the dimensions and geometry of the material, as well as for the distance between the heat source and the heated material, and plants for induction heating are also quite costly.

[0007] Moreover, in order for the handling of the coils between the rolling and the annealing not to unacceptably affect the rate of production, expensive logistics equipment is often required.

[0008] The present invention solves the above described problems.

[0009] Thus, the invention relates to a method for use when hot rolling steel strips, where the strip in a first step is hot rolled, in a second step is annealed, and where it finally is coiled for storage, transport or additional processing, and is **characterised in that** the annealing is caused to be performed in an annealing furnace through which the strip is transported after the hot rolling but before the coiling.

[0010] In the following, the invention will be described in detail, with reference to exemplifying embodiments of the invention and to the appended drawing, in which:

[0011] Figure 1 is an overview over a method according to the present invention.

[0012] A strip made of steel, preferably stainless steel, 1 is hot rolled in a hot rolling step 2. Preferably, the hot rolling takes place in a rolling mill of Steckel type, but it may also take place in a rolling mill of tandem type. The rolling temperature is conventional and typically lies between 900°C and 1200°C.

[0013] After the rolling, the strip 1 is transported, continuously and in the direction as indicated by the arrow 7, up to and through an annealing furnace 4, in which the strip 1 is annealed. According to a preferred embodiment, the annealing takes place at an essentially constant temperature of between 1100°C and 1200°C.

[0014] After annealing, the strip 1 is further transported to a coiling station 5, where the strip 1 is coiled on a roll for storage, transport or additional processing, such as a cold rolling step.

[0015] Thus, annealing is caused to be carried out on the not yet coiled strip 1. Hereby, higher efficiency and better use of resources in the heating of the strip 1 to annealing temperature is achieved. Furthermore, this heating is quicker than in case the coiled strip had been heated to annealing temperature. Only after annealing, the strip 1 is coiled at the coiling station 5.

[0016] According to a preferred embodiment, the annealing furnace 4 is heated by at least one oxyfuel burner. Preferably, the oxyfuel burner is driven with a gaseous fuel, such as natural gas or propane, and an oxidant with an oxygen content of at least 80 percentages by weight. [0017] In case one or several such burners are used in an annealing furnace 4 of the type described herein, the addition advantage is achieved that the heating efficiency increases further in comparison to annealing furnaces being heated by conventional air burners, and the heating is energy efficient even at the elevated temperatures at which annealing is performed.

[0018] According to a preferred embodiment, the annealing furnace 4 is a tunnel furnace, and annealing of the strip 1 takes place continuously since the strip 1 is transported through the annealing furnace 4 with essentially constant velocity. Thus, the strip 1 may be moving all the time, with no operation interruptions, until it has been coiled at the coiling station 5.

[0019] According to a preferred embodiment, before annealing but after rolling, the strip 1 is caused to cool down from rolling temperature to a transformation temperature, at which precipitation and/or recrystallisation takes place in the material of the strip 1. According to a preferred embodiment, this transformation temperature is below about 400°C. This cooling down is performed in a conventional manner per se in a cooling down station 6. [0020] According to a preferred embodiment, it is possible to temporarily refrain from the cooling down step by disconnecting the function of the cooling down station 6

50

5

10

15

20

25

30

from the process. In this way, cooling down may be performed only when necessary, depending on the material of the strip 1, desired final result, etc., however the cooling down function may be reconnected again when so is desired. In other words, an increased flexibility is achieved in the process, without adding any serious drawback as to its efficiency.

[0021] In order to quickly boost the temperature of the strip 1 before the annealing step and after the rolling step 2 or the cooling down step 6, according to a preferred embodiment one or several DFI burners are used in a preheating step 3. Preferably, the DFI burners are driven with a gaseous fuel, such as propane or natural gas, and an oxidant with an oxygen content of at least 80 percentages by weight.

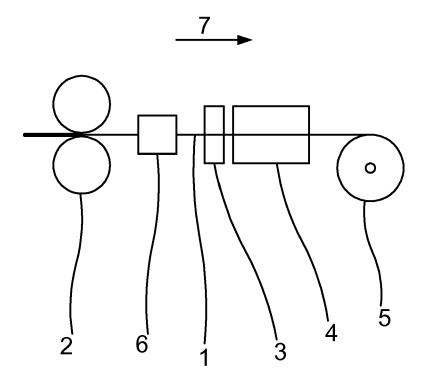
[0022] According to a preferred embodiment, the strip 1 is heated so that it essentially reaches the desired annealing temperature before it leaves the preheating step 3. In this way, the strip 1 has the correct temperature even before it is brought into the annealing furnace 3, whereby annealing does not have to last longer than necessary.

[0023] In case a disconnectable cooling down step is used, according to the above said, according to a preferred embodiment the preheating step 3 is also arranged so that its power may be adapted to the temperature of the strip 1 at the entry into the preheating step 3. By way of example, this may be achieved by controlling the number of simultaneously switched on DFI burners, by controlling the power of the DFI burners, etc. In this way, a suitable preheating can be achieved, regardless of if a cooling down step is performed or not.

[0024] According to yet another preferred embodiment, the annealing furnace 4 itself comprises one or several DFI burners, of the type described above, that in combination with one or several oxyfuel burners achieve the annealing of the strip 1.

[0025] Hence, by using a method according to the present inventions, a cheap, fast and efficient annealing of hot rolled steel strips is achieved, with no unnecessary thermal losses. Moreover, the annealing is not sensitive for neither the dimensions and the geometrical design of the preheated material, nor the distance between the heat source and the material, which is the case when using for example induction heating.

[0026] Furthermore, the extra processing step implied by having a separately arranged annealing furnace for coiled steel strips may be eliminated, which saves time as well as space, and which leads to increased production capacity, but also to diminished costs in terms of installation and maintenance.


[0027] Above, preferred embodiments have been described. However, it is apparent for the skilled person that many modifications may be made to the described embodiments without departing from the spirit of the invention. Thus, the invention shall not be limited by the described embodiments, but may be varied within the frame of the enclosed claims.

Claims

- Method for use when hot rolling steel strips (1), where
 the strip (1) in a first step is hot rolled, in a second
 step is annealed, and where it finally is coiled for
 storage, transport or additional processing, characterised in that the annealing is caused to take place
 in an annealing furnace (4) through which the strip
 (1) is transported after the hot rolling but before the
 coiling.
- 2. Method according to claim 1, characterised in that the additional processing step is caused to be comprised of cold rolling.
- 3. Method according to claim 1 or 2, characterised in that the strip (1) is caused to be cooled down to a temperature below the transformation temperature for recrystallisation and/or precipitation of the material before the annealing.
- **4.** Method according to any one of the preceding claims, **characterised in that** the annealing is caused to take place at an essentially constant temperature of between 1100°C and 1200°C.
- Method according to any one of the preceding claims, characterised in that the rolling is caused to be performed in a rolling mill of Steckel type.
- 6. Method according to any one of the preceding claims, characterised in that the annealing furnace (4) is caused to be heated by at least one oxyfuel burner.
- 7. Method according to any one of the preceding claims, **characterised in that** the strip (1) is caused to be preheated by at least one DFI burner.
- 40 **8.** Method according to claim 7, **characterised in that** the strip (1) is caused to be preheated to the annealing temperature of the material.
- 9. Method according to claim 7 or 8, characterised in that the DFI burner is caused to be arranged along the transportation path of the strip (1) between the rolling step and the annealing step.
 - 10. Method according to any one of the preceding claims, **characterised in that** the annealing furnace (4) is a tunnel furnace, and **in that** the annealing of the strip (1) is caused to be performed continuously by the strip (1) being transported through the annealing furnace (4) with a constant velocity.

50

Fig. 1

EUROPEAN SEARCH REPORT

Application Number EP 08 16 4667

Category	Citation of document with in	ndication, where appropriate,	Relevant	CLASSIFICATION OF THE	
Calegory	of relevant passa		to claim	APPLICATION (IPC)	
Х	CORNELISSEN MARCUS AL) 11 December 199	page 23, line 25 *	1-10	INV. C21D8/02 C21D8/00	
Х	EP 1 037 721 B (COR 12 November 2003 (2 * paragraphs [0027] figures 1-3 *		1,3		
Х	US 4 861 390 A (SAT 29 August 1989 (198 * claims 1,4 *	OH SUSUMU [JP] ET AL) 9-08-29)	1,3		
Х	[BE]) 20 January 19 * page 3, line 16 -	TRE RECH METALLURGIQUE 93 (1993-01-20) line 35 * line 19; claims 1,6-9	1,3		
X	AL) 30 June 1998 (1 * column 1, line 60	EMER STEPHAN [DE] ET 998-06-30) - column 2, line 41 * - line 35; claims 1-5;	1,5	TECHNICAL FIELDS SEARCHED (IPC) C21D B21B B21C	
Х	24 November 1977 (1	- column 4, line 11;	1,5		
A	EP 0 937 512 A (KVA CASTING [GB]) 25 Au * the whole documen	gust 1999 (1999-08-25)	1-10		
	The present search report has b	peen drawn up for all claims			
	Place of search	Date of completion of the search		Examiner	
	Munich	2 December 2008	Gav	vriliu, Alexandru	
X : parti Y : parti docu A : tech	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category noological background written disclosure	L : document cited fo	ument, but puble e n the application or other reasons	ished on, or	

EUROPEAN SEARCH REPORT

Application Number

EP 08 16 4667

- 1	DOCUMENTS CONSIDERED				
Category	Citation of document with indication of relevant passages	n, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)	
A		TECHNIQUES DE LA EVUE DE 1994 (1994-04-01),		TECHNICAL FIELDS SEARCHED (IPC)	
	The present search report has been dr	awn up for all claims Date of completion of the search		Examiner	
Munich		2 December 2008	Gav	riliu, Alexandru	
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: interrmediate document		T : theory or principle E : earlier patent doo after the filing date D : document cited in L : document cited fo	y or principle underlying the invention or patent document, but published on, or the filing date ment cited in the application ment cited for other reasons over of the same patent family, corresponding		

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 08 16 4667

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

02-12-2008

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9746332	Α ΄	11-12-1997	AT	276054 T	15-10-2
			ΑU	722051 B2	20-07-2
			ΑU	3107897 A	05-01-1
			BR	9709545 A	10-08-1
			CA	2257472 A1	11-12-1
			CN	1225043 A	04-08-1
			CZ	9804017 A3	17-11-1
			DE	69730750 D1	21-10-2
			DE	69730750 T2	29-09-2
			ĒΡ	1007232 A1	14-06-2
			ES	2225973 T3	16-03-2
			ΙD	17728 A	22-01-1
			JΡ	2000503906 T	04-04-2
			KR	20000016559 A	25-03-2
			NL	1003293 C2	10-12-1
			NL	1003293 A1	10-12-1
			PL	330326 A1	10-05-1
			PT	1007232 T	31-01-2
			SK	168498 A3	08-10-1
			TR	9802545 T2	22-03-1
			ÜS	6280542 B1	28-08-2
			ZA	9705069 A	19-02-1
EP 1037721	В	12-11-2003	AT	253993 T	15-11-2
			ΑU	757456 B2	20-02-2
			ΑU	1512799 A	28-06-1
			BR	9813441 A	10-10-2
			CA	2313535 A1	17-06-1
			CN	1281394 A	24-01-2
			CZ	20001782 A3	11-07-2
			DE	69819773 D1	18-12-2
			DE	69819773 T2	30-09-2
			EP	1037721 A1	27-09-2
			ES	2210844 T3	01-07-2
			JP	2001525255 T	11-12-2
			NL	1007731 C2	09-06-1
			WO	9929446 A1	17-06-1
			PL	340998 A1	12-03-2
			PT	1037721 T	30-04-2
			RU	2218426 C2	10-12-2
			SK	8492000 A3	07-11-2
			TR	200001625 T2	21-12-2
			TW	430575 B	21-04-2
			UA	63982 C2	15-12-2
			US	6616778 B1	09-09-2
			ZΑ	9811209 A	09-06-1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 08 16 4667

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

02-12-2008

AU 5438786 A 11-09-19 BR 8600962 A 11-11-19 CA 1271396 A1 10-07-19 DE 3672864 D1 30-08-19 EP 0196788 A2 08-10-19 EP 0524162 A 20-01-1993 DE 69227548 D1 17-12-19 DE 69227548 T2 29-07-19 US 5771732 A 30-06-1998 AT 189137 T 15-02-20 CA 2173697 A1 20-10-19 CN 1144722 A 12-03-19 DE 19514475 A1 24-10-19 EP 0738547 A1 23-10-19 ES 2142511 T3 16-04-20 JP 8290210 A 05-11-19 RU 2206418 C2 20-06-20 DE 2630877 B1 24-11-1977 NONE EP 0937512 A 25-08-1999 GB 2334464 A 25-08-19	Patent document cited in search report		Publication date		Patent family member(s)	Publication date
DE 69227548 T2 29-07-19 US 5771732 A 30-06-1998 AT 189137 T 15-02-20 CA 2173697 A1 20-10-19 CN 1144722 A 12-03-19 DE 19514475 A1 24-10-19 EP 0738547 A1 23-10-19 ES 2142511 T3 16-04-20 JP 8290210 A 05-11-19 RU 2206418 C2 20-06-20 DE 2630877 B1 24-11-1977 NONE EP 0937512 A 25-08-1999 GB 2334464 A 25-08-19	US 4861390	A	29-08-1989	AU BR CA DE	5438786 A 8600962 A 1271396 A1 3672864 D1	22-10-198 11-09-198 11-11-198 10-07-199 30-08-199
CA 2173697 A1 20-10-19 CN 1144722 A 12-03-19 DE 19514475 A1 24-10-19 EP 0738547 A1 23-10-19 ES 2142511 T3 16-04-20 JP 8290210 A 05-11-19 RU 2206418 C2 20-06-20 DE 2630877 B1 24-11-1977 NONE EP 0937512 A 25-08-1999 GB 2334464 A 25-08-19	EP 0524162	Α	20-01-1993			17-12-199 29-07-199
EP 0937512 A 25-08-1999 GB 2334464 A 25-08-19	US 5771732	Α	30-06-1998	CA CN DE EP ES JP	2173697 A1 1144722 A 19514475 A1 0738547 A1 2142511 T3 8290210 A	15-02-200 20-10-199 12-03-199 24-10-199 23-10-199 16-04-200 05-11-199 20-06-200
EP 0937512 A 25-08-1999 GB 2334464 A 25-08-19 JP 11315325 A 16-11-19	DE 2630877	B1	24-11-1977	NONE		
	EP 0937512	Α	25-08-1999		2334464 A 11315325 A	25-08-19 16-11-19

FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 2 128 277 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

 Direktglühen - neue Strasse im Fertigungsverfahren von ferritischem, rostfreiem Stahl in Betrieb genommen. journal GASWÄRME International, July 2004 [0004]