Technical Field
[0001] This invention relates to an apparatus for determining a plurality of gas appliances
connected to gas piping after passing through a gas meter and monitoring the use state
of gas individually.
Background Art
[0002] Conventionally, as this kind of gas monitoring apparatus, there are an apparatus
including a flow rate measurement unit for outputting a signal in response to the
gas rate passing through a gas meter placed in a gas supplying pipe line, an individual
gas appliance flow rate computation unit for calculating a change flow rate of the
gas rate passing through the gas meter according to the signal from the flow rate
measurement unit and classifying into the gas rate for each individual gas appliance,
a sensor unit for providing input signals other than the change flow rate, such as
outdoor air temperature, calendar information, and use start time information, for
example, and a composite computation unit for compounding the information provided
from the individual gas appliance flow rate computation unit and the sensor unit and
determining the used gas appliance (for example, refer to patent document 1) and an
apparatus including a sound producing unit each being installed in the individual
gas flow path of each gas appliance for producing a monitor sound at a predetermined
frequency corresponding to the individual gas appliance in the strength responsive
to the gas flow rate and a monitor unit for monitoring the use state of the individual
gas appliance based on the monitor sound produced by each sound producing unit (for
example, refer to patent document 2).
[0003] As an apparatus for limiting the continuous use time to prevent an accident caused
by forgetting to turn off a gas appliance, etc., an apparatus for setting the continuous
use time in response to the flow rate and shutting off gas when the continuous use
time has elapsed is available (for example, patent document 3).
Patent document 1: Japanese Patent Laid-Open No. H03-236513A
Patent document 2: Japanese Patent Laid-Open No. H08-178195A
Patent document 3: Japanese Patent Laid-Open No. H07-44239A
Disclosure of the Invention
Problems to be Solved by the Invention
[0004] However, the gas appliance monitoring apparatus disclosed in the patent documents
described above need to be provided with a gas appliance determination unit involving
a complicated control circuit; particularly in patent document 1, the individual gas
appliance flow rate computation unit for classifying into the gas rate for each individual
gas appliance from the change flow rate of the gas rate passing through the gas meter
is provided and further various pieces of sensor information to determine the use
environment are compounded and the used gas appliance is estimated. Considering the
need for the complicated circuit configuration, a problem still remains in certainty
to determine the used gas appliance.
[0005] The apparatus in patent document 2 produces a monitor sound at a frequency responsive
to the magnitude of the gas flow rare flowing into each gas appliance, collects the
monitor sound, and determines the used gas appliance. Thus, although certainty can
be improved in that the used gas appliance is determined based on the information
output from the individual gas appliance, there is a problem in that a whistle device
for producing a sound responsive to the flow rate, a microphone for collecting the
sound, and an analysis circuit are necessary and an extremely complicated circuit
configuration is required.
[0006] In the apparatus in patent document 3, the continuous use time is uniformly set in
response to the gas flow rate regardless of the type of gas appliance and the use
time corresponding to the unique use of each gas appliance is not set; for example,
a newest gas appliance with a full safety function and a gas appliance of 20 years
past with a poor safety function, although they are gas appliances, are limited as
the same use time if the flow rate range is the same. If the use time is limited with
the newest gas appliance as the reference, the prevention time of forgetting to turn
off the gas appliance of 20 years past is prolonged and the risk increases. In contrast,
if the use time is limited with the gas appliance of 20 years past as the reference,
an early turning-off phenomenon of the newest gas appliance occurs; this is a problem.
[0007] The invention is intended for solving the above-mentioned problems and it is an object
of the invention to provide a gas appliance monitoring apparatus wherein an appliance
detection unit capable of detecting the operation start of a gas appliance without
receiving a signal from a gas appliance controller and an appliance wireless module
capable of transmitting operation start information to a gas meter are provided and
are housed in a gas appliance, the gas appliance monitoring apparatus capable of monitoring
the appropriate use time responsive to an already existing old gas appliance by monitoring
the continuous use time of a specific gas appliance based on information from the
appliance wireless module.
Means For Solving the Problems
[0008] To solve the problems in the related arts described above, a gas appliance monitoring
apparatus of the invention is a gas appliance monitoring apparatus for monitoring
the use state of a plurality of gas appliances connected to piping after passing through
a gas meter, the gas appliance monitoring apparatus installing a wireless module capable
of transmitting and receiving directly to and from a plurality of parties using a
communication line other than a telephone line, wherein the gas meter includes a flow
rate measurement unit for measuring a gas flow rate, a gas shut-off valve for shutting
off a gas flow path at an abnormal time, a control circuit for performing predetermined
processing based on a measurement result of the flow rate measurement unit and outputting
a flow rate information, a meter wireless module for transmitting and receiving information
to and from a plurality of parties, and a communication switch unit for switching
a communication frequency band depending on the parties, wherein the meter wireless
module has at least a communication frequency band with a base station and a communication
frequency band with a specific gas appliance, wherein the specific gas appliance is
provided with an appliance information transmitter for detecting an operation start
of the appliance and transmitting appliance information to the gas meter, wherein
the appliance information transmitter includes an appliance detection unit for detecting
an operation start of the appliance without receiving a signal from a gas appliance
controller and an appliance wireless module for transmitting an appliance operation
start signal from the appliance detection unit to the gas meter in a predetermined
communication frequency band, wherein the control circuit has a continuous use time
monitor unit for monitoring a continuous operation time of the appliance based on
the flow rate information, a by-flow-rate-range continuous use time storage unit presetting
and storing the continuously usable time by a flow rate range, a specific appliance
monitor unit for monitoring a continuous operation time of the specific gas appliance
based on the appliance information transmitted from the appliance information transmitter
and the flow rate information, and a specific appliance use time storage unit presetting
and storing a continuously usable time of the specific gas appliance, and wherein
when the continuous operation time monitored by the continuous use time monitor unit
reaches a stored value in the by-flow-rate-range continuous use time storage unit,
a predetermined processing mode is executed and when the continuous operation time
monitored by the specific appliance monitor unit reaches a stored value in the specific
appliance use time storage unit, the gas shut-off valve is operated on a top-priority
basis for stopping supply of the gas and the meter wireless module is used to transmit
the continuous use time passage information at least to the base station.
[0009] According to the invention described above, the wireless module capable of communicating
with the base station using a wireless communication unit other than a telephone line
and the wireless module capable of receiving appliance information from a plurality
of gas appliances are integrally built in the control circuit board in the gas meter,
so that communications with the base station are made possible without using a telephone
line simply by installing the gas meter, various commands from the base station can
be smoothly transmitted without receiving the effect of the congestion state of the
line, appliance information containing use information from a specific gas appliance,
particularly a gas appliance of an old type which needs to be sufficiently monitored
among the gas appliances connected to the piping after passing through the gas meter
can be acquired, a defective condition that communications with the center cannot
be conducted because of congestion of a telephone line as before can be solved, and
information concerning the gas appliance of the old type used in a home can acquired
in real time and reliably.
[0010] Since use presence/absence information can also be acquired at the same time by acquired
specific gas appliance information, the flow rate value found by the flow rate measurement
unit can be monitored in association with the gas appliance information and safety
service for discriminating between the newest gas appliance and the gas appliance
of the old type can be provided.
[0011] Further, the continuous operation time involving actual combustion can be monitored
by acquired specific gas appliance information and is compared with the monitor time
by preset specific gas appliance, whereby appropriate continuous use time can be determined
for a gas appliance of an old type with an insufficient safety function and the determination
result can be reported to the necessary party such as the base station, so that a
dangerous state accompanying the long-time abnormal use situation caused by forgetting
to turn off the gas appliance, etc., can be prevented reliably.
[0012] To solve the problems in the related arts described above, a gas appliance monitoring
apparatus of the invention is a gas appliance monitoring apparatus for monitoring
the use state of a plurality of gas appliances connected to piping after passing through
a gas meter, the gas appliance monitoring apparatus installing a wireless module capable
of transmitting and receiving directly to and from a plurality of parties using a
communication line other than a telephone line, wherein the gas meter includes a flow
rate measurement unit for measuring a gas flow rate, a gas shut-off valve for shutting
off a gas flow path at the abnormal time, a control circuit for performing predetermined
processing based on the measurement result of the flow rate measurement unit and outputting
flow rate information, a meter wireless module for transmitting and receiving information
to and from a plurality of parties, and a communication switch unit for switching
a communication frequency band depending on the parties, wherein the meter wireless
module has at least a communication frequency band with a base station and a communication
frequency band with a specific gas appliance, wherein the specific gas appliance is
provided with an appliance information transmitter for detecting the operation start
of the appliance and transmitting appliance information to the gas meter, wherein
the appliance information transmitter includes an appliance detection unit for detecting
the operation start of the appliance without receiving a signal from a gas appliance
controller and an appliance wireless module for transmitting an appliance operation
start signal from the appliance detection unit to the gas meter in a predetermined
communication frequency band, wherein the control circuit has a continuous use time
monitor unit for monitoring the continuous operation time of the appliance based on
the flow rate information, a by-flow-rate-range continuous use time storage unit presetting
and storing the continuously usable time by flow rate range, and a monitor level change
unit for changing the stored value in the by-flow-rate-range continuous use time storage
unit based on the appliance information transmitted from the appliance information
transmitter, and wherein when the continuous operation time monitored by the continuous
use time monitor unit reaches the stored value in a the by-flow-rate-range continuous
use time storage unit, a predetermined processing mode is executed and when the monitor
level change unit changes the stored value, the gas appliance is monitored using the
post-changed stored value until a change reset processing is executed.
[0013] According to the configuration described above, the continuous operation time involving
actual combustion can be monitored by acquired specific gas appliance information,
and the allowable time of the continuously usable time in the time period during which
the gas appliance of the old type is used is restricted, whereby appropriate continuous
use time can be determined for the gas appliance of the old type with an insufficient
safety function and the monitor level of any other gas appliance in the time period
is also changed and is strictly monitored, whereby safety monitor of all gas appliances
in the time period during which the gas appliance of the old type is used can be set
under an appropriate condition and the determination result can be reported to the
necessary party such as the base station, so that a dangerous state accompanying the
long-time abnormal use situation caused by forgetting to turn off the gas appliance,
etc., can be prevented reliably.
Advantages of the Invention
[0014] In the gas appliance monitoring apparatus of the invention, communications with the
base station are made possible without using a telephone line simply by installing
the gas meter, various commands from the base station can be smoothly transmitted
without receiving the effect of the congestion state of the line, appliance information
containing use information from a specific gas appliance, particularly a gas appliance
of an old type which needs to be sufficiently monitored among the gas appliances connected
to the piping after passing through the gas meter can be acquired, a defective condition
that communications with the center cannot be conducted because of congestion of a
telephone line as before can be solved, and information concerning the gas appliance
of the old type used in a home can acquired in real time and reliably.
[0015] Since use presence/absence information can also be acquired at the same time by acquired
specific gas appliance information, the flow rate value found by the flow rate measurement
unit can be monitored in association with the gas appliance information and safety
service for discriminating between the newest gas appliance and the gas appliance
of the old type can be provided.
[0016] Further, the continuous operation time involving actual combustion can be monitored
by acquired specific gas appliance information and is compared with the monitor time
by preset specific gas appliance, whereby appropriate continuous use time can be determined
for a gas appliance of an old type with an insufficient safety function and the determination
result can be reported to the necessary party such as the base station, so that a
dangerous state accompanying the long-time abnormal use situation caused by forgetting
to turn off the gas appliance, etc., can be prevented reliably.
[0017] Further, the continuous operation time involving actual combustion can be monitored
by acquired specific gas appliance information and the allowable time of the continuously
usable time in the time period during which the gas appliance of the old type is used
is restricted, whereby appropriate continuous use time can be determined for the gas
appliance of the old type with an insufficient safety function and the monitor level
of any other gas appliance in the time period is also changed and is strictly monitored,
whereby safety monitor of all gas appliances in the time period during which the gas
appliance of the old type is used can be set under an appropriate condition and the
determination result can be reported to the necessary party such as the base station,
so that a dangerous state accompanying the long-time abnormal use situation caused
by forgetting to turn off the gas appliance, etc., can be prevented reliably.
Brief Description of the Drawings
[0018]
FIG 1 is a configuration drawing to show a communication mode of a gas appliance monitoring
apparatus in an embodiment of the invention.
FIG 2 is a drawing to show a communication mode with various gas appliances in the
gas appliance monitoring apparatus.
FIG. 3 is a configuration drawing of an appliance wireless module in the gas appliance
monitoring apparatus.
FIG. 4 is a control block diagram of an appliance detection unit in the gas appliance
monitoring apparatus.
FIG. 5 is a drawing to show the appearance and the components of the gas appliance
monitoring apparatus.
FIG. 6 is an internal configuration drawing of the gas appliance monitoring apparatus
FIG. 7 is a block diagram of a control circuit board of the gas appliance monitoring
apparatus.
FIG. 8 is a drawing to show a communication mode between the gas appliance monitoring
apparatus and a specific terminal.
FIG. 9 (a) is a drawing to show a rate information display form in the specific terminal
and (b) is a drawing to show a recovery information display form in the specific terminal.
FIG. 10 is a control block diagram of the gas appliance monitoring apparatus.
FIG. 11 is a block diagram of a control circuit of the gas appliance monitoring apparatus.
FIG. 12 is a control block diagram of a gas appliance monitoring apparatus in a different
embodiment of the invention.
FIG. 13 is a block diagram of a control circuit of the gas appliance monitoring apparatus
in the different embodiment of the invention.
Description of Reference Numerals
[0019]
- 2
- Gas meter
- 2c
- Gas shut-off valve
- 10a
- Control circuit
- 10b
- Information storage unit
- 10c
- Communication switch unit
- 1 0f
- Specific appliance monitor unit
- 10g
- Specific appliance use time storage unit
- 11
- Wireless module
- 11a
- Wide area communication wireless module
- 11b
- Area communication wireless module
- 11d
- Appliance wireless module
- 12
- Specific terminal
- 14
- Base station
- 17
- Flow rate measurement unit
- 22
- Appliance detection unit
- 26
- Appliance information transmitter
- 27
- Identification code change unit
- 33
- Appliance determination unit
- 34
- Flow rate change detection unit
- 35
- Operation time measurement unit
- 36
- By-appliance operation time storage unit
- 3 7
- By-appliance operation time determination unit
- 38
- By-appliance continuous use time storage table
- 39
- Comparison unit
- 40
- Flow rate range detection unit
- 41
- Operation time measurement unit
- 42
- By-flow-rate-range operation time storage unit
- 43
- by-flow-rate-range operation time determination unit
- 44
- Continuous use time monitor unit
- 45
- By-flow-rate-range use time storage table
- 46
- Comparison unit
- 47
- By-flow-rate-range use time storage unit
- 49
- Monitor level change unit
Best Mode for Carrying out the Invention
[0020] A first aspect of the invention provides a gas appliance monitoring apparatus for
monitoring the use state of a plurality of gas appliances connected to piping after
passing through a gas meter, the gas appliance monitoring apparatus installing a wireless
module capable of transmitting and receiving directly to and from a plurality of parties
using a communication line other than a telephone line, wherein the gas meter includes
a flow rate measurement unit for measuring a gas flow rate, a gas shut-off valve for
shutting off a gas flow path at the abnormal time, a control circuit for performing
predetermined processing based on the measurement result of the flow rate measurement
unit and outputting flow rate information, a meter wireless module for transmitting
and receiving information to and from a plurality of parties, and a communication
switch unit for switching a communication frequency band depending on the parties,
wherein the meter wireless module is integrated with the control circuit and is housed
in the gas meter and has at least a communication frequency band with a base station
and a communication frequency band with a specific gas appliance, wherein the specific
gas appliance is provided with an appliance information transmitter for detecting
the operation start of the appliance and transmitting appliance information to the
gas meter, wherein the appliance information transmitter includes an appliance detection
unit for detecting the operation start of the appliance without receiving a signal
from a gas appliance controller and an appliance wireless module for transmitting
an appliance operation start signal from the appliance detection unit to the gas meter
in a predetermined communication frequency band, wherein the control circuit has a
continuous use time monitor unit for monitoring the continuous operation time of the
appliance based on the flow rate information, a by-flow-rate-range continuous use
time storage unit presetting and storing the continuously usable time by flow rate
range, a specific appliance monitor unit for monitoring the continuous operation time
of the specific gas appliance based on the appliance information transmitted from
the appliance information transmitter and the flow rate information, and a specific
appliance use time storage unit presetting and storing the continuously usable time
of the specific gas appliance, and wherein when the continuous operation time monitored
by the continuous use time monitor unit reaches the stored value in the by-flow-rate-range
continuous use time storage unit, a predetermined processing mode is executed and
when the continuous operation time monitored by the specific appliance monitor unit
reaches the stored value in the specific appliance use time storage unit, the gas
shut-off valve is operated on a top-priority basis for stopping supply of the gas
and the meter wireless module is used to transmit the continuous use time passage
information at least to the base station.
[0021] The wireless module capable of communicating with the base station using a wireless
communication unit other than a telephone line and the wireless module capable of
receiving appliance information from a plurality of gas appliances are integrally
built in the control circuit board in the gas meter, so that communications with the
base station are made possible without using a telephone line simply by installing
the gas meter, various commands from the base station can be smoothly transmitted
without receiving the effect of the congestion state of the line, appliance information
containing use information from a specific gas appliance, particularly a gas appliance
of an old type which needs to be sufficiently monitored among the gas appliances connected
to the piping after passing through the gas meter can be acquired, a defective condition
that communications with the center cannot be conducted because of congestion of a
telephone line as before can be solved, and information concerning the gas appliance
of the old type used in a home can acquired in real time and reliably.
[0022] Since use presence/absence information can also be acquired at the same time by acquired
specific gas appliance information, the flow rate value found by the flow rate measurement
unit can be monitored in association with the gas appliance information and safety
service for discriminating between the newest gas appliance and the gas appliance
of the old type can be provided.
[0023] Further, the continuous operation time involving actual combustion can be monitored
by acquired specific gas appliance information and is compared with the monitor time
by preset specific gas appliance, whereby appropriate continuous use time can be determined
for a gas appliance of an old type with an insufficient safety function and the determination
result can be reported to the necessary party such as the base station, so that a
dangerous state accompanying the long-time abnormal use situation caused by forgetting
to turn off the gas appliance, etc., can be prevented reliably.
[0024] A second aspect of the invention provides a gas appliance monitoring apparatus for
monitoring the use state of a plurality of gas appliances connected to piping after
passing through a gas meter, the gas appliance monitoring apparatus installing a wireless
module capable of transmitting and receiving directly to and from a plurality of parties
using a communication line other than a telephone line, wherein the gas meter includes
a flow rate measurement unit for measuring a gas flow rate, a gas shut-off valve for
shutting off a gas flow path at the abnormal time, a control circuit for performing
predetermined processing based on the measurement result of the flow rate measurement
unit and outputting flow rate information, a meter wireless module for transmitting
and receiving information to and from a plurality of parties, and a communication
switch unit for switching a communication frequency band depending on the parties,
wherein the meter wireless module is integrated with the control circuit and is housed
in the gas meter and has at least a communication frequency band with a base station
and a communication frequency band with a specific gas appliance, wherein the specific
gas appliance is provided with an appliance information transmitter for detecting
the operation start of the appliance and transmitting appliance information to the
gas meter, wherein the appliance information transmitter includes an appliance detection
unit for detecting the operation start of the appliance without receiving a signal
from a gas appliance controller and an appliance wireless module for transmitting
an appliance operation start signal from the appliance detection unit to the gas meter
in a predetermined communication frequency band, wherein the control circuit has a
continuous use time monitor unit for monitoring the continuous operation time of the
appliance based on the flow rate information, a by-flow-rate-range continuous use
time storage unit presetting and storing the continuously usable time by flow rate
range, and a monitor level change unit for changing the stored value in the by-flow-rate-range
continuous use time storage unit based on the appliance information transmitted from
the appliance information transmitter, and wherein when the continuous operation time
monitored by the continuous use time monitor unit reaches the stored value in the
by-flow-rate-range continuous use time storage unit, a predetermined processing mode
is executed and when the monitor level change unit changes the stored value, the gas
appliance is monitored using the post-changed stored value until a change reset processing
is executed.
[0025] According to the configuration described above, the continuous operation time involving
actual combustion can be monitored by acquired specific gas appliance information
and the allowable time of the continuously usable time in the time period during which
the gas appliance of the old type is used is restricted, whereby appropriate continuous
use time can be determined for the gas appliance of the old type with an insufficient
safety function and the monitor level of any other gas appliance in the time period
is also changed and is strictly monitored, whereby safety monitor of all gas appliances
in the time period during which the gas appliance of the old type is used can be set
under an appropriate condition and the determination result can be reported to the
necessary party such as the base station, so that a dangerous state accompanying the
long-time abnormal use situation caused by forgetting to turn off the gas appliance,
etc., can be prevented reliably.
[0026] A third aspect of the invention is characterized by the fact that the meter wireless
module conducts communications using a communication frequency band different from
a communication wireless module with the base station and a communication wireless
module with the specific gas appliance, and that the communication wireless module
with the specific gas appliance is an area communication wireless module having a
specified low power wireless communication frequency band and the communication wireless
module with the base station is a wide area communication wireless module having a
wide area communication frequency band.
[0027] The wide area communication wireless module capable of communicating with the base
station as carrier direct and the area communication wireless module capable of communicating
within a predetermined range using the specified low power wireless communication
frequency band are integrated with the control circuit board and information is transmitted
to the base station using a communication line other than a telephone line and information
is transmitted to the specific gas appliance using the specified low power wireless
communication frequency band, so that information concerning the specific gas appliance
used in a home can acquired in real time and reliably, it is made possible to execute
by-appliance management of the gas flow rate based on the acquired information with
good accuracy, the by-appliance management result can be transmitted directly to the
base station simply by switching the meter wireless module, and it is also possible
to construct a rational communication unit.
[0028] A fourth aspect of the invention is characterized by the fact that the area communication
wireless module can also conduct communications with a specific terminal in addition
to communications with the specific gas appliance and when the continuous use time
passage information is originated, also transmits it to the specific terminal.
[0029] Using the area communication wireless module incorporated in the gas meter, communications
can also be conducted with a specific terminal such as a TV or a mobile telephone,
whereby it is made possible to transmit the continuous use time passage information,
the fact that the continuous use time has elapsed and the gas shut-off valve operates
can be displayed on the screen of the TV or the mobile telephone, and the customer
can be prompted to exercise care.
[0030] A fifth aspect of the invention is characterized by the fact that the appliance detection
unit includes a discharge noise detection unit for detecting discharge noise for ignition
of the specific gas appliance and an operation start signal conversion unit for converting
a signal from the discharge noise detection unit into an appliance operation start
signal and outputting the signal to the appliance wireless module.
[0031] As the appliance information of the gas appliance, discharge noise occurring accompanying
the discharge operation of the igniter operating when the gas appliance starts the
operation is detected without receiving a signal from the gas appliance controller
and is converted into an operation start signal indicating the start of the ignition
operation of the appliance from the discharge noise and the signal is output to the
appliance wireless module, so that the appliance detection unit can be formed independently
of the gas appliance controller and can be attached to an already existing gas appliance
without any change, and can be simply set in a location where discharge noise can
be detected, thereby detecting the use start of the appliance.
[0032] A sixth aspect of the invention is characterized by the fact that the appliance detection
unit includes a temperature change detection unit for detecting temperature change
occurring with the operation of the specific gas appliance and an operation start
signal conversion unit for converting a signal from the temperature change detection
unit into an appliance operation start signal and outputting the signal to the appliance
wireless module.
[0033] As the appliance information of the gas appliance, temperature change occurring accompanying
the combustion operation start of the gas appliance is detected without receiving
a signal from the gas appliance controller and is converted into an operation start
signal indicating the start of the combustion of the appliance from the temperature
change and the signal is output to the appliance wireless module, so that the appliance
detection unit can be formed independently of the gas appliance controller and can
be attached to an already existing gas appliance, particularly to the gas appliance
of the old type without any change, and can be simply set in a location where temperature
change can be detected, thereby detecting the use start of the appliance.
[0034] A seventh aspect of the invention is characterized by the fact that the appliance
wireless module includes an operation start signal determination unit for determining
whether or not the operation start signal from the appliance detection unit is normal,
an identification code change unit for setting or changing a unique identification
code for identifying each appliance, and an appliance information transmission unit
for transmitting the operation start signal and appliance information to which the
identification code is given to the gas meter if the determination result of the operation
start signal determination unit is normal.
[0035] A unique identification code is given by type of specific gas appliance used in a
home and the operation start signal is transmitted together with the identification
code, whereby information can be reliably provided as to use of which appliance is
started and the identification code change unit capable of changing or setting the
identification code by appliance as desired is included, so that if the appliance
is changed by replacing, etc., the identification code needs only to be changed and
reuse or sharing is also possible and an extremely effective appliance information
transmission unit can be provided.
[0036] An eighth aspect of the invention is characterized by the fact that the specific
appliance monitor unit includes an appliance determination unit for determining which
gas appliance is used when the appliance information is transmitted from the appliance
information transmitter, a flow rate change detection unit for detecting decrease
side flow rate change from increase side flow rate change based on the flow rate information
at the time, and an operation time measurement unit for measuring the time.
[0037] The flow rate information corresponding to the appliance information transmitted
from the appliance information transmitter, namely, the time from an increase in the
flow rate with use of the appliance to a decrease in the flow rate with the use stop
of the appliance is measured and is monitored by appliance as the continuous operation
time of the appliance, whereby the continuous use time of the appliance involving
actual combustion can be monitored with good accuracy.
[0038] A ninth aspect of the invention is characterized by the fact that the specific appliance
use time storage unit includes a continuously usable time storage table storing the
continuously usable time varying depending on the type of specific gas appliance in
an operation time table of a plurality of stages and a comparison unit for making
a comparison between the continuous operation time monitored by the specific appliance
monitor unit and the stored value in the storage table and outputs a signal to the
wide area communication wireless module or/and the area communication wireless module
when the continuous operation time exceeds the stored value.
[0039] The continuously usable time is stored as an operation time table of a plurality
of stages by type of specific gas appliance and a comparison is made between the stored
value and the actual operation time, whereby the specific gas appliance can be monitored
finely and it is made possible to transmit the continuous use time passage information
to a necessary location using the wide area communication wireless module and the
area communication wireless module incorporated in the gas meter.
[0040] A tenth aspect of the invention is characterized by the fact that the monitor level
change unit includes an appliance determination unit for determining which gas appliance
is used when the appliance information is transmitted from the appliance information
transmitter and a flow rate change detection unit for detecting decrease side flow
rate change from increase side flow rate change based on the flow rate information
at the time.
[0041] The flow rate information corresponding to the appliance information transmitted
from the appliance information transmitter namely, an increase in the flow rate with
use of the appliance and a decrease in the flow rate with the use stop of the appliance
are detected and it is determined that the specific gas appliance is used according
to the detection signal and the monitor level is changed, whereby the monitor level
is regulated strictly during the use time period of the specific gas appliance involving
actual combustion, so that the monitor level in the time period during which the gas
appliance of the old type with an insufficient safety function is used can be changed
to an appropriate value.
[0042] An eleventh aspect of the invention is characterized by the fact that the by-flow-rate-range
continuous use time storage unit includes a continuously usable time storage table
storing the continuously usable time corresponding to the specific gas appliance based
on the appliance information of the appliance determination unit and increase side
flow rate change information of the flow rate change detection unit as an operation
time table and a comparison unit for making a comparison between the continuous operation
time monitored by the continuous use time monitor unit and the stored value in the
storage table and outputs a signal to the wide area communication wireless module
or/and the area communication wireless module when the continuous operation time exceeds
the stored value.
[0043] When use of the specific gas appliance is acknowledged, change is made to the continuously
usable time storage table corresponding thereto and a comparison is made between the
stored value and the actual operation time, whereby all gas appliances including the
specific gas appliance can be monitored according to strict determination, the monitor
level in the time period during which the gas appliance of the old type with an insufficient
safety function is used can be raised, and it is made possible to transmit the continuous
use time passage information to a necessary location using the wide area communication
wireless module and the area communication wireless module incorporated in the gas
meter.
[0044] Embodiments of the invention will be discussed below with reference to the accompanying
drawings: The invention is not limited by the embodiments.
[0045] FIG. 1 is a general configuration drawing of a communication mode between a gas meter
and a base station and a customer house in an embodiment of the invention, FIG. 2
is a drawing to show a communication mode with specific gas appliances in a home in
a gas appliance monitoring apparatus, FIG. 3 is a configuration drawing of an appliance
wireless module in the gas appliance monitoring apparatus, FIG. 4 is a control block
diagram of an appliance detection unit in the gas appliance monitoring apparatus,
FIG 5 is a drawing to show the appearance and the components of the gas appliance
monitoring apparatus, FIG. 6 is an internal configuration drawing of the gas appliance
monitoring apparatus, and FIG. 7 is a block diagram of a control circuit board of
the gas appliance monitoring apparatus.
[0046] In FIG. 1, first, a plurality of gas appliances connected to gas piping after passing
through a gas meter 2 and a communication function possessed by the gas meter 2 will
be discussed.
[0047] The gas meter 2 is installed in the entrance portion of a gas supplying pipe 1 in
each home and a branch is made from gas piping 3 after passing through the gas meter
2 to locations where various gas appliances used in the home for supplying gas. For
example, a gas water heater 4 is installed outdoor and hot water generated in the
gas water heater 4 is supplied through water piping to a hot water tap 5 in a kitchen,
a bath 6 where a bath tub and a shower are installed, and floor heating 7 installed
in a living room, etc., and various use modes are formed.
[0048] Indoors, gas is supplied to a gas cooker 8 installed in a kitchen and a gas fan heater
9 installed in a living room, a bedroom, etc., and is used where appropriate.
[0049] When the installed gas appliance is used and consumption of gas occurs, the usage
amount is measured with the gas meter 2 and the data is cumulatively stored every
predetermined time period. The data stored in the gas meter 2 is subjected to predetermined
information processing based on a periodic data request command from a gas company
15 and then is transmitted to a customer 13 and the gas company 15 as information
of the gas rate, the gas usage amount, discount service provided by the gas company
15, etc.
[0050] As a transmission unit, a wireless module 11 integrally built in a control circuit
board 10 forming a controller incorporated in the gas meter 2 as shown in FIG 5 is
used and is on-board on the control circuit board 10 detachably with a connector 10d
and a gas meter installing no wireless module 11 and having no communication function
or a gas meter installing the wireless module 11 and having the communication function
can be selected and the gas meter 2 is made common and can be used regardless of the
presence or absence of the communication function.
[0051] The wireless module 11 is made detachable, whereby even if the communication function
is included, if a wireless module acquiring a communication standard is installed
and the standard as a communication device need not be acquired in the gas meter main
body and to change the gas meter, etc., comparatively flexible change is made possible
without receiving any restriction.
[0052] As shown in FIG. 7, the wireless module 11 is made up of a wide area communication
wireless module 11a having a 200-MHz communication frequency band, for example, different
from a telephone line to communicate with the base station 14 and an area communication
wireless module 11b having a 429-MHz specified low power wireless communication frequency
band, for example, to communicate with a specific terminal 12 such as a TV 12a, a
personal computer, or a mobile telephone 12b in the customer home 13 and an adjacent
gas meter and further a specific gas appliance installed in the home. Upon reception
of data from a control circuit 10a for calculating the gas usage amount or detecting
an anomaly of an earthquake, gas leakage, etc., based on a flow rate signal and a
sensor signal, further various pieces of information transmitted from the gas company
15 through the base station 14, further various pieces of information transmitted
from the adjacent gas meter, or further appliance information transmitted from the
specific gas appliance, the wireless module 11 changes a measurement mode corresponding
to information about the gas rate or the gas usage amount or operation of a gas shut-off
valve accompanying occurrence of an anomaly of an earthquake, gas leakage, etc., or
occurrence of a pulsation event from the adjacent gas meter, for example, in response
to the reception data and further if information is to be provided for the customer,
such as gas supply management of the specific gas appliance, transmits data to the
specific terminal 12 such as the TV 12a or the mobile telephone 12b in the customer
home 13 using the area communication wireless module 11b and when appliance information
is transmitted from the specific gas appliance, receives the information and inputs
the information to the control circuit 10a.
[0053] As shown in FIG. 8, a wireless module 11c having the same communication frequency
band as the area communication wireless module 11b incorporated in the gas meter 2
is also incorporated in or integrally attached to the specific terminal 12, whereby
data transmitted from the gas meter 2 can be received and is displayed on a screen
of the TV 12a or the mobile telephone 12b, whereby information can be transmitted
directly to the customer and it becomes unnecessary to adopt an information transmission
method of transmitting data to the gas company 15 from the gas meter 2 and sending
information provided by processing the data in the gas company 15, for example, a
postcard of rate notification, etc., to the customer by mail, etc., as before, so
that the number of steps required for the notification work can be reduced and occurrence
of the mail cost of notification postcards, etc., is also eliminated and the notification
job can be rationalized, contributing to a decrease in the gas rate.
[0054] When various pieces of information are transmitted from the gas meter 2 to the specific
terminal 12, a notification completion signal is sent from the area communication
wireless module 11b to the wide area communication wireless module 11a, which then
transmits the notification completion signal to the base station 14 and notifies the
gas company 15 that information transmission to the customer is complete. In this
case, preferably a response signal from the specific terminal 12 is received and the
notification completion signal is transmitted; information transmission to the customer
can be performed more reliably and a rational information transmission system can
be constructed.
[0055] Next, a flow rate measurement processing unit incorporated in the control circuit
10a for measuring the gas flow rate, performing predetermined processing, and outputting
flow rate information will be briefly discussed. As shown in FIGs. 5 and 6, the gas
meter 2 has a gas entrance 2a and a gas exit 2b and is provided with a gas shut-off
valve 2c for shutting off gas at the abnormal time and a pair of ultrasonic sensors
17 for measuring the gas flow rate in the gas flow path between the entrance and the
exit and has a pressure sensor 2d for detecting gas pressure placed downstream from
the ultrasonic sensors. The control circuit board 10 installing the control circuit
10a for calculating the gas flow rate based on the signal from the ultrasonic sensors
17 is placed so that a liquid crystal display 10e faces a display section 2e of the
gas meter 2, and further a battery 2f for driving the control circuit 10a is housed.
A recovery button 2g is placed as means for manually performing recovery operation
after the gas shut-off valve 2c operates.
[0056] The flow rate measurement section 17 and the control circuit 10a for measuring the
gas flow rate may measure the propagation time changing in response to the flow rate
flowing through the gas flow path where a pair of ultrasonic sensors is placed, thereby
measuring the flow rate, for example, as shown in FIG. 10. The configuration will
be discussed below: A first transceiver 17A for transmitting or receiving an ultrasonic
wave and a second transceiver 17B for receiving or transmitting are placed in a flow
direction and a measurement control section 18 having a switch unit forming a part
of the control circuit 10a can switch between transmission and reception and the flow
state of a fluid of gas, etc., is detected. Signals of the first transceiver 17A and
the second transceiver 17B are processed and the flow rate is measured. Specifically,
first the first transceiver 17A is driven by the measurement control section 18 and
an ultrasonic wave is transmitted toward the second transceiver 17B, namely from upstream
to downstream. The signal received by the second transceiver 17B is amplified by an
amplification unit provided in the measurement control section 18 and is compared
with a reference signal and after a signal more than the reference signal is detected,
the above-mentioned transmission and reception are repeated a predetermined number
of times by a repetition unit provided in the measurement control section 18 and the
time values are measured by a time count unit such as a timer counter provided in
the measurement control section 18.
[0057] Next, transmission and reception of the first transceiver 17A and the second transceiver
17B are switched by the measurement control section 18 having the switch unit, an
ultrasonic signal is transmitted from the second transceiver 17B to the first transceiver
17A, namely, from downstream to upstream, this transmission is repeated as described
above, and the time values are measured. A signal processing unit 19 finds the flow
rate value considering the size of the flow path 16 and the flow state of the fluid
from the ultrasonic wave propagation time difference between the first transceiver
17A and the second transceiver 17B. The found flow rate data is accumulated in an
information storage unit 10b and is stored as cumulative data every predetermined
time period.
[0058] The shut-off valve 2c for shutting off the flow of gas at the abnormal time is provided
in the flow path 16 where the flow rate measurement section 17 is placed and if the
flow rate value found by the signal processing unit 19 is abnormally many or is detected
exceeding the usually considered use time, it is determined that an anomaly occurs,
and the shut-off valve 2c is operated for shutting off the gas flow path 16.
[0059] If an earthquake or shock signal is input from a seismoscope or a signal of an abnormal
gas pressure is input from the pressure sensor 2d, the shut-off valve 2c is operated
through the control circuit 10a for shutting off the gas flow path 16 and a center
is notified.
[0060] Next, an example of information transmission using the wireless module 11 incorporated
in the gas meter 2 will be discussed. First, if a meter reading command is transmitted
from the gas company 15 in a wide area communication frequency band (200 MHz) through
the base station 14, the wide area communication wireless module 11a incorporated
in the gas meter receives the command and sends the meter reading command information
to the control circuit 10a installed on the same board. The flow rate data measured
in the flow rate measurement unit is accumulated in the control circuit 10a every
predetermined time period and the cumulative data or rate data information into which
the cumulative data is converted is stored in the information storage unit 10b. When
the meter reading command information from the gas company 15 is input, the control
circuit 10a sends the flow rate cumulative data or the rate data information into
which the cumulative data is converted, in the information storage unit 10b through
a communication switch unit 10c to the area communication wireless module 11b and
the wide area communication wireless module 11a and the wide area communication wireless
module 11a transmits to the base station 14 in the wide area communication frequency
band (200 MHz) and the meter reading information is transmitted using a leased line
from the base station 14 to the gas company 15. The area communication wireless module
11b transmits to the wireless module 11c integrally attached to the specific terminal
12 such as the TV 12a in the specified low power wireless communication frequency
band (429 MHz) and displays rate information and the usage amount, for example, as
shown in FIG. 9(a) on the screen. Upon completion of the transmission to the specific
terminal 12, a notification completion signal is transmitted to the gas company 15
for notifying the gas company that information transmission to the customer is complete,
as described above.
[0061] If the cause is diagnosed in the case where the shut-off valve 2c operates because
of an earthquake, shock, etc., and a recovery command from the gas company 15 is transmitted
through the base station 14 in the wide area communication frequency band (200 MHz),
the wide area communication wireless module 11a incorporated in the gas meter 2 receives
the command and sends the recovery command information to the control circuit 10a
installed on the same board. When the recovery command information is input, the control
circuit 10a sends information concerning recovery work stored in the information storage
unit 10b through the communication switch unit 10c to the area communication wireless
module 11b, which then transmits the information to the wireless module 11c integrally
attached to the display terminal 12 such as the TV 12a in the specified low power
wireless communication frequency band (429 MHz) and displays a recovery work procedure,
for example, as shown in FIG. 9 (b) on the screen. Upon completion of the transmission
to the display terminal 12, a notification completion signal is transmitted to the
gas company 15 for notifying the gas company that information transmission to the
customer is complete, as described above.
[0062] As described above, the control circuit 10a has the communication switch unit 10c
to select the wireless modules different in communication frequency band corresponding
to the party to communicate with in response to the information to be transmitted;
for example, for a meter reading command from the gas company 15, the information
stored in the information storage unit 10b needs to be transmitted to the gas company
15 and the specific terminal 12 according to the information received in the wide
area communication wireless module 11a, in which case the wide area communication
wireless module 11a having the 200-MHz communication frequency band, for example,
and the area communication wireless module 11b having the 429-MHz specified low power
wireless communication frequency band, for example, are selected and for a recovery
command from the gas company 15, the information stored in the information storage
unit 10b needs only to be transmitted to the specific terminal 12, in which case the
area communication wireless module 11b having the 429-MHz specified low power wireless
communication frequency band, for example, may be selected.
[0063] The wide area communication wireless module 11a and the area communication wireless
module 11b may be provided separately or may be made a common wireless module and
the communication frequency band may be switched between the wide area communication
frequency band and the specified low power wireless communication frequency band.
In the former, the communication switch unit 10c needs to select the wide area communication
wireless module 11a and the area communication wireless module 11b; although there
is the advantage that simultaneous communications are possible, there are the disadvantages
of large installation space and an increase in the cost. In the latter, the communication
switch unit 10c needs to switch the communication frequency band in response to the
communicating party; although there are the advantages of small installation space
and cost reduction, there are the disadvantages in that simultaneous communications
cannot be conducted and alternate communications are applied.
[0064] Next, safety monitor of gas appliances in the gas meter having the communication
function as described above will be discussed. Generally, as a device for limiting
the continuous use time to prevent an accident caused by forgetting to turn off a
gas appliance, etc., a device for setting the continuous use time in response to the
flow rate and shutting off gas when the continuous use time has elapsed is known.
[0065] However, in the general appliance safety monitor described above, the continuous
use time is uniformly set in response to the gas flow rate regardless of the type
of gas appliance and the use time corresponding to the unique use of each gas appliance
is not set; for example, a newest gas appliance with a full safety function and a
gas appliance of 20 years past with a poor safety function, although they are gas
appliances, are limited as the same use time if the flow rate range is the same. If
the use time is limited with the newest gas appliance as the reference, the prevention
time of forgetting to turn off the gas appliance of 20 years past is prolonged and
the risk increases. In contrast, if the use time is limited with the gas appliance
of 20 years past as the reference, an early turning-off phenomenon of the newest gas
appliance occurs; this is a problem.
[0066] The embodiment is intended for solving the problem described above and provides a
monitor unit using a different determination criterion by acquiring appliance information,
individually about a gas appliance which has an insufficient safety function in old
type of gas appliance, etc., and needs to be monitored as it is discriminated from
the newest gas appliance, changing the continuous use time as required based on the
appliance information, and monitoring the gas appliance in addition to a method of
monitoring the continuous use time by flow rate range.
[0067] Then, first, an acquisition unit of appliance information of a gas appliance which
needs to be monitored as it is specially discriminated from others among gas appliances
installed in a home will be discussed.
[0068] The conventional acquisition unit of appliance determination information uses flow
rate information or acoustic information as disclosed in patent document 1 or 2 and
is low in certainty and requires a complicated device. In the embodiment, the conventional
problem is solved and an appliance information acquisition unit having a simple configuration
and high in certainty is provided.
[0069] Specifically, as shown in FIG. 3, an appliance information transmitter 26 includes
an appliance wireless module 11d having the same communication frequency band as the
area communication wireless module 11b incorporated in the gas meter 2, an appliance
detection unit 22 for detecting occurrence of discharge noise accompanying high voltage
discharge of an igniter in ignition operation always executed at the operation starting
time of a gas appliance, converting it into an operation start signal of the appliance,
and outputting the signal to the appliance wireless module 11d, and a drive battery
power supply 23, wherein the appliance wireless module 11d and the appliance detection
unit 22 are put into one piece on an appliance wireless module board 24 and are housed
in a case 25 to form the appliance information transmitter 26.
[0070] The appliance information transmitter 26 is housed in the gas appliance or is attached
to a proper position of the outer covering. At this time, it becomes necessary to
set the appliance information transmitter at a position where discharge noise of an
igniter can be detected. For example, as shown in FIG. 2, for the gas fan heater 9,
discharge noise of an igniter 4a can be detected simply by attaching the appliance
information transmitter 26 to the inside of the appliance or a proper position of
the outer covering surface, and the operation start of the gas fan heater 9 can be
detected without connecting to a controller of the gas fan heater 9 for receiving
a signal. This means that the operation start of the appliance can be detected simply
by placing the appliance information transmitter 26 in a location where the effect
of discharge noise of the igniter 4a is received. Therefore, the appliance information
transmitter can be set in any desired location and can be detachably housed and thus
can be detached from a gas appliance not requiring transmission of appliance information
and can be easily set at replacing, etc.
[0071] Since the ignition system of a gas appliance is almost the high voltage discharge
type regardless of the type of appliance, the appliance detection unit 22 for detecting
the discharge noise can detect the operation start of a gas appliance of an old type,
such as an instantaneous water heater or a gas cooking appliance, in addition to the
gas fan heater 9.
[0072] As a method of detecting the operation start of an appliance, in addition to detection
of discharge noise mentioned above, temperature change occurring with the combustion
operation of the appliance, for example, exhaust gas temperature, warn wind temperature,
or warm water temperature is detected, whereby the operation start of the gas appliance
can be detected without receiving a signal from the appliance controller. To form
an appliance information transmitter in the temperature change detection method, a
temperature sensor needs to be attached to a detection position and be connected up
to a transmission unit.
[0073] In the embodiment, a method of detecting discharge noise will be discussed in detail
with the control block diagram of FIG. 4.
[0074] When the gas fan heater 9 starts ignition operation, the igniter operates, discharge
starts between electrodes connected to the high voltage output side, the supplied
gas is ignited, and combustion starts. At this time, discharge noise is radiated to
the surroundings accompanying a discharge phenomenon between the electrodes. The discharge
noise is detected by a discharge noise detection unit 22a and if the discharge noise
is detected, an operation start signal conversion unit 22b converts it into a predetermined
operation start signal and inputs the signal to an operation start signal determination
unit 11e of the appliance wireless module 11d for determining whether or not the signal
is a normal operation start signal. If the determination result is normal, a signal
is sent to an appliance information transmission unit 11f and a unique identification
code of the gas fan heater 9 set in an identification code change unit 27 is given
and is transmitted to the area communication wireless module 11b of the gas meter
2 as appliance information. According to the operation sequence, the operation start
of the appliance can be detected without receiving a signal from the controller of
the appliance, and the signal can be transmitted to the gas meter 2. If the discharge
noise detection unit 22a detects more than once discharge noise in a short time, it
is determined that the ignition operation is performed more than once because of an
ignition mistake, and the flow rate data at the time can also be taken into consideration
for suppressing output of an operation start signal.
[0075] Although the embodiment has been described by taking the gas fan heater 9 as an example,
similar detection is also possible in any other gas appliance, needless to say.
[0076] Using the appliance information thus acquired and the instantaneous flow rate measurement
function with the ultrasonic sensor, safety monitor providing a different determination
criterion for a specific gas appliance and discriminating the specific gas appliance
from other gas appliances can be executed.
[0077] Next, the whole safety monitor will be discussed with FIG. 11.
[0078] First, in usual appliance safety monitor, the instantaneous flow rate found by the
flow rate measurement unit 17 with use of a gas appliance is sent to a flow rate range
detection unit 40, which then detects which of previously classified flow rate ranges
the instantaneous flow rate falls under. The continuous use time of the gas appliance
in the detected flow rate range is measured by an operation time measurement unit
41 and is stored in a by-flow-rate-range operation time storage unit 42. Next, when
the flow rate range detection unit 40 detects use stop of the corresponding gas appliance,
the operation time stored in the by-flow-rate-range operation time storage unit 42
is determined the continuous use time and is stored in a by-flow-rate-range operation
time determination unit 43. A continuous use time monitor unit 44 for monitoring the
continuous use time by flow rate range varying depending on the type of gas appliance
is thus formed.
[0079] A by-flow-rate-range use time storage table 45 previously storing the continuously
usable time by flow rate range is provided and a comparison unit 46 makes a comparison
as to whether or not the continuous use time stored in the by-flow-rate-range operation
time determination unit 43 exceeds the value of the storage table and predetermined
processing is performed in response to the comparison result. Thus, the continuously
usable time is predetermined by flow rate range varying depending on the type of gas
appliance and a by-flow-rate-range use time storage unit 47 storing the time is provided.
[0080] In the comparison unit 46, if the continuous use time exceeds predetermined allowable
time, it is determined that abnormal use such as forgetting to turn off the gas appliance
occurs and a shut-off signal is sent to a shut-off valve drive circuit 48 for performing
shut-off operation of the shut-off valve 2c. A signal is also sent to the wide area
communication wireless module 11a and the area communication wireless module 11b and
continuous use time passage information is transmitted to the base station 14 and
the specific terminal 12.
[0081] Accordingly, safety monitor with a good balance between ease of use and safety can
be accomplished by the continuous use time monitor function with the long time use
as the reference, such as forgetting to turn off the most recent gas appliance with
a full safety function, etc.
[0082] However, if safety monitor of a gas appliance of an old type used for a long term
is performed based on the reference, the possibility that abnormal overheating or
abnormal combustion will be caused to occur within the allowable time of the continuously
usable time is high and the safety function is not full in some cases, in which case
the abnormal phenomenon continues.
[0083] Then, in the embodiment, the appliance information transmitter 26 is attached to
an appliance which needs to be monitored with particular care among the gas appliances
of old types, the continuous operation time of the specific gas appliance is monitored
using appliance information sent from the appliance information transmitter 26, a
determination is made based on a different determination value from the stored value
in the by-flow-rate-range use time storage unit 47, for example, the allowable time
determined by the type and the use time period of the specific appliance or the family
structure of the user, etc., and the monitor level can be made strict.
[0084] Specifically, when the area communication wireless module 11b receives appliance
information transmitted from the appliance information transmission unit 11f of the
appliance information transmitter 26, a specific appliance monitor unit 10f of the
control circuit 10a determines which gas appliance the operation start signal has
been transmitted from by a specific appliance determination unit 33, detects by a
flow rate change detection unit 34 from the point in time at which the flow rate changes
to the increase side to the point in time at which the flow rate changes to the decrease
side from the instantaneous flow rate value measured by the flow rate measurement
unit 17 at the time, measures the time by an operation time measurement unit 35, and
sends the result to a specific appliance operation time storage unit 36. The specific
appliance operation time storage unit 36 finds an average flow rate value, for example,
from the flow rate value measured by the flow rate measurement unit 17, determines
that it is the operation time of the specific appliance, and sends it to a specific
appliance operation time determination unit 37.
[0085] A comparison unit 39 compares the time with the continuous use time by specific appliance
previously stored in a specific appliance continuous use time storage table 38 of
a specific appliance use time storage unit 10g and when the specific appliance continuous
operation time exceeds the continuous use time storage value, sends a shut-off signal
to the shut-off valve drive circuit 48 for executing the shut-off operation of the
shut-off valve 2c and also sends a signal to the wide area communication wireless
module 11a and the area communication wireless module 11b, and continuous use time
passage information is transmitted to the base station 14 and the specific terminal
12.
[0086] Accordingly, the continuous operation time accompanying actual combustion based on
the acquired specific gas appliance information can be monitored and the time is compared
with the determination value made higher than the preset monitor level, whereby the
appropriate continuous use time of the gas appliance of old type which needs to be
used with care can be determine and the determination result can be reported to the
necessary party such as the base station, so that a dangerous state accompanying the
long-time abnormal use situation caused by forgetting to turn off the gas appliance,
etc., can be prevented reliably.
[0087] FIGs. 12 and 13 show a different embodiment of safety monitor. Parts common to those
of the embodiment in FIGs. 10 and 11 will not be discussed again.
[0088] In the embodiment, like the embodiment in FIGs. 10 and 11, an appliance information
transmitter 26 is attached to an appliance which needs to be monitored with particular
care among gas appliances of old types, a by-flow-rate-range use time storage table
45 of a by-flow-rate-range use time storage unit 47 is changed using appliance information
sent from the appliance information transmitter 26, the continuous operation time
of all gas appliances including a specific gas appliance is monitored after the post-changed
storage table, a determination is made based on a different determination value from
the stored value in the by-flow-rate-range use time storage unit 47 at the usual time,
for example, the allowable time determined by the type and the use time period of
the specific appliance or the family structure of the user, etc., and the monitor
level can be made strict.
[0089] Specifically, when an area communication wireless module 11b receives appliance information
transmitted from an appliance information transmission unit 11f of the appliance information
transmitter 26, a monitor level change unit 49 of a control circuit 10a determines
which gas appliance the operation start signal has been transmitted from by a specific
appliance determination unit 33, detects by a flow rate change detection unit 34 from
the point in time at which the flow rate changes to the increase side to the point
in time at which the flow rate changes to the decrease side from the instantaneous
flow rate value measured by a flow rate measurement unit 17 at the time, and sends
the detection signal to the by-flow-rate-range use time storage unit 47. The by-flow-rate-range
use time storage unit 47 determines that use of the specific appliance is started
when a flow rate increase signal is sent from the flow rate change detection unit
34, changes the storage table to the storage table corresponding to the appliance
information, determines that use of the specific appliance is stopped when a flow
rate decrease signal is sent from the flow rate change detection unit 34, and restores
the storage table to the usual storage table.
[0090] Accordingly, the continuous operation time of the gas appliance based on the acquired
specific gas appliance information can be monitored and the time is compared with
the determination value made higher than the preset monitor level, whereby appliance
monitor in a time period during which the gas appliance of old type which needs to
be used with care is used can be determined based on the appropriate continuous use
time and the determination result can be reported to the necessary party such as the
base station, so that a dangerous state accompanying the long-time abnormal use situation
caused by forgetting to turn off the gas appliance, etc., can be prevented reliably.
[0091] In the embodiment described above, the wireless module 11 is integrally built in
the control circuit board 10 forming the controller incorporated in the gas meter
2. That is, the wireless module 11 is incorporated in the gas meter 2. However, the
wireless module 11 need not always be incorporated in the gas meter 2 and may be of
a type wherein it is attached to the gas meter 2 later.
[0093] While the embodiments of the invention have been described, it is to be understood
that the invention is not limited to the items disclosed in the embodiments and the
invention also intends that those skilled in the art make changes, modifications,
and applications based on the Description and widely known arts, and the changes,
the modifications, and the applications are also contained in the scope to be protected.
Industrial Applicability
[0094] According to the gas appliance monitoring apparatus of the invention, the operation
start of a gas appliance can be detected without receiving a signal from the gas appliance
controller and appliance determination is made possible using the information, so
that various services using the appliance determination information are made possible
and the gas appliance monitoring apparatus can also be applied to a combustion apparatus
other than gas.
1. A gas appliance monitoring apparatus for monitoring a use state of a plurality of
gas appliances connected to piping after passing through a gas meter, said gas appliance
monitoring apparatus installing a wireless module capable of transmitting and receiving
directly to and from a plurality of parties using a communication line other than
a telephone line, wherein
the gas meter comprises a flow rate measurement unit for measuring a gas flow rate,
a gas shut-off valve for shutting off a gas flow path at an abnormal time, a control
circuit for performing predetermined processing based on a measurement result of the
flow rate measurement unit and outputting a flow rate information, a meter wireless
module for transmitting and receiving information to and from a plurality of parties,
and a communication switch unit for switching a communication frequency band depending
on the parties, wherein
the meter wireless module has at least a communication frequency band with a base
station and a communication frequency band with a specific gas appliance, wherein
the specific gas appliance is provided with an appliance information transmitter for
detecting an operation start of the appliance and transmitting appliance information
to the gas meter, wherein
the appliance information transmitter comprises an appliance detection unit for detecting
the operation start of the appliance without receiving a signal from a gas appliance
controller and an appliance wireless module for transmitting an appliance operation
start signal from the appliance detection unit to the gas meter in a predetermined,
communication frequency band, wherein
the control circuit has a continuous use time monitor unit for monitoring a continuous
operation time of the appliance based on the flow rate information, a by-flow-rate-range
continuous use time storage unit presetting and storing a continuously usable time
by a flow rate range, a specific appliance monitor unit for monitoring a continuous
operation time of the specific gas appliance based on the appliance information transmitted
from the appliance information transmitter and the flow rate information, and a specific
appliance use time storage unit presetting and storing a continuously usable time
of the specific gas appliance, and wherein
when the continuous operation time monitored by the continuous use time monitor unit
reaches a stored value in the by-flow-rate-range continuous use time storage unit,
a predetermined processing mode is executed and when the continuous operation time
monitored by the specific appliance monitor unit reaches a stored value in the specific
appliance use time storage unit, the gas shut-off valve is operated on a top-priority
basis for stopping supply of the gas and the meter wireless module is used to transmit
the continuous use time passage information at least to the base station.
2. A gas appliance monitoring apparatus for monitoring a use state of a plurality of
gas appliances connected to piping after passing through a gas meter, said gas appliance
monitoring apparatus installing a wireless module capable of transmitting and receiving
directly to and from a plurality of parties using a communication line outer than
a telephone line, wherein
the gas meter comprises a flow rate measurement unit for measuring a gas flow rate,
a gas shut-off valve for shutting off a gas flow path at an abnormal time, a control
circuit for performing predetermined processing based on a measurement result of the
flow rate measurement unit and outputting a flow rate information, a meter wireless
module for transmitting and receiving information to and from a plurality of parties,
and a communication switch unit for switching a communication frequency band depending
on the parties, wherein
the meter wireless module has at least a communication frequency band with a base
station and a communication frequency band with a specific gas appliance, wherein
the specific gas appliance is provided with an appliance information transmitter for
detecting an operation start of the appliance and transmitting appliance information
to the gas meter, wherein
the appliance information transmitter comprises an appliance detection unit for detecting
an operation start of the appliance without receiving a signal from a gas appliance
controller and an appliance wireless module for transmitting an appliance operation
start signal from the appliance detection unit to the gas meter in a predetermined
communication frequency band, wherein
the control circuit has a continuous use time monitor unit for monitoring a continuous
operation time of the appliance based on the flow rate information, a by-flow-rate-range
continuous use time storage unit presetting and storing a continuously usable time
by a flow rate range, and a monitor level change unit for changing a stored value
in the by-flow-rate-range continuous use time storage unit based on the appliance
information transmitted from the appliance information transmitter, and wherein
when the continuous operation time monitored by the continuous use time monitor unit
reaches the stored value in the by-flow-rate-range continuous use time storage unit,
a predetermined processing mode is executed and when the monitor level change unit
changes the stored value, the gas appliance is monitored using a post-changed stored
value until a change reset processing is executed.
3. The gas appliance monitoring apparatus as claimed in claim 1 or 2 wherein the meter
wireless module conducts communications using a communication frequency band different
from a communication wireless module with the base station and a communication wireless
module with the specific gas appliance, and wherein
the communication wireless module with the specific gas appliance is an area communication
wireless module having a specified low power wireless communication frequency band
and the communication wireless module with the base station is a wide area communication
wireless module having a wide area communication frequency band.
4. The gas appliance monitoring apparatus as claimed in any one of claims 1 to 3 wherein
the area communication wireless module can also conduct communications with a specific
terminal in addition to communications with the specific gas appliance and when the
continuous use time passage information is originated, transmits to the specific terminal.
5. The gas appliance monitoring apparatus as claimed in any one of claims 1 to 4 wherein
the appliance detection unit comprises a discharge noise detection unit for detecting
discharge noise for ignition of the specific gas appliance and an operation start
signal conversion unit for converting a signal from the discharge noise detection
unit into an appliance operation start signal and outputting the signal to the appliance
wireless module.
6. The gas appliance monitoring apparatus as claimed in any one of claims 1 to 4 wherein
the appliance detection unit comprises a temperature change detection unit for detecting
temperature change occurring with the operation of the specific gas appliance and
an operation start signal conversion unit for converting a signal from the temperature
change detection unit into an appliance operation start signal and outputting the
signal to the appliance wireless module.
7. The gas appliance monitoring apparatus as claimed in any one of claims 1 to 6 wherein
the appliance wireless module comprises an operation start signal determination unit
for determining whether or not the operation start signal from the appliance detection
unit is formal, an identification code change unit for setting or changing a unique
identification code for identifying each appliance, and an appliance information transmission
unit for transmitting the operation start signal and appliance information to which
the identification code is given to the gas meter if the determination result of the
operation start signal determination unit is normal.
8. The gas appliance monitoring apparatus as claimed in any one of claims 1 and 3 to
7 wherein the specific appliance monitor unit comprises an appliance determination
unit for determining which gas appliance is used when the appliance information is
transmitted from the appliance information transmitter, a flow rate change detection
unit for detecting decrease side flow rate change from increase side flow rate change
based on the flow rate information at the time, and an operation time measurement
unit for measuring the time.
9. The gas appliance monitoring apparatus as claimed in any one of claims 1 and 3 to
8 wherein the specific appliance use time storage unit comprises a continuously usable
time storage table storing the continuously usable time varying depending on the type
of specific gas appliance in an operation time table of a plurality of stages and
a comparison unit for making a comparison between the continuous operation time monitored
by the specific appliance monitor unit and the stored value in the storage table and
outputs a signal to the wide area communication wireless module or/and the area communication
wireless module when the continuous operation time exceeds the stored value.
10. The gas appliance monitoring apparatus as claimed in any one of claims 2 to 7 wherein
the monitor level change unit comprises an appliance determination unit for determining
which gas appliance is used when the appliance information is transmitted from the
appliance information transmitter and a flow rate change detection unit for detecting
decrease side flow rate change from increase side flow rate change based on the flow
rate information at the time.
11. The gas appliance monitoring apparatus as claimed in any one of claims 2 to 7 and
10 wherein the by-flow-rate-range continuous use time storage unit comprises a continuously
usable time storage table storing the continuously usable time corresponding to the
specific gas appliance based on the appliance information of the appliance determination
unit and increase side flow rate change information of the flow rate change detection
unit as an operation time table and a comparison unit for making a comparison between
the continuous operation time monitored by the continuous use time monitor unit and
the stored value in the storage table and outputs a signal to the wide area communication
wireless module or/and the area communication wireless module when the continuous
operation time exceeds the stored value.