TECHNICAL FIELD
[0001] The present invention relates to microRNAs and uses thereof, more specifically, to
serum/plasma microRNAs and the uses of serum/plasma microRNAs for diagnosis and differential
diagnosis of diseases, prediction of complication occurrence and malignant disease
relapse, evaluation of therapeutic effects, screening of pharmaceutical active ingredients,
assessment of drug efficacy, forensic authentication and prohibited drug inspection
and the like.
BACKGROUND ART
[0002] To locate and precisely detect disease markers has already been the important precondition
for the diagnosis and treatment of various clinical diseases including various tumors;
various acute/chronic infectious diseases, e.g. viral diseases such as viral influenza,
viral hepatitis, AIDS, SARS, bacterial diseases such as tuberculosis, bacterial pneumonia,
and other acute/chronic infectious diseases caused by various pathogenic microorganisms;
other acute/chronic diseases such as diseases of respiratory system, diseases of immune
system, diseases of blood and hematopoietic system, diseases of circulatory system
such as cardio-cerebrovascular diseases, metabolic diseases of endocrine system, diseases
of digestive system, diseases of nervous system, diseases of urinary system, diseases
of reproductive system and diseases of locomotor system. Although more and more disease
markers have been found and utilized in general survey and diagnosis of clinical diseases
as well as monitoring and controlling of therapeutic effects, their clinical application
effects are obviously insufficient. For instance, tumor marker, e.g. alphafetoprotein,
lactic dehydrogenase and carcinoembryonic antigen have been widely used in clinic.
But these disease markers are far from meeting the needs of early diagnosis for cancer
for the following two main reasons: (1) the sensitivity and specificity for the above-mentioned
disease markers are relatively low, thus their detection results cannot be used as
a diagnostic indicator of disease; (2) the early diagnosis rate of disease shall be
positively correlative with the therapeutic effects. However, it is difficult for
any of the aforesaid disease markers to meet such requirements for early diagnosis.
Take cancer for example, the specificity of tumor differentiation is too high, the
integrated sensitivity of tumor is relatively low, the samples sent to be detected
are difficult to be repeatedly taken and the conditions to meet the preservation requirements
for samples are too exacting, meanwhile, the cost is very high, thus under existing
technology the spreading and use of the tumor markers available are hard to realize.
The inherent defects of some traditional medical means such as biopsy, for example,
incorrect material-extraction position, the inadequacy of sample materials for histocytes
and human inexperience, etc., will all lead to misdiagnosis. Although other techniques
such as imaging technique have been widely used for examination and diagnosis of diseases,
there exists considerable limitation on the determination for disease degree. Consequently,
it is very necessary to find out a maker for disease detection which is novel, sensitive
and convenient to use and can also overcome the defects of existing markers as mentioned
above.
[0003] MicroRNAs are defined as a kind of non-coding single-stranded small RNA moleculars
of approximately from 19 to 23 nucleotides in length. They are highly conservative
in evolution; and are closely related to many normal physiological activities of animals
such as development process, tissue differentiation, cell apoptosis and energy metabolism;
in addition, bear close relation with the occurrence and development of many diseases.
Recent studies show that the expression levels of several microRNAs in chronic lymphocytic
leukemia and Burkitt lymphoma are on average down-regulated to various extents; and
that by analyzing and comparing the expressions of microRNAs in tissues of human lung
cancer and human breast cancer, the expression levels of several tissue specific microRNAs
have changed relative to normal tissues. Some studies demonstrate that microRNAs affect
the occurrence and development of cardio-cerebrovascular diseases such as myocardial
hypertrophy, heart failure, atherosclerosis, and are closely relative to metabolic
diseases such as Diabetes II. These experimental results indicate that there exists
inevitable connection between the expression and specificity changes of microRNAs
and the occurrence and development of diseases.
[0004] For the unimaginable important role microRNAs played in the regulation of expression
after gene transcription, microRNAs have some associations with diseases. First of
all, the changes of microRNAs may be the cause of diseases. This is because both the
inhibitor and the promoter of diseases may be target sites for microRNAs. If the expression
of microRNA itself is disturbed, e.g., the expression level of microRNA which is originally
to inhibit disease promoters decreases or the expression level of microRNA which is
to inhibit disease inhibitor increases, its end results will both lead to changes
in the expression of downstream genes and the overall disorder of some pathways, further
inducing the occurrence of diseases. Secondly, the changes of microRNAs may also result
from diseases. This is because, when a kind of disease such as cancer occurs, it will
lead to the loss of chromosome segments, gene mutation or rapid amplification of chromosome
segments; moreover, if the microRNAs happen to locate in the changing segment, then
their expression level will extremely significantly change. Therefore, in theory,
microRNAs can be completely regarded as a kind of new disease markers, the specificity
changes of which inevitably correlate with the occurrence and development of diseases.
Meanwhile, microRNA can also be used as a potential drug target, and it may greatly
alleviate the occurrence and development of diseases by inhibiting the up-regulated
microRNAs and overexpressedly down-regulated microRNAs in the course of a disease.
[0005] The inventor has carried out the research in the relevant fields of using microRNAs
as disease markers, for instance, choosing colonic carcinoma which ranks forth in
the incidence of malignant tumor as the research object. The research suggests that,
during the process of colon benign polyps developing into malignant tumor, some microRNAs
exhibit specificity changes, thereby a more sensitive and accurate method for the
early diagnosis of colonic carcinoma having been set up through detecting the specific
changes in microRNAs. However, since the sampling for tissue specimen is not easy,
the wide application of this method in clinics is limited.
DETAILED DESCRIPTION OF THE INVENTION
[0006] The inventor focuses the research on the blood which is relatively easy to obtain
and even can be collected via routine physical examination. Blood will circulate to
all tissues in body and convey nutrients to cells whilst scavenging waste materials;
therefore, blood is able to reflect the physiological pathology of the whole organism
and its detection results is an indicator of human health. It is known that in serum/plasma
there are many kinds of proteins such as total protein, albumin and globulin, many
kinds of lipids such as HDL cholesterol and triglycerides, many kinds of carbohydrates,
pigments, electrolytes, inorganic salts, and many kinds of enzymes such as amylase,
alkaline phosphatase, acid phosphatase, cholinesterase and aldolase; moreover, there
also exist many kinds of signaling molecules such as cytokines and hormone from tissues
and organs in whole body. Currently, disease diagnosis is only limited to the above-mentioned
biochemical indexes in serum/plasma, and no report is available regarding microRNAs
in serum/plasma. It traditionally believed that there is no microRNA in serum/plasma,
and that, if any, it will be rapidly degraded by RNase into small molecule segments
and hence cannot be detected. However, microRNAs, consisting of from 19 to 23 nucleotides,
possess specificity and relative stability in structure and hence are very likely
present in serum/plasma. Meanwhile, since microRNAs are a new type of disease markers,
it is anticipated that by studying whether or not microRNAs are present in serum/plasma,
whether or not they can be detected and the connection between microRNAs and diseases,
a new technology is established for the early disease diagnosis, disease identification
as well as monitoring and controlling of course of diseases, prediction of malignant
disease relapse and prognosis and complication occurrence, assessment of drug efficacy,
guide of medication, individualized treatment, screening of active ingredients of
Chinese Traditional Medicines, population taxonomy, etc., by use of the microRNAs
stably existing in serum/plasma as well as their specificity changes.
[0007] The present invention provides a combination of microRNAs for evaluating physiological
and/or pathological condition in a subject, wherein the combination comprises all
detectable microRNAs stably existing in the serum/plasma of the subject.
[0008] The present invention further provides a method for evaluating physiological and/or
pathological condition in a subject, wherein the method comprises determining all
detectable microRNAs stably existing in the serum/plasma of the subject.
[0009] In the above-mentioned combination or method, all detectable microRNAs stably existing
in serum/plasma of a subject may be all mature microRNAs in human serum/plasma, specifically
include let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-1, miR-100,
miR-101, miR-103, emir-105, miR-106a, miR-106b, miR-107, miR-10a, miR-10b, miR-122a,
miR-124a, miR-125a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129,
miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b, miR-136,
miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-142-5p, miR-143, miR-144,
miR-145, miR-146a, miR-146b, miR-147, miR-148a, miR-148b, miR-149, miR-150, miR-151,
miR-152, miR-153, miR-154, miR-154*, miR-155, miR-15a, miR-15b, miR-16, miR-17-3p,
miR-17-5p, miR-181a, miR-181b, miR-181c, miR-181d, miR-182, miR-182*, miR-183, miR-184,
miR-185, miR-186, miR-187, miR-188, miR-189, miR-18a, miR-18a*, miR-18b, miR-190,
miR-191, miR-191*, miR-192, miR-193a, miR-193b, miR-194, miR-195, miR-196a, miR-196b,
miR-197, miR-198, miR-199a, miR-199a*, miR-199b, miR-19a, miR-19b, miR-200a, miR-200a*,
miR-200b, miR-200c, miR-202, miR-202*, miR-203, miR-204, miR-205, miR-206, miR-208,
miR-20a, miR-20b, miR-21, miR-210, miR-211, miR-212, miR-213, miR-214, miR-215, miR-216,
miR-217, miR-218, miR-219, miR-22, miR-220, miR-221, miR-222, miR-223, miR-224, miR-23a,
miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-27b, miR-28, miR-296, miR-299-3p,
miR-299-5p, miR-29a, miR-29b, miR-29c, miR-301, miR-302a, miR-302a*, miR-302b, miR-302b*,
miR-302c, miR-302c*, miR-302d, miR-30a-3p, miR-30a-5p, miR-30b, miR-30c, miR-30d,
miR-30e-3p, miR-30e-5p, miR-31, miR-32, miR-320, miR-323, miR-324-3p, miR-324-5p,
miR-325, miR-326, miR-328, miR-329, miR-33, miR-330, miR-331, miR-335, miR-337, miR-338,
miR-339, miR-33b, miR-340, miR-342, miR-345, miR-346, miR-34a, miR-34b, miR-34c, miR-361,
miR-362, miR-363, miR-363*, miR-365, miR-367, miR-368, miR-369-3p, miR-369-5p, miR-370,
miR-371, miR-372, miR-373, miR-373*, miR-374, miR-375, miR-376a, miR-376a*, miR-376b,
miR-377, miR-378, miR-379, miR-380-3p, miR-380-5p, miR-381, miR-382, miR-383, miR-384,
miR-409-3p, miR-409-5p, miR-410, miR-411, miR-412, miR-421, miR-422a, miR-422b, miR-423,
miR-424, miR-425, miR-425-5p, miR-429, miR-431, miR-432, miR-432*, miR-433, miR-448,
miR-449, miR-450, miR-451, miR-452, miR-452*, miR-453, miR-455, miR-483, miR-484,
miR-485-3p, miR-485-5p, miR-486, miR-487a, miR-487b, miR-488, miR-489, miR-490, miR-491,
miR-492, miR-493, miR-493-3p, miR-494, miR-495, miR-496, miR-497, miR-498, miR-499,
miR-500, miR-501, miR-502, miR-503, miR-504, miR-505, miR-506, miR-507, miR-508, miR-509,
miR-510, miR-511, miR-512-3p, miR-512-5p, miR-513, miR-514, miR-515-3p, miR-515-5p,
miR-516-3p, miR-516-5p, miR-517*, miR-517a, miR-517b, miR-517c, miR-518a, miR-518a-2*,
miR-518b, miR-518c, miR-518c*, miR-518d, miR-518e, miR-518f, miR-518f*, miR-519a,
miR-519b, miR-519c, miR-519d, miR-519e, miR-519e*, miR-520a, miR-520a*, miR-520b,
miR-520c, miR-520d, miR-520d*, miR-520e, miR-520f, miR-520g, miR-520h, miR-521, miR-522,
miR-523, miR-524, miR-524*, miR-525, miR-525*, miR-526a, miR-526b, miR-526b*, miR-526c,
miR-527, miR-532, miR-542-3p, miR-542-5p, miR-544, miR-545, miR-548a, miR-548b, miR-548c,
miR-548d, miR-549, miR-550, miR-551a, miR-552, miR-553, miR-554, miR-555, miR-556,
miR-557, miR-558, miR-559, miR-560, miR-561, miR-562, miR-563, miR-564, miR-565, miR-566,
miR-567, miR-568, miR-569, miR-570, miR-571, miR-572, miR-573, miR-574, miR-575, miR-576,
miR-577, miR-578, miR-579, miR-580, miR-581, miR-582, miR-583, miR-584, miR-585, miR-586,
miR-587, miR-588, miR-589, miR-590, miR-591, miR-592, miR-593, miR-594, miR-595, miR-596,
miR-597, miR-598, miR-599, miR-600, miR-601, miR-602 , miR-603 , miR-604, miR-605
, miR-606, miR-607, miR-608, miR-609, miR-610, miR-611, miR-612, miR-613, miR-614,
miR-615, miR-616, miR-617, miR-618, miR-619, miR-620, miR-621, miR-622, miR-623, miR-624,
miR-625, miR-626, miR-627, miR-628, miR-629, miR-630, miR-631, miR-632, miR-633, miR-634,
miR-635, miR-636, miR-637, miR-638, miR-639, miR-640, miR-641, miR-642, miR-643, miR-644,
miR-645, miR-646, miR-647, miR-648, miR-649, miR-650, miR-651, miR-652, miR-653, miR-654,
miR-655, miR-656, miR-657, miR-658, miR-659, miR-660, miR-661, miR-662, miR-663, miR-7,
miR-9, miR-9*, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99 and miR-99b.
[0010] The aforesaid method for determining all detectable microRNAs stably existing in
serum/plasma of a subject is one or more selected from the group consisting of RT-PCR
method, Real-time PCR method, Northern blotting method, RNase protection assay, Solexa
sequencing technology and biochip method.
[0011] The aforesaid RT-PCR method includes the following steps:
- (1) extracting the total RNA from the serum/plasma of a subject and obtaining cDNA
samples by RNA reverse transcription reaction; or collecting serum/plasma samples
from the subject and conducting reverse transcription reaction with serum/plasma being
a buffer so as to prepare cDNA samples;
- (2) designing a primer by use of microRNAs and conducting PCR reaction;
- (3) conducting agarose gel electrophoresis of PCR products;
- (4) observing agarose gel under ultraviolet lamp after EB staining.
[0012] The aforesaid real-time PCR method includes the following steps:
- (1) extracting the total RNA from the serum/plasma of a subject and obtaining cDNA
samples by RNA reverse transcription reaction; or collecting serum/plasma samples
from the subject and conducting reverse transcription reaction with serum/plasma being
a buffer so as to prepare cDNA samples;
- (2) designing a primer by use of microRNAs;
- (3) adding a fluorescent probe to conduct PCR reaction;
- (4) detecting and comparing the variation in levels of microRNAs in the serum/plasma
relative to those of microRNAs in normal serum/plasma.
[0013] The present invention further provides a kit for evaluating physiological and/or
pathological condition of a subject, wherein the kit comprises the tools for determining
all detectable microRNAs stably existing in the serum/plasma of the subject. The kit
may comprises the primers of all mature microRNAs in human serum/plasma, specifically
comprises the primers of let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i,
miR-1, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-106b, miR-107, miR-10a, miR-10b,
miR-122a, miR-124a, miR-125a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b,
miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b,
miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-142-5p, miR-143,
miR-144, miR-145, miR-146a, miR-146b, miR-147, miR-148a, miR-148b, miR-149, miR-150,
miR-151, miR-152, miR-153, miR-154, miR-154*, miR-155, miR-15a, miR-15b, miR-16, miR-17-3p,
miR-17-5p, miR-181a, miR-181b, miR-181c, miR-181d, miR-182, miR-182*, miR-183, miR-184,
miR-185, miR-186, miR-187, miR-188, miR-189, miR-18a, miR-18a*, miR-18b, miR-190,
miR-191, miR-191*, miR-192, miR-193a, miR-193b, miR-194, miR-195, miR-196a, miR-196b,
miR-197, miR-198, miR-199a, miR-199a*, miR-199b, miR-19a, miR-19b, miR-200a, miR-200a*,
miR-200b, miR-200c, miR-202, miR-202*, miR-203, miR-204, miR-205, miR-206, miR-208,
miR-20a, miR-20b, miR-21, miR-210, miR-211, miR-212, miR-213, miR-214, miR-215, miR-216,
miR-217, miR-218, miR-219, miR-22, miR-220, miR-221, miR-222, miR-223, miR-224, miR-23a,
miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-27b, miR-28, miR-296, miR-299-3p,
miR-299-5p, miR-29a, miR-29b, miR-29c, miR-301, miR-302a, miR-302a*, miR-302b, miR-302b*,
miR-302c, miR-302c*, miR-302d, miR-30a-3p, miR-30a-5p, miR-30b, miR-30c, miR-30d,
miR-30e-3p, miR-30e-5p, miR-31, miR-32, miR-320, miR-323, miR-324-3p, miR-324-5p,
miR-325, miR-326, miR-328, miR-329, miR-33, miR-330, miR-331, miR-335, miR-337, miR-338,
miR-339, miR-33b, miR-340, miR-342, miR-345, miR-346, miR-34a, miR-34b, miR-34c, miR-361,
miR-362, miR-363, miR-363*, miR-365, miR-367, miR-368, miR-369-3p, miR-369-5p, miR-370,
miR-371, miR-372, miR-373, miR-373*, miR-374, miR-375, miR-376a, miR-376a*, miR-376b,
miR-377, miR-378, miR-379, miR-380-3p, miR-380-5p, miR-381, miR-382, miR-383, miR-384,
miR-409-3p, miR-409-5p, miR-410, miR-411, miR-412, miR-421, miR-422a, miR-422b, miR-423,
miR-424, miR-425, miR-425-5p, miR-429, miR-431, miR-432, miR-432*, miR-433, miR-448,
miR-449, miR-450, miR-451, miR-452, miR-452*, miR-453, miR-455, miR-483, miR-484 ,
miR-485-3p, miR-485-5p, miR-486 , miR-487a, miR-487b, miR-488, miR-489, miR-490, miR-491,
miR-492, miR-493, miR-493-3p, miR-494, miR-495, miR-496, miR-497, miR-498, miR-499,
miR-500, miR-501, miR-502, miR-503, miR-504, miR-505, miR-506, miR-507, miR-508, miR-509,
miR-510, miR-511, miR-512-3p, miR-512-5p, miR-513, miR-514, miR-515-3p, miR-515-5p,
miR-516-3p, miR-516-5p, miR-517*, miR-517a, miR-517b, miR-517c, miR-518a, miR-518a-2*,
miR-518b, miR-518c, miR-518c*, miR-518d, miR-518e, miR-518f, miR-518f*, miR-519a,
miR-519b, miR-519c, miR-519d, miR-519e, miR-519e*, miR-520a, miR-520a*, miR-520b,
miR-520c, miR-520d, miR-520d*, miR-520e, miR-520f, miR-520g, miR-520h, miR-521, miR-522,
miR-523, miR-524, miR-524*, miR-525 , miR-525*, miR-526a, miR-526b, miR-526b*, miR-526c,
miR-527, miR-532, miR-542-3p, miR-542-5p, miR-544, miR-545, miR-548a, miR-548b, miR-548c,
miR-548d, miR-549, miR-550, miR-551a, miR-552, miR-553, miR-554, miR-555, miR-556,
miR-557, miR-558, miR-559, miR-560, miR-561, miR-562, miR-563, miR-564, miR-565, miR-566,
miR-567, miR-568, miR-569, miR-570, miR-571, miR-572, miR-573, miR-574, miR-575, miR-576,
miR-577, miR-578, miR-579, miR-580, miR-581, miR-582, miR-583 , miR-584, miR-585,
miR-586, miR-587, miR-588, miR-589, miR-590, miR-591, miR-592, miR-593, miR-594, miR-595,
miR-596, miR-597, miR-598, miR-599, miR-600, miR-601, miR-602, miR-603, miR-604, miR-605,
miR-606, emir-607, miR-608, miR-609 , miR-610, miR-611, miR-612, miR-613, miR-614,
miR-615, miR-616, miR-617, miR-618, miR-619, miR-620, miR-621, miR-622, miR-623, miR-624,
miR-625, miR-626, miR-627, miR-628, miR-629, miR-630, miR-631, miR-632, miR-633, miR-634,
miR-635, miR-636, miR-637, miR-638, miR-639, miR-640, miR-641, miR-642, miR-643, miR-644,
miR-645, miR-646, miR-647, miR-648, miR-649, miR-650, miR-651, miR-652, miR-653, miR-654,
miR-655, miR-656, miR-657, miR-658, miR-659, miR-660, miR-661, miR-662, miR-663, miR-7,
miR-9, miR-9*, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99a and miR-99b.
[0014] The present invention also provides a biochip for evaluating physiological and/or
pathological condition of a subject, wherein the biochip contains the components for
determining all detectable microRNAs stably existing in the serum/plasma of the subject.
The biochip may also contain the probes for all mature microRNAs in human serum/plasma.
The probes specifically include the probes as shown in Table 1.
Table 1. Probes of all mature microRNAs in human serum/plasma
| Probes |
Corresponding microRNAs |
Sequences of probes |
| probe-let-7a |
let-7a |
AACTATACAACCTACTACCTCA |
| probe-let-7b |
let-7b |
AACCACACAACCTACTACCTCA |
| probe-let-7c |
let-7c |
AACCATACAACCTACTACCTCA |
| probe-let-7d |
let-7d |
ACTATGCAACCTACTACCTCT |
| probe-let-7e |
let-7e |
ACTATACAACCTCCTACCTCA |
| probe-let-7f |
let-7f |
AACTATACAATCTACTACCTCA |
| probe-let-7g |
let-7g |
ACTGTACAAACTACTACCTCA |
| probe-let-7i |
let-7i |
ACAGCACAAACTACTACCTCA |
| probe-miR-1 |
miR-1 |
TACATACTTCTTTACATTCCA |
| probe-miR-100 |
miR-100 |
CACAAGTTCGGATCTACGGGTT |
| probe-miR-101 |
miR-101 |
CTTCAGTTATCACAGTACTGTA |
| probe-miR-103 |
miR-103 |
TCATAGCCCTGTACAATGCTGCT |
| probe-miR-105 |
miR-105 |
ACAGGAGTCTGAGCATTTGA |
| probe-miR-106a |
miR-106a |
GCTACCTGCACTGTAAGCACTTTT |
| probe-miR-106b |
miR-106b |
ATCTGCACTGTCAGCACTTTA |
| probe-miR-107 |
miR-107 |
TGATAGCCCTGTACAATGCTGCT |
| probe-miR-10a |
miR-10a |
CACAAATTCGGATCTACAGGGTA |
| probe-miR-10b |
miR-10b |
ACAAATTCGGTTCTACAGGGTA |
| probe-miR-122a |
miR-122a |
ACAAACACCATTGTCACACTCCA |
| probe-miR-124a |
miR-124a |
TGGCATTCACCGCGTGCCTTAA |
| probe-miR-125a |
miR-125a |
CACAGGTTAAAGGGTCTCAGGGA |
| probe-miR-125b |
miR-125b |
TCACAAGTTAGGGTCTCAGGGA |
| probe-miR-126 |
miR-126 |
GCATTATTACTCACGGTACGA |
| probe-miR-126* |
miR-126* |
CGCGTACCAAAAGTAATAATG |
| probe-miR-127 |
miR-127 |
AGCCAAGCTCAGACGGATCCGA |
| probe-miR-128a |
miR-128a |
AAAAGAGACCGGTTCACTGTGA |
| probe-miR-128b |
miR-128b |
GAAAGAGACCGGTTCACTGTGA |
| probe-miR-129 |
miR-129 |
GCAAGCCCAGACCGCAAAAAG |
| probe-miR-130a |
miR-130a |
ATGCCCTTTTAACATTGCACTG |
| probe-miR-130b |
miR-130b |
ATGCCCTTTCATCATTGCACTG |
| probe-miR-132 |
miR-132 |
CGACCATGGCTGTAGACTGTTA |
| probe-miR-133a |
miR-133a |
ACAGCTGGTTGAAGGGGACCAA |
| probe-miR-133b |
miR-133b |
TAGCTGGTTGAAGGGGACCAA |
| probe-miR-134 |
miR-134 |
CCCTCTGGTCAACCAGTCACA |
| probe-miR-135a |
miR-135a |
TCACATAGGAATAAAAAGCCATA |
| probe-miR-135b |
miR-135b |
CACATAGGAATGAAA.AGCCATA |
| probe-miR-136 |
miR-136 |
TCCATCATCAAAACAAATGGAGT |
| probe-miR-137 |
miR-137 |
CTACGCGTATTCTTAAGCAATA |
| probe-miR-138 |
miR-138 |
GATTCACAACACCAGCT |
| probe-miR-139 |
miR-139 |
AGACACGTGCACTGTAGA |
| probe-miR-140 |
miR-140 |
CTACCATAGGGTAAAACCACT |
| probe-miR-141 |
miR-141 |
CCATCTTTACCAGACAGTGTTA |
| probe-miR-142-3p |
miR-142-3p |
TCCATAAAGTAGGAAACACTACA |
| probe-miR-142-5p |
miR-142-5p |
GTAGTGCTTTCTACTTTATG |
| probe-miR-143 |
miR-143 |
TGAGCTACAGTGCTTCATCTCA |
| probe-miR-144 |
miR-144 |
CTAGTACATCATCTATACTGTA |
| probe-miR-145 |
miR-145 |
AAGGGATTCCTGGGAAAACTGGAC |
| probe-miR-146a |
miR-146a |
AACCCATGGAATTCAGTTCTCA |
| probe-miR-146b |
miR-146b |
AGCCTATGGAATTCAGTTCTCA |
| probe-miR-147 |
miR-147 |
GCAGAAGCATTTCCACACAC |
| probe-miR-148a |
miR-148a |
ACAAAGTTCTGTAGTGCACTGA |
| probe-miR-148b |
miR-148b |
ACAAAGTTCTGTGATGCACTGA |
| probe-miR-149 |
miR-149 |
GGAGTGAAGACACGGAGCCAGA |
| probe-miR-150 |
miR-150 |
CACTGGTACAAGGGTTGGGAGA |
| probe-miR-151 |
miR-151 |
CCTCAAGGAGCTTCAGTCTAGT |
| probe-miR-152 |
miR-152 |
CCCAAGTTCTGTCATGCACTGA |
| probe-miR-153 |
miR-153 |
TCACTTTTGTGACTATGCAA |
| probe-miR-154 |
miR-154 |
CGAAGGCAACACGGATAACCTA |
| probe-miR-154* |
miR-154* |
AATAGGTCAACCGTGTATGATT |
| probe-miR-155 |
miR-155 |
CCCCTATCACGATTAGCATTAA |
| probe-miR-15a |
miR-15a |
CACAAACCATTATGTGCTGCTA |
| probe-miR-15b |
miR-15b |
TGTAAACCATGATGTGCTGCTA |
| probe-miR-16 |
miR-16 |
CGCCAATATTTACGTGCTGCTA |
| probe-miR-17-3p |
miR-17-3p |
ACAAGTGCCTTCACTGCAGT |
| probe-miR-17-5p |
miR-17-5p |
ACTACCTGCACTGTAAGCACTTTG |
| probe-miR-181a |
miR-181a |
ACTCACCGACAGCGTTGAATGTT |
| probe-miR-181b |
miR-181b |
CCCACCGACAGCAATGAATGTT |
| probe-miR-181c |
miR-181c |
ACTCACCGACAGGTTGAATGTT |
| probe-miR-181d |
miR-181d |
AACCCACCGACAACAATGAATGTT |
| probe-miR-182 |
miR-182 |
TGTGAGTTCTACCATTGCCAAA |
| probe-miR-182* |
miR-182* |
TAGTTGGCAAGTCTAGAACCA |
| probe-miR-183 |
miR-183 |
CAGTGAATTCTACCAGTGCCATA |
| probe-miR-184 |
miR-184 |
ACCCTTATCAGTTCTCCGTCCA |
| probe-miR-185 |
miR-185 |
GAACTGCCTTTCTCTCCA |
| probe-miR-186 |
miR-186 |
AAGCCCAAAAGGAGAATTCTTTG |
| probe-miR-187 |
miR-187 |
CGGCTGCAACACAAGACACGA |
| probe-miR-188 |
miR-188 |
ACCCTCCACCATGCAAGGGATG |
| probe-miR-189 |
miR-189 |
ACTGATATCAGCTCAGTAGGCAC |
| probe-miR-18a |
miR-18a |
TATCTGCACTAGATGCACCTTA |
| probe-miR-18a* |
miR-18a* |
AGAAGGAGCACTTAGGGCAGT |
| probe-miR-18b |
miR-18b |
TAACTGCACTAGATGCACCTTA |
| probe-miR-190 |
miR-190 |
ACCTAATATATCAAACATATCA |
| probe-miR-191 |
miR-191 |
AGCTGCTTTTGGGATTCCGTTG |
| probe-miR-191* |
miR-191* |
GGGGACGAAATCCAAGCGCAGC |
| probe-miR-192 |
miR-192 |
GGCTGTCAATTCATAGGTCAG |
| probe-miR-193a |
miR-193a |
CTGGGACTTTGTAGGCCAGTT |
| probe-miR-193b |
miR-193b |
AAAGCGGGACTTTGAGGGCCAGTT |
| probe-miR-194 |
miR-194 |
TCCACATGGAGTTGCTGTTACA |
| probe-miR-195 |
miR-195 |
GCCAATATTTCTGTGCTGCTA |
| probe-miR-196a |
miR-196a |
CCAACAACATGAAACTACCTA |
| probe-miR-196b |
miR-196b |
CCAACAACAGGAAACTACCTA |
| probe-miR-197 |
miR-197 |
GCTGGGTGGAGAAGGTGGTGAA |
| probe-miR-198 |
miR-198 |
CCTATCTCCCCTCTGGACC |
| probe-miR-199a |
miR-199a |
GAACAGGTAGTCTGAACACTGGG |
| probe-miR-199a* |
miR-199a* |
AACCAATGTGCAGACTACTGTA |
| probe-miR-199b |
miR-199b |
GAACAGATAGTCTAAACACTGGG |
| probe-miR-19a |
miR-19a |
TCAGTTTTGCATAGATTTGCACA |
| probe-miR-19b |
miR-19b |
TCAGTTTTGCATGGATTTGCACA |
| probe-miR-200a |
miR-200a |
ACATCGTTACCAGACAGTGTTA |
| probe-miR-200a* |
miR-200a* |
TCCAGCACTGTCCGGTAAGATG |
| probe-miR-200b |
miR-200b |
GTCATCATTACCAGGCAGTATTA |
| probe-miR-200c |
miR-200c |
CCATCATTACCCGGCAGTATTA |
| probe-miR-202 |
miR-202 |
TTTTCCCATGCCCTATACCTCT |
| probe-miR-202* |
miR-202* |
AAAGAAGTATATGCATAGGAAA |
| probe-miR-203 |
miR-203 |
CTAGTGGTCCTAAACATTTCAC |
| probe-miR-204 |
miR-204 |
AGGCATAGGATGACAAAGGGAA |
| probe-miR-205 |
miR-205 |
CAGACTCCGGTGGAATGAAGGA |
| probe-miR-206 |
miR-206 |
CCACACACTTCCTTACATTCCA |
| probe-miR-208 |
miR-208 |
ACAAGCTTTTTGCTCGTCTTAT |
| probe-miR-20a |
miR-20a |
CTACCTGCACTATAAGCACTTTA |
| probe-miR-20b |
miR-20b |
CTACCTGCACTATGAGCACTTTG |
| probe-miR-21 |
miR-21 |
TCAACATCAGTCTGATAAGCTA |
| probe-miR-210 |
miR-210 |
TCAGCCGCTGTCACACGCACAG |
| probe-miR-211 |
miR-211 |
AGGCGAAGGATGACAAAGGGAA |
| probe-miR-212 |
miR-212 |
GGCCGTGACTGGAGACTGTTA |
| probe-miR-213 |
miR-213 |
GGTACAATCAACGGTCGATGGT |
| probe-miR-214 |
miR-214 |
CTGCCTGTCTGTGCCTGCTGT |
| probe-miR-215 |
miR-215 |
GTCTGTCAATTCATAGGTCAT |
| probe-miR-216 |
miR-216 |
CACAGTTGCCAGCTGAGATTA |
| probe-miR-217 |
miR-217 |
ATCCAATCAGTTCCTGATGCAGTA |
| probe-miR-218 |
miR-218 |
ACATGGTTAGATCAAGCACAA |
| probe-miR-219 |
miR-219 |
AGAATTGCGTTTGGACAATCA |
| probe-miR-22 |
miR-22 |
ACAGTTCTTCAACTGGCAGCTT |
| probe-miR-220 |
miR-220 |
AAAGTGTCAGATACGGTGTGG |
| probe-miR-221 |
miR-221 |
GAAACCCAGCAGACAATGTAGCT |
| probe-miR-222 |
miR-222 |
GAGACCCAGTAGCCAGATGTAGCT |
| probe-miR-223 |
miR-223 |
GGGGTATTTGACAAACTGACA |
| probe-miR-224 |
miR-224 |
TAAACGGAACCACTAGTGACTTG |
| probe-miR-23a |
miR-23a |
GGAAATCCCTGGCAATGTGAT |
| probe-miR-23b |
miR-23b |
GGTAATCCCTGGCAATGTGAT |
| probe-miR-24 |
miR-24 |
CTGTTCCTGCTGAACTGAGCCA |
| probe-miR-25 |
miR-25 |
TCAGACCGAGACAAGTGCAATG |
| probe-miR-26a |
miR-26a |
GCCTATCCTGGATTACTTGAA |
| probe-miR-26b |
miR-26b |
AACCTATCCTGAATTACTTGAA |
| probe-miR-27a |
miR-27a |
GCGGAACTTAGCCACTGTGAA |
| probe-miR-27b |
miR-27b |
GCAGAACTTAGCCACTGTGAA |
| probe-miR-28 |
miR-28 |
CTCAATAGACTGTGAGCTCCTT |
| probe-miR-296 |
miR-296 |
ACAGGATTGAGGGGGGGCCCT |
| probe-miR-299-3p |
miR-299-3p |
AAGCGGTTTACCATCCCACATA |
| probe-miR-299-5p |
miR-299-5p |
ATGTATGTGGGACGGTAAACCA |
| probe-miR-29a |
miR-29a |
AACCGATTTCAGATGGTGCTA |
| probe-miR-29b |
miR-29b |
AACACTGATTTCAAATGGTGCTA |
| probe-miR-29c |
miR-29c |
ACCGATTTCAAATGGTGCTA |
| probe-miR-301 |
miR-301 |
GCTTTGACAATACTATTGCACTG |
| probe-miR-302a |
miR-302a |
TCACCAAAACATGGAAGCACTTA |
| probe-miR-302a* |
miR-302a* |
AAAGCAAGTACATCCACGTTTA |
| probe-miR-302b |
miR-302b |
CTACTAAAACATGGAAGCACTTA |
| probe-miR-302b* |
miR-302b* |
AGAAAGCACTTCCATGTTAAAGT |
| probe-miR-302c |
miR-302c |
CCACTGAAACATGGAAGCACTTA |
| probe-miR-302c* |
miR-302c* |
CAGCAGGTACCCCCATGTTAAA |
| probe-miR-302d |
miR-302d |
ACACTCAAACATGGAAGCACTTA |
| probe-miR-30a-3p |
miR-30a-3p |
GCTGCAAACATCCGACTGAAAG |
| probe-miR-30a-5p |
miR-30a-5p |
CTTCCAGTCGAGGATGTTTACA |
| probe-miR-30b |
miR-30b |
AGCTGAGTGTAGGATGTTTACA |
| probe-miR-30c |
miR-30c |
GCTGAGAGTGTAGGATGTTTACA |
| probe-miR-30d |
miR-30d |
CTTCCAGTCGGGGATGTTTACA |
| probe-miR-30e-3p |
miR-30e-3p |
GCTGTAAACATCCGACTGAAAG |
| probe-miR-30e-5p |
miR-30e-5p |
TCCAGTCAAGGATGTTTACA |
| probe-miR-31 |
miR-31 |
CAGCTATGCCAGCATCTTGCC |
| probe-miR-32 |
miR-32 |
GCAACTTAGTAATGTGCAATA |
| probe-miR-320 |
miR-320 |
TTCGCCCTCTCAACCCAGCTTTT |
| probe-miR-323 |
miR-323 |
AGAGGTCGACCGTGTAATGTGC |
| probe-miR-324-3p |
miR-324-3p |
CCAGCAGCACCTGGGGCAGTGG |
| probe-miR-324-5p |
miR-324-5p |
ACACCAATGCCCTAGGGGATGCG |
| probe-miR-325 |
miR-325 |
ACACTTACTGGACACCTACTAGG |
| probe-miR-326 |
miR-326 |
CTGGAGGAAGGGCCCAGAGG |
| probe-miR-328 |
miR-328 |
ACGGAAGGGCAGAGAGGGCCAG |
| probe-miR-329 |
miR-329 |
AAAGAGGTTAACCAGGTGTGTT |
| probe-miR-33 |
miR-33 |
CAATGCAACTACAATGCAC |
| probe-miR-330 |
miR-330 |
TCTCTGCAGGCCGTGTGCTTTGC |
| probe-miR-331 |
miR-331 |
TTCTAGGATAGGCCCAGGGGC |
| probe-miR-335 |
miR-335 |
ACATTTTTCGTTATTGCTCTTGA |
| probe-miR-337 |
miR-337 |
AAAGGCATCATATAGGAGCTGGA |
| probe-miR-338 |
miR-338 |
TCAACAAAATCACTGATGCTGGA |
| probe-miR-339 |
miR-339 |
TGAGCTCCTGGAGGACAGGGA |
| probe-miR-33b |
miR-33b |
TGCAATGCAACAGCAATGCAC |
| probe-miR-340 |
miR-340 |
GGCTATAAAGTAACTGAGACGGA |
| probe-miR-342 |
miR-342 |
GACGGGTGCGATTTCTGTGTGAGA |
| probe-miR-345 |
miR-345 |
GCCCTGGACTAGGAGTCAGCA |
| probe-miR-346 |
miR-346 |
AGAGGCAGGCATGCGGGCAGACA |
| probe-miR-34a |
miR-34a |
AACAACCAGCTAAGACACTGCCA |
| probe-miR-34b |
miR-34b |
CAATCAGCTAATGACACTGCCTA |
| probe-miR-34c |
miR-34c |
GCAATCAGCTAACTACACTGCCT |
| probe-miR-361 |
miR-361 |
GTACCCCTGGAGATTCTGATAA |
| probe-miR-362 |
miR-362 |
CTCACACCTAGGTTCCAAGGATT |
| probe-miR-363 |
miR-363 |
TTACAGATGGATACCGTGCAAT |
| probe-miR-363* |
miR-363* |
AAATTGCATCGTGATCCACCCG |
| probe-miR-365 |
miR-365 |
ATAAGGATTTTTAGGGGCATTA |
| probe-miR-367 |
miR-367 |
TCACCATTGCTAAAGTGCAATT |
| probe-miR-368 |
miR-368 |
AAACGTGGAATTTCCTCTATGT |
| probe-miR-369-3p |
miR-369-3p |
AAAGATCAACCATGTATTATT |
| probe-miR-369-5p |
miR-369-5p |
GCGAATATAACACGGTCGATCT |
| probe-miR-370 |
miR-370 |
CCAGGTTCCACCCCAGCAGGC |
| probe-miR-371 |
miR-371 |
ACACTCAAAAGATGGCGGCAC |
| probe-miR-372 |
miR-372 |
ACGCTCAAATGTCGCAGCACTTT |
| probe-miR-373 |
miR-373 |
ACACCCCAAAATCGAAGCACTTC |
| probe-miR-373 * |
miR-373 * |
GGAAAGCGCCCCCATTTTGAGT |
| probe-miR-374 |
miR-374 |
CACTTATCAGGTTGTATTATAA |
| probe-miR-375 |
miR-375 |
TCACGCGAGCCGAACGAACAAA |
| probe-miR-376a |
miR-376a |
ACGTGGATTTTCCTCTATGAT |
| probe-miR-376a* |
miR-376a* |
CTCATAGAAGGAGAATCTACC |
| probe-miR-376b |
miR-376b |
AACATGGAT'TTTCCTCTATGAT |
| probe-miR-377 |
miR-377 |
ACAAAAGTTGCCTTTGTGTGAT |
| probe-miR-378 |
miR-378 |
ACACAGGACCTGGAGTCAGGAG |
| probe-miR-379 |
miR-379 |
TACGTTCCATAGTCTACCA |
| probe-miR-380-3p |
miR-380-3p |
AAGATGTGGACCATATTACATA |
| probe-miR-380-5p |
miR-380-5p |
GCGCATGTTCTATGGTCAACCA |
| probe-miR-381 |
miR-381 |
ACAGAGAGCTTGCCCTTGTATA |
| probe-miR-382 |
miR-382 |
CGAATCCACCACGAACAACTTC |
| probe-miR-383 |
miR-383 |
AGCCACAATCACCTTCTGATCT |
| probe-miR-384 |
miR-384 |
TATGAACAATTTCTAGGAAT |
| probe-miR-409-3p |
miR-409-3p |
AGGGGTTCACCGAGCAACATTCG |
| probe-miR-409-5p |
miR-409-5p |
TGCAAAGTTGCTCGGGTAACCT |
| probe-miR-410 |
miR-410 |
AACAGGCCATCTGTGTTATATT |
| probe-miR-411 |
miR-411 |
CGTACGCTATACGGTCTACTA |
| probe-miR-412 |
miR-412 |
ACGGCTAGTGGACCAGGTGAAGT |
| probe-miR-421 |
miR-421 |
GCGCCCAATTAATGTCTGTTGAT |
| probe-miR-422a |
miR-422a |
GGCCTTCTGACCCTAAGTCCAG |
| probe-miR-422b |
miR-422b |
GGCCTTCTGACTCCAAGTCCAG |
| probe-miR-423 |
miR-423 |
CTGAGGGGCCTCAGACCGAGCT |
| probe-miR-424 |
miR-424 |
TTCAAAACATGAATTGCTGCTG |
| probe-miR-425 |
miR-425 |
GGCGGACACGACATTCCCGAT |
| probe-miR-425-5p |
miR-425-5p |
TCAACGGGAGTGATCGTGTCATT |
| probe-miR-429 |
miR-429 |
ACGGTTTTACCAGACAGTATTA |
| probe-miR-431 |
miR-431 |
TGCATGACGGCCTGCAAGACA |
| probe-miR-432 |
miR-432 |
CCACCCAATGACCTACTCCAAGA |
| probe-miR-432* |
miR-432* |
AGACATGGAGGAGCCATCCAG |
| probe-miR-433 |
miR-433 |
ACACCGAGGAGCCCATCATGAT |
| probe-miR-448 |
miR-448 |
ATGGGACATCCTACATATGCAA |
| probe-miR-449 |
miR-449 |
ACCAGCTAACAATACACTGCCA |
| probe-miR-450 |
miR-450 |
TATTAGGAACACATCGCAAAAA |
| probe-miR-451 |
miR-451 |
AAACTCAGTAATGGTAACGGTTT |
| probe-miR-452 |
miR-452 |
GTCTCAGTTTCCTCTGCAAACA |
| probe-miR-452* |
miR-452* |
CTTCTTTGCAGATGAGACTGA |
| probe-miR-453 |
miR-453 |
CGAACTCACCACGGACAACCTC |
| probe-miR-455 |
miR-455 |
CGATGTAGTCCAAAGGCACATA |
| probe-miR-483 |
miR-483 |
AGAAGACGGGAGGAGAGGAGTGA |
| probe-miR-484 |
miR-484 |
ATCGGGAGGGGACTGAGCCTGA |
| probe-miR-485-3p |
miR-485-3p |
AGAGGAGAGCCGTGTATGAC |
| probe-miR-485-5p |
miR-485-5p |
GAATTCATCACGGCCAGCCTCT |
| probe-miR-486 |
miR-486 |
CTCGGGGCAGCTCAGTACAGGA |
| probe-miR-487a |
miR-487a |
AACTGGATGTCCCTGTATGATT |
| probe-miR-487b |
miR-487b |
AAGTGGATGACCCTGTACGATT |
| probe-miR-488 |
miR-488 |
TTGAGAGTGCCATTATCTGGG |
| probe-miR-489 |
miR-489 |
GCTGCCGTATATGTGATGTCACT |
| probe-miR-490 |
miR-490 |
CAGCATGGAGTCCTCCAGGTTG |
| probe-miR-491 |
miR-491 |
TCCTCATGGAAGGGTTCCCCACT |
| probe-miR-492 |
miR-492 |
AAGAATCTTGTCCCGCAGGTCCT |
| probe-miR-493 |
miR-493 |
AATGAAAGCCTACCATGTACAA |
| probe-miR-493-3p |
miR-493-3p |
CTGGCACACAGTAGACCTTCA |
| probe-miR-494 |
miR-494 |
AAGAGGTTTCCCGTGTATGTTTCA |
| probe-miR-495 |
miR-495 |
AAAGAAGTGCACCATGTTTGTTT |
| probe-miR-496 |
miR-496 |
GAGATTGGCCATGTAAT |
| probe-miR-497 |
miR-497 |
ACAAACCACAGTGTGCTGCTG |
| probe-miR-498 |
miR-498 |
GAAAAACGCCCCCTGGCTTGAAA |
| probe-miR-499 |
miR-499 |
TTAAACATCACTGCAAGTCTTAA |
| probe-miR-500 |
miR-500 |
CAGAATCCTTGCCCAGGTGCAT |
| probe-miR-501 |
miR-501 |
TCTCACCCAGGGACAAAGGATT |
| probe-miR-502 |
miR-502 |
TAGCACCCAGATAGCAAGGAT |
| probe-miR-503 |
miR-503 |
CTGCAGAACTGTTCCCGCTGCTA |
| probe-miR-504 |
miR-504 |
ATAGAGTGCAGACCAGGGTCT |
| probe-miR-505 |
miR-505 |
GAGGAAACCAGCAAGTGTTGAC |
| probe-miR-506 |
miR-506 |
TCTACTCAGAAGGGTGCCTTA |
| probe-miR-507 |
miR-507 |
TTCACTCCAAAAGGTGCAAAA |
| probe-miR-508 |
miR-508, |
TCTACTCCAAAAGGCTACAATCA |
| probe-miR-509 |
miR-509 |
TCTACCCACAGACGTACCAATCA |
| probe-miR-510 |
miR-510 |
TGTGATTGCCACTCTCCTGAGTA |
| probe-miR-511 |
miR-511 |
TGACTGCAGAGCAAAAGACAC |
| probe-miR-512-3p |
miR-512-3p |
GACCTCAGCTATGACAGCACTT |
| probe-miR-512-5p |
miR-512-5p |
GAAAGTGCCCTCAAGGCTGAGTG |
| probe-miR-513 |
miR-513 |
ATAAATGACACCTCCCTGTGAA |
| probe-miR-514 |
miR-514 |
CTACTCACAGAAGTGTCAAT |
| probe-miR-515-3p |
miR-515-3p |
ACGCTCCAAAAGAAGGCACTC |
| probe-miR-515-5p |
miR-515-5p |
CAGAAAGTGCTTTCTTTTGGAGAA |
| probe-miR-516-3p |
miR-516-3p |
ACCCTCTGAAAGGAAGCA |
| probe-miR-516-5p |
miR-516-5p |
AAAGTGCTTCTTACCTCCAGAT |
| probe-miR-517* |
miR-517* |
AGACAGTGCTTCCATCTAGAGG |
| probe-miR-517a |
miR-517a |
AACACTCTAAAGGGATGCACGAT |
| probe-miR-517b |
miR-517b |
AACACTCTAAAGGGATGCACGA |
| probe-miR-517c |
miR-517c |
ACACTCTAAAAGGATGCACGAT |
| probe-miR-518a |
miR-518a |
TCCAGCAAAGGGAAGCGCTTT |
| probe-miR-518a-2* |
miR-518a-2* |
AAAGGGCTTCCCTTTGCAGA |
| probe-miR-518b |
miR-518b |
ACCTCTAAAGGGGAGCGCTTTG |
| probe-miR-518c |
miR-518c |
CACTCTAAAGAGAAGCGCTTTG |
| probe-miR-518c* |
miR-518c* |
CAGAAAGTGCTTCCCTCCAGAGA |
| probe-miR-518d |
miR-518d |
GCTCCAAAGGGAAGCGCTTTG |
| probe-miR-518e |
miR-518e |
ACACTCTGAAGGGAAGCGCTTT |
| probe-miR-518f |
miR-518f |
TCCTCTAAAGAGAAGCGCTTT |
| probe-miR-518f* |
miR-518f* |
AGAGAAAGTGCTTCCCTCTAGAG |
| probe-miR-519a |
miR-519a |
GTAACACTCTAAAAGGATGCACTTT |
| probe-miR-519b |
miR-519b |
AAACCTCTAAAAGGATGCACTTT |
| probe-miR-519c |
miR-519c |
ATCCTCTAAAAAGATGCACTTT |
| probe-miR-519d |
miR-519d |
ACACTCTAAAGGGAGGCACTTTG |
| probe-miR-519e |
miR-519e |
ACACTCTAAAAGGAGGCACTTT |
| probe-miR-519e* |
miR-519e* |
GAAAGTGCTCCCTTTTGGAGAA |
| probe-miR-520a |
miR-520a |
ACAGTCCAAAGGGAAGCACTTT |
| probe-miR-520a* |
miR-520a* |
AGAAAGTACTTCCCTCTGGAG |
| probe-miR-520b |
miR-520b |
CCCTCTAAAAGGAAGCACTTT |
| probe-miR-520c |
miR-520c |
AACCCTCTAAAAGGAAGCACTTT |
| probe-miR-520d |
miR-520d |
AACCCACCAAAGAGAAGCACTTT |
| probe-miR-520d* |
miR-520d* |
CAGAAAGGGCTTCCCTTTGTAGA |
| probe-miR-520e |
miR-520e |
CCCTCAAAAAGGAAGCACTTT |
| probe-miR-520f |
miR-520f |
AACCCTCTAAAAGGAAGCACTT |
| probe-miR-520g |
miR-520g |
ACACTCTAAAGGGAAGCACTTTGT |
| probe-miR-520h |
miR-520h |
ACTCTAAAGGGAAGCACTTTGT |
| probe-miR-521 |
miR-521 |
ACACTCTAAAGGGAAGTGCGTT |
| probe-miR-522 |
miR-522 |
AACACTCTAAAGGGAACCATTTT |
| probe-miR-523 |
miR-523 |
CCCTCTATAGGGAAGCGCGTT |
| probe-miR-524 |
miR-524 |
ACTCCAAAGGGAAGCGCCTTC |
| probe-miR-524* |
miR-524* |
GAGAAAGTGCTTCCCTTTGTAG |
| probe-miR-525 |
miR-525 |
AGAAAGTGCATCCCTCTGGAG |
| probe-miR-525* |
miR-525* |
GCTCTAAAGGGAAGCGCCTTC |
| probe-miR-526a |
miR-526a |
AGAAAGTGCTTCCCTCTAGAG |
| probe-miR-526b |
miR-526b |
AACAGAAAGTGCTTCCCTCAAGAG |
| probe-miR-526b* |
miR-526b* |
GCCTCTAAAAGGAAGCACTTT |
| probe-miR-526c |
miR-526c |
AACAGAAAGCGCTTCCCTCTAGAG |
| probe-miR-527 |
miR-527 |
AGAAAGGGCTTCCCTTTGCAG |
| probe-miR-532 |
miR-532 |
ACGGTCCTACACTCAAGGCATG |
| probe-miR-542-3p |
miR-542-3p |
TTTCAGTTATCAATCTGTCACA |
| probe-miR-542-5p |
miR-542-5p |
CTCGTGACATGATGATCCCCGA |
| probe-miR-544 |
miR-544 |
ACTTGCTAAAAATGCAGAAT |
| probe-miR-545 |
miR-545 |
CACACAATAAATGTTTGCTGAT |
| probe-miR-548a |
miR-548a |
GCAAAAGTAATTGCCAGTTTTG |
| probe-miR-548b |
miR-548b |
ACAAAAGCAACTGAGGTTCTTG |
| probe-miR-548c |
miR-548c |
GCAAAAGTAATTGAGATTTTTG |
| probe-miR-548d |
miR-548d |
GCAAAAGAAACTGTGGTTTTTG |
| probe-miR-549 |
miR-549 |
AGAGCTCATCCATAGTTGTCA |
| probe-miR-550 |
miR-550 |
ATGTGCCTGAGGGAGTAAGACA |
| probe-miR-551a |
miR-551 a |
TGGAAACCAAGAGTGGGTCGC |
| probe-miR-552 |
miR-552 |
TTGTCTAACCAGTCACCTGTT |
| probe-miR-553 |
miR-553 |
AAAACAAAATCTCACCGTTTT |
| probe-miR-554 |
miR-554 |
ACTGGCTGAGTCAGGACTAGC |
| probe-miR-555 |
miR-555 |
ATCAGAGGTTCAGCTTACCCT |
| probe-miR-556 |
miR-556 |
CATATTACAATGAGCTCATC |
| probe-miR-557 |
miR-557 |
AGACAAGGCCCACCCGTGCAAAC |
| probe-miR-558 |
miR-558 |
ATTTTGGTACAGCAGCTCA |
| probe-miR-559 |
miR-559 |
TTTTGGTGCATATTTACTTTA |
| probe-miR-560 |
miR-560 |
GGCGGCCGGCCGGCGCACGC |
| probe-miR-561 |
miR-561 |
ACTTCAAGGATCTTAAACTTTG |
| probe-miR-562 |
miR-562 |
GCAAATGGTACAGCTACTTT |
| probe-miR-563 |
miR-563 |
GGGAAACGTATGTCAACCT |
| probe-miR-564 |
miR-564 |
GCCTGCTGACACCGTGCCT |
| probe-miR-565 |
miR-565 |
AAACAGACATCGCGAGCCAGCC |
| probe-miR-566 |
miR-566 |
GTTGGGATCACAGGCGCCC |
| probe-miR-567 |
miR-567 |
GTTCTGTCCTGGAAGAACATACT |
| probe-miR-568 |
miR-568 |
GTGTGTATACATTTATACAT |
| probe-miR-569 |
miR-569 |
ACTTTCCAGGATTCATTAACT |
| probe-miR-570 |
miR-570 |
TGCAAAGGTAATTGCTGTTTTC |
| probe-miR-571 |
miR-571 |
CTCACTCAGATGGCCAACTCA |
| probe-miR-572 |
miR-572 |
TGGGCCACCGCCGAGCGGAC |
| probe-miR-573 |
miR-573 |
CTGATCAGTTACACATCACTTCAG |
| probe-miR-574 |
miR-574 |
GTGGGTGTGTGCATGAGCGTG |
| probe-miR-575 |
miR-575 |
GCTCCTGTCCAACTGGCTC |
| probe-miR-576 |
miR-576 |
CAAAGACGTGGAGAAATTAGAAT |
| probe-miR-577 |
miR-577 |
CAGGTACCAATATTTTATCTA |
| probe-miR-578 |
miR-578 |
ACAATCCTAGAGCACAAGAAG |
| probe-miR-579 |
miR-579 |
ATCGCGGTTTATACCAAATGAAT |
| probe-miR-580 |
miR-580 |
CCTAATGATTCATCATTCTCAA |
| probe-miR-581 |
miR-581 |
ACTGATCTAGAGAACACAAGA |
| probe-miR-582 |
miR-582 |
AGTAACTGGTTGAACAACTGTAA |
| probe-miR-583 |
miR-583 |
GTAATGGGACCTTCCTCTTTG |
| probe-miR-584 |
miR-584 |
CTCAGTCCCAGGCAAACCATAA |
| probe-miR-585 |
miR-585 |
TAGCATACAGATACGCCCA |
| probe-miR-586 |
miR-586 |
GGACCTAAAAATACAATGCATA |
| probe-miR-587 |
miR-587 |
GTGACTCATCACCTATGGAAA |
| probe-miR-588 |
miR-588 |
GTTCTAACCCATTGTGGCCAA |
| probe-miR-589 |
miR-589 |
TCTGGGAACCGGCATTTGTTCTGA |
| probe-miR-590 |
miR-590 |
CTGCACTTTTATGAATAAGCTC |
| probe-miR-591 |
miR-591 |
ACAATGAGAACCCATGGTCT |
| probe-miR-592 |
miR-592 |
ACATCATCGCATATTGACACAA |
| probe-miR-593 |
miR-593 |
GCTGAGCAATGCCTGGCTGGTGCCT |
| probe-miR-594 |
miR-594 |
AAAGTCACAGGCCACCCCAGATGGG |
| probe-miR-595 |
miR-595 |
AGACACACCACGGCACACTTC |
| probe-miR-596 |
miR-596 |
CCCGAGGAGCCGGGCAGGCTT |
| probe-miR-597 |
miR-597 |
ACAGTGGTCATCGAGTGACACA |
| probe-miR-598 |
miR-598 |
TGACGATGACAACGATGACGTA |
| probe-miR-599 |
miR-599 |
GTTTGATAAACTGACACAAC |
| probe-miR-600 |
miR-600 |
GAGCAAGGCTCTTGTCTGTAAGT |
| probe-miR-601 |
miR-601 |
CTCCTCCAACAATCCTAGACCA |
| probe-miR-602 |
miR-602 |
GGGCCGCAGCTGTCGCCCGTGTC |
| probe-miR-603 |
miR-603 |
GCAAAAGTAATTGCAGTGTGTG |
| probe-miR-604 |
miR-604 |
GTCCTGAATTCCGCAGCCT |
| probe-miR-605 |
miR-605 |
AGGAGAAGGCACCATGGGATTTA |
| probe-miR-606 |
miR-606 |
ATCTTTGATTTTCAGTAGTTT |
| probe-miR-607 |
miR-607 |
GTTATAGATCTGGATTTGAAC |
| probe-miR-608 |
miR-608 |
ACGGAGCTGTCCCAACACCACCCCT |
| probe-miR-609 |
miR-609 |
AGAGATGAGAGAAACACCCT |
| probe-miR-610 |
miR-610 |
TCCCAGCACACATTTAGCTCA |
| probe-miR-611 |
miR-611 |
GTCAGACCCCGAGGGGTCCTCGC |
| probe-miR-612 |
miR-612 |
AAGGAGCTCAGAAGCCCTGCCCAGC |
| probe-miR-613 |
miR-613 |
GGCAAAGAAGGAACATTCCT |
| probe-miR-614 |
miR-614 |
CCACCTGGCAAGAACAGGCGTTC |
| probe-miR-615 |
miR-615 |
AGAGGGAGACCCAGGCTCGGA |
| probe-miR-616 |
miR-616 |
AAGTCACTGAAGGGTTTTGAGT |
| probe-miR-617 |
miR-617 |
GCCACCTTCAAATGGGAAGTCT |
| probe-miR-618 |
miR-618 |
ACTCAGAAGGACAAGTAGAGTTT |
| probe-miR-619 |
miR-619 |
ACTGGGCACAAACATGTCCAGGTC |
| probe-miR-620 |
miR-620 |
ATTTCTATATCTATCTCCAT |
| probe-miR-621 |
miR-621 |
AGGTAAGCGCTGTTGCTAGCC |
| probe-miR-622 |
miR-622 |
GCTCCAACCTCAGCAGACTGT |
| probe-miR-623 |
miR-623 |
ACCCAACAGCCCCTGCAAGGGAT |
| probe-miR-624 |
miR-624 |
TGAACACAAGGTACTGGTACTA |
| probe-miR-625 |
miR-625 |
AGGACTATAGAACTTTCCCCCT |
| probe-miR-626 |
miR-626 |
AAGACATTTTCAGACAGCT |
| probe-miR-627 |
miR-627 |
TCCTCTTTTCTTAGAGACTCAC |
| probe-miR-628 |
miR-628 |
CGACTGCCACTCTTACTAGA |
| probe-miR-629 |
miR-629 |
GCTGGGCTTACGTTGGGAGAAC |
| probe-miR-630 |
miR-630 |
ACCTTCCCTGGTACAGAATACT |
| probe-miR-631 |
miR-631 |
GCTGAGGTCTGGGCCAGGTCT |
| probe-miR-632 |
miR-632 |
TCCCACAGGAAGCAGACAC |
| probe-miR-633 |
miR-633 |
TTTATTGTGGTAGATACTATTAG |
| probe-miR-634 |
miR-634 |
GTCCAAAGTTGGGGTGCTGGTT |
| probe-miR-635 |
miR-635 |
GGACATTGTTTCAGTGCCCAAGT |
| probe-miR-636 |
miR-636 |
CTGCGGGCGGGACGAGCAAGCACA |
| probe-miR-637 |
miR-637 |
ACGCAGAGCCCGAAAGCCCCCAGT |
| probe-miR-638 |
miR-638 |
AGGCCGCCACCCGCCCGCGATCCCT |
| probe-miR-639 |
miR-639 |
ACAGCGCTCGCAACCGCAGCGAT |
| probe-miR-640 |
miR-640 |
AGAGGCAGGTTCCTGGATCAT |
| probe-miR-641 |
miR-641 |
GAGGTGACTCTATCCTATGTCTTT |
| probe-miR-642 |
miR-642 |
CAAGACACATTTGGAGAGGGAC |
| probe-miR-643 |
miR-643 |
CTACCTGAGCTAGCATACAAGT |
| probe-miR-644 |
miR-644 |
GCTCTAAGAAAGCCACACT |
| probe-miR-645 |
miR-645 |
TCAGCAGTACCAGCCTAGA |
| probe-miR-646 |
miR-646 |
GCCTCAGAGGCAGCTGCTT |
| probe-miR-647 |
miR-647 |
GAAGGAAGTGAGTGCAGCCAC |
| probe-miR-648 |
miR-648 |
ACCAGTGCCCTGCACACTT |
| probe-miR-649 |
miR-649 |
GACTCTTGAACAACACAGGTTT |
| probe-miR-650 |
miR-650 |
GTCCTGAGAGCGCTGCCTCCT |
| probe-miR-651 |
miR-651 |
CAAAAGTCAAGCTTATCCTAAA |
| probe-miR-652 |
miR-652 |
TGCACAACCCTAGTGGCGCCATT |
| probe-miR-653 |
miR-653 |
GTTCAGTAGAGATTGTTTCAA |
| probe-miR-654 |
miR-654 |
GCACATGTTCTGCGGCCCACCA |
| probe-miR-655 |
miR-655 |
AAAGAGGTTAACCATGTATTAT |
| probe-miR-656 |
miR-656 |
AGAGGTTGACTGTATAATATT |
| probe-miR-657 |
miR-657 |
CCTAGAGAGGGTGAGAACCTGCC |
| probe-miR-658 |
miR-658 |
ACCAACGGACCTACTTCCCTCCGCC |
| probe-miR-659 |
miR-659 |
TGGGGACCCTCCCTGAACCAAG |
| probe-miR-660 |
miR-660 |
CAACTCCGATATGCAATGGGTA |
| probe-miR-661 |
miR-661 |
ACGCGCAGGCCAGAGACCCAGGCA |
| probe-miR-662 |
miR-662 |
CTGCTGGGCCACAACGTGGGA |
| probe-miR-663 |
miR-663 |
GCGGTCCCGCGGCGCCCCGCCT |
| probe-miR-7 |
miR-7 |
CAACAAAATCACTAGTCTTCCA |
| probe-miR-9 |
miR-9 |
TCATACAGCTAGATAACCAAAGA |
| probe-miR-9* |
miR-9* |
ACTTTCGGTTATCTAGCTTTA |
| probe-miR-92 |
miR-92 |
CAGGCCGGGACAAGTGCAATA |
| probe-miR-93 |
miR-93 |
CTACCTGCACGAACAGCACTTT |
| probe-miR-95 |
miR-95 |
TGCTCAATAAATACCCGTTGAA |
| probe-miR-96 |
miR-96 |
GCAAAAATGTGCTAGTGCCAAA |
| probe-miR-98 |
miR-98 |
AACAATACAACTTACTACCTCA |
| probe-miR-99a |
miR-99a |
CACAAGATCGGATCTACGGGTT |
| probe-miR-99b |
miR-99b |
CGCAAGGTCGGTTCTACGGGTG |
[0015] Specifically, among the above-mentioned combinations, methods, kits or biochips,
the said evaluation of the physiological and/or pathological condition of a subject
is to determine the physiological and/or pathological condition of the subject after
being administrated a test sample, which is specifically useful for screening the
test sample for the activities on the prevention and/or treatment of diseases; the
said evaluation of the physiological and/or pathological condition of a subject is
to diagnose and/or differentially diagnose the diseases of the subject; the said evaluation
of the physiological and/or pathological condition of a subject is to evaluate the
effectiveness of the treatment on the diseases of the subject; the said evaluation
of the physiological and/or pathological condition of a subject is to predict the
disease occurrence of the subject, which is specifically the occurrence of complications
and/or the relapse of malignant diseases; the above-mentioned combinations, methods,
kits or biochips can also be useful for detecting the subject for prohibited drugs-taking.
[0016] The above-mentioned diseases include a variety of tumors; various acute /chronic
infectious diseases, e.g. viral diseases such as viral influenza, viral hepatitis,
AIDS, SARS, bacterial diseases such as tuberculosis, bacterial pneumonia, and other
acute/chronic infectious diseases caused by various pathogenic microorganisms; other
acute/chronic diseases such as diseases of respiratory system, diseases of immune
system, diseases of blood and hematopoietic system, diseases of circulatory system
such as cardio-cerebrovascular diseases, metabolic diseases of endocrine system, diseases
of digestive system, diseases of nervous system, diseases of urinary, diseases of
reproductive system and diseases of locomotor system.
[0017] The above-mentioned serum/plasma derives from the living bodies, tissues, organs
and/or corpuses of the subject.
[0018] The problems to be solved by the present invention include: (1) analyzing and identifying
the microRNA molecules and their stability in serum/plasma of a variety of animals
such as human, mice and rats; (2) studying the specificity changes of microRNAs in
serum/plasma during the course of various clinical diseases including a variety of
tumors; various acute /chronic infectious diseases, e.g. viral diseases such as viral
influenza, viral hepatitis, AIDS, SARS, bacterial diseases such as tuberculosis, bacterial
pneumonia, and other acute/chronic infectious diseases caused by various pathogenic
microorganisms; other acute/chronic diseases such as diseases of respiratory system,
diseases of immune system, diseases of blood and hematopoietic system, diseases of
circulatory system such as cardio-cerebrovascular diseases, metabolic diseases of
endocrine system, diseases of digestive system, diseases of nervous system, diseases
of urinary system, diseases of reproductive system and diseases of locomotor system;
(3) detecting the respective changes of microRNAs in serum/plasma for different diseases
through biochip and sequencing technology for microRNAs in serum/plasma; (4) screening
a kind of microRNA molecules in serum/plasma which have relatively greater differential
expression during the course of diseases and normal physiological conditions to develop
detection technologies for serum/plasma microRNAs, and then preparing biochips and
diagnostic kits useful for disease diagnosis etc..
[0019] Specifically, the present invention analyzes and identifies the existence of microRNA
molecules in serum/plasma of various animals such as human, mice and rats through
the methods of RT-PCR, Real-time PCR, Northern blotting, RNase protection assay, Solexa
sequencing technology and biochip. The stability of microRNAs in serum/plasma is studied
by comparing the changes of microRNAs by the effect of DNase and RNase. The existence
of serum/plasma microRNAs molecules and the correctness of their sequences are further
verified through sequencing and comparing the PCR products of serum/plasma microRNAs.
[0020] The detailed preparation and analysis for serum/plasma microRNAs are as follows:
RT-PCR method: collecting serum/plasma samples; conducting reverse transcription reaction
on serum/plasma samples to prepare cDNA samples, or extracting total RNA of serum/plasma
with Trizol reagent and then conducting reverse transcription reaction so as to prepare
cDNA samples; designing a primer through mature microRNAs so as to conduct PCR reaction;
carrying out agarose gel electrophoresis with the products of PCR; and observing and
taking photographs for the results under ultraviolet lamp after EB staining.
Real-time PCR method: collecting serum/plasma samples; conducting reverse transcription
reaction on serum/plasma samples to prepare cDNA samples, or extracting total RNA
of serum/plasma with Trizol reagent and then conducting reverse transcription reaction
so as to prepare cDNA samples; designing a primer of PCR through mature microRNAs
and adding a fluorescent probe EVA GREEN so as to carry out PCR reaction; analyzing
and processing the data and then comparing the results.
Northern blotting method: collecting serum/plasma samples; extracting total RNA of
serum/plasma with Trizol reagent; conducting denaturing PAGE-electrophoresis and membrane
transferring experiment; preparing isotope-labeled microRNA probes; conducting membrane
hybridization reaction; detecting the isotope signal for results such as using phosphor-screen
scanning technology.
RNase protection assay: firstly synthesizing an antisense RNA probe, labelling it
with isotopes and purifying it; collecting serum/plasma samples and extracting RNA;
dissolving the extracted DNA in a hybrid buffer and then adding an antisense RNA probe
so as to conduct hybridization reaction; adding a RNase digestion solution to initate
reaction; subjecting the resultant material to electrophoresis and radioautography;
and analyzing the results.
Solexa sequencing technology: collecting serum/plasma samples; extracting total RNA
of serum/plasma with Trizol reagent; conducting PAGE-electrophoresis to recover RNA
molecules of 17∼27nt; enzyme-linking adaptor prime to the 3' and 5' end of small RNA
molecules respectively; conducting RT-PCR reaction prior to sequencing; and analyzing
and processing the data.
Biochip method: arraying a library of all over 500 mature microRNAs to prepare biochips;
collecting serum/plasma samples; extracting total RNA of serum/plasma; separating
microRNAs by column separation; fluorescently-labelling microRNAs by use of T4 RNA
ligase; conducting hybridization reaction with a biochip; and detecting and analyzing
the data.
[0021] The change trend and change volume of serum/plasma microRNAs during various diseases
and their relevancy with various diseases are analyzed through the above-mentioned
technologies of RT-PCR, Real-time PCR, Northern blotting, RNase protection assay,
Solexa sequencing technology, Biochip, etc. Among others, what to do firstly is to
detect and analyze the changes of let-7a, let-7b, let-7c, let-7d, let-7e, let-7f,
let-7g, let-7i, miR-1, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-106b, miR-107,
miR-10a, miR-10b, miR-122a, miR-124a, miR-125a, miR-125b, miR-126, miR-126*, miR-127,
miR-128a, miR-128b, miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134,
miR-135a, miR-135b, miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p,
miR-142-Sp, miR-143, miR-144, miR-145, miR-146a, miR-146b, miR-147, miR-148a, miR-148b,
miR-149, miR-150, miR-151, miR-152, miR-153, miR-154, miR-154*, miR-155, miR-15a,
miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-181a, miR-181b. miR-181c, miR-181d, miR-182,
miR-182*, miR-183, miR-184, miR-185, miR-186, miR-187, miR-188, miR-189, miR-18a,
miR-18a*, miR-18b, miR-190, miR-191, miR-191*, miR-192, miR-193a, miR-193b, miR-194,
miR-195, miR-196a, miR-196b, miR-197, miR-198, miR-199a, miR-199a*, miR-199b, miR-19a,
miR-19b, miR-200a, miR-200a*, miR-200b, miR-200c, miR-202, miR-202*, miR-203, miR-204,
miR-205, miR-206, miR-208, miR-20a, miR-20b, miR-21, miR-210, miR-211, miR-212, miR-213,
miR-214, miR-215, miR-216, miR-217, miR-218, miR-219, miR-22 , miR-220, miR-221, miR-222,
miR-223, miR-224, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-27b,
miR-28, miR-296, miR-299-3p, miR-299-5p, miR-29a, miR-29b, miR-29c, miR-301, miR-302a,
miR-302a*, miR-302b, miR-302b*, miR-302c, miR-302c*, miR-302d, miR-30a-3p , miR-30a-5p,
miR-30b, miR-30c , miR-30d , miR-30e-3p, miR-30e-5p, miR-31, miR-32, miR-320, miR-323
, miR-324-3p, miR-324-5p, miR-325, miR-326, miR-328, miR-329, miR-33, miR-330, miR-331,
miR-335, miR-337, miR-338, miR-339, miR-33b, miR-340, miR-342, miR-345, miR-346, miR-34a,
miR-34b, miR-34c, miR-361, miR-362, miR-363, miR-363*, miR-365, miR-367, miR-368,
miR-369-3p, miR-369-5p, miR-370, miR-371, miR-372, miR-373, miR-373*, miR-374, miR-375,
miR-376a, miR-376a*, miR-376b, miR-377, miR-378, miR-379, miR-380-3p, miR-380-5p,
miR-381, miR-382, miR-383, miR-384, miR-409-3p, miR-409-5p, miR-410, miR-411, miR-412,
miR-421, miR-422a, miR-422b, miR-423, miR-424, miR-425, miR-425-5p, miR-429, miR-431,
miR-432, miR-432*, miR-433, miR-448, miR-449, miR-450, miR-451, miR-452, miR-452*,
miR-453, miR-455, miR-483, miR-484, miR-485-3p, miR-485-5p, miR-486, miR-487a, miR-487b,
miR-488, miR-489, miR-490, miR-491, miR-492, miR-493, miR-493-3p, miR-494, miR-495,
miR-496, miR-497, miR-498, miR-499, miR-500, miR-501, miR-502, miR-503, miR-504, miR-505,
miR-506, miR-507, miR-508, miR-509, miR-510, miR-511. miR-512-3p, miR-512-5p, miR-513,
miR-514, miR-515-3p, miR-515-5p, miR-516-3p, miR-516-5p, miR-517*, miR-517a, miR-517b,
miR-517c, miR-518a, miR-518a-2*, miR-518b, miR-518c, miR-518c*, miR-518d, miR-518e,
miR-518f, miR-518f*, miR-519a, miR-519b, miR-519c, miR-519d, miR-519e, miR-519e*,
miR-520a, miR-520a*, miR-520b, miR-520c, miR-520d, miR-520d*, miR-520e, miR-520f,
miR-520g, miR-520h, miR-521, miR-522, miR-523, miR-524, miR-524*, miR-525, miR-525*,
miR-526a, miR-526b, miR-526b*, miR-526c, miR-527, miR-532, miR-542-3p, miR-542-5p,
miR-544, miR-545, miR-548a, miR-548b, miR-548c, miR-548d, miR-549, miR-550, miR-551a,
miR-552, miR-553, miR-554, miR-555, miR-556, miR-557, miR-558, miR-559, miR-560, miR-561,
miR-562, miR-563, miR-564, miR-565, miR-566, miR-567, miR-568, miR-569, miR-570, miR-571,
miR-572, miR-573, miR-574, miR-575, miR-576, miR-577, miR-578, miR-579, miR-580, miR-581,
miR-582, miR-583, miR-584, miR-585, miR-586, miR-587, miR-588, miR-589, miR-590, miR-591,
miR-592, miR-593, miR-594, miR-595, miR-596, miR-597. miR-598, miR-599, miR-600, miR-601,
miR-602, miR-603, miR-604, miR-605, miR-606, miR-607, miR-608, miR-609, miR-610, miR-611.
miR-612, miR-613, miR-614, miR-615, miR-616, miR-617, miR-618, miR-619, miR-620, miR-621,
miR-622, miR-623, miR-624, miR-625, miR-626, miR-627, miR-628, miR-629, miR-630, miR-631,
miR-632, miR-633, miR-634, miR-635, miR-636, miR-637, miR-638, miR-639, miR-640, miR-641,
miR-642, miR-643, miR-644, miR-645, miR-646, miR-647, miR-648, miR-649, miR-650, miR-651,
miR-652, miR-653, miR-654, miR-655, miR-656, miR-657, miR-658, miR-659, miR-660, miR-661,
miR-662, miR-663, miR-7, miR-9, miR-9*, miR-92, miR-93 , miR-95, miR-96, miR-98, miR-99a
and miR-99b in various clinical diseases (including a variety of tumors; various acute
/chronic infectious diseases, e.g. viral diseases such as viral influenza, viral hepatitis,
AIDS, SARS, bacterial diseases such as tuberculosis, bacterial pneumonia, and other
acute/chronic infectious diseases caused by various pathogenic microorganisms; other
acute/chronic diseases such as diseases of respiratory system, diseases of immune
system, diseases of blood and hematopoietic system, diseases of circulatory system
such as cardio-cerebrovascular diseases, metabolic diseases of endocrine system, diseases
of digestive system, diseases of nervous system, diseases of urinary system, diseases
of reproductive system and diseases of locomotor system); Biochips of serum/plasma
microRNAs are prepared to determine the changes of serum/plasma microRNAs in different
diseases, and meanwhile, Solexa sequencing and analysis on microRNAs in serum/plasma
in different diseases are conducted.
[0022] The research and development of a technology for detecting disease-related serum/plasma
microRNAs. Specifically, the microRNAs with disease-related specificity changes are
screened out, their primers are collected into a PCR kit (RT-PCR or Real-time PCR)
to prepare a disease-diagnostic kit, or their reverse complementary sequences are
dripped on chips as probes so as to prepare the biochips for detecting serum/plasma
microRNAs specific for a certain disease.
[0023] Presently, the technologies of traditional biochemistry and molecular biology for
the clinical diagnosis of diseases are relatively complicated and insensitive. Novel
techniques developed in recent years possibly useful for disease diagnosis are gene
chip technique, protein (antibody) chip technique, etc.. The changes at mRNA level
measured through gene chips cannot completely reflect the actual changes at protein
level, since the bioactivity of protein is closely related to post-transcriptional
modification such as glycosylation and phosphorylation. In addition, for detection
of many diseases, marker molecules in body fluids and blood cannot be detected through
gene chip technology. Meanwhile, protein (antibody) chip technique and proteomic techniques
also bear their limitations. In human body, especially in serum/plasma, there are
tens of thousands of protein and polypeptide segments with extensively distributed
concentrations, and the number of proteins definitely reported is very small, let
alone those quantified. It is an extremely arduous task to find out those proteins
having close relation with specific diseases from the large quantity of proteins and
understand their roles in histopathologic changes. Moreover, lacking of complete antibody
resources is the bottleneck restraining the development of antibody biochip technology.
The detection technology for serum/plasma microRNAs based on biochips of serum/plasma
microRNAs and diagnostic kits skillfully combines the peculiar properties of serum/plasma
microRNAs with conventional molecular biology detection technique together, which
can rapidly analyze the respective constitution of serum/plasma microRNAs in respect
of various diseases with high throughput and hence be of extremely clinical practicality.
Since the changes of physiological conditions in organs and tissues will cause the
constitutional changes of serum/plasma microRNAs, serum/plasma microRNAs can be used
as "fingerprints for diseases" to realize early diagnosis of diseases.
[0024] The advantages of the technology of detecting serum/plasma microRNAs are as follows:
- (1) As novel disease markers, serum/plasma microRNAs possess certain advantages such
as extensive spectrum for detection, high sensitivity, low cost for detection, convenient
sampling, easy preservation for samples (preserving serum/plasma at -20 °C will do),
etc.. This method can be widely used in general survey of diseases and other relevant
tasks and has become an efficient means for early diagnosis of diseases.
- (2) As novel disease markers, serum/plasma microRNAs will improve the low-specificity
and low-sensitivity caused by individual differences which single markers are difficult
to overcome, and notably increase the clinical detection rate of diseases so as to
realize early diagnosis of diseases.
- (3) The advantages of the technology of detecting serum/plasma microRNAs lie in that
what to be detected is series of disease related markers, thus it can address the
differences (i.e., age, sex, race, diet, circumstance, etc.) between individual patients,
which are exactly a primary problem difficult to overcome by single disease markers.
[0025] In summary, utilizing the technology of detecting serum/plasma microRNAs can confirm
diagnosis of histopathologic changes in early stage. These novel serum/plasma markers
not only provide material foundation for people to comprehensively understand the
mechanism of histopathologic changes in molecule level, but also accelerate the progress
in diagnostics and therapeutics of clinical diseases. Of course, a majority of molecular
diagnostic techniques used for disease detection in early period are at initial experimental
stage and their validity needs to be further verified and improved. Moreover, since
every disease has the characteristics of its own, this requires a peculiar method
for the detection of said disease. In this manner, it is impossible for all diseases
to be detected out only through one or only a few of detection methods. Nevertheless,
based on the superiority of serum/plasma microRNAs, it is believed that, in the near
future, the diagnostic technique of serum/plasma microRNAs for severe diseases such
as cancer will become part of routine physical examination. In addition, microRNA
related gene therapy will be widely utilized. Consequently, the overcoming of these
diseases will come true, not just a dream.
BRIEF DESCRIPTION OF THE DRAWINGS
[0026] The following are the detailed description of the embodiments of this invention with
reference to the drawings, wherein:
Figure 1 shows the RT-PCR result of partial microRNAs directly detected in the serum
of a normal person.
Figure 2 shows the RT-PCR results of the microRNAs in the RNA extracted from the serum
of a normal person.
[0027] In Fig. 1 and Fig. 2, U6 is a snRNA with a molecular weight of 100bp, serving as
an internal reference molecule in microRNAs experiments. The rest of 12 microRNAs
are each miR-181a(181a), miR-181b(181b), miR-223(223), miR-142-3p(142-3p), miR-142-5p(142-5p),
miR-150(150) with blood cell specificity; miR-1(1), miR-133a(133a), miR-206(206) from
cardiac muscles and skeletal muscles; miR-9(9), miR-124a(124a) from brain tissues;
and miR-122a (122a) from liver.
Figure 3 shows the RT-PCR results of partial micro-RNAs directly detected in the serum
of mouse, rat, fetal bovine, calf and horse respectively.
Figure 4 shows the variable quantity of the partial microRNAs in the serum of a patient
suffering from the shown diseases compared with microRNAs in the serum of a normal
person.
Figure 5 shows the ratio between the quantities of macroRNAs and microRNAs in blood
cells and serum.
Figure 6 shows the enzyme digested results of macroRNAs and microRNAs.
THE BEST MODE FOR CARRYING OUT THE INVENTION
Example 1: The RT-PCR experiments of micxoRNAs in serum/plasma
[0028] By using RT-PCR technique, it is found and proved that there stably exist various
microRNAs in serum/plasma of both human beings and animals, and that their expression
levels are considerably high. The specific RT-PCR steps are as follows:
- (1) collecting serum/plasma of mice, rats, normal persons and some patients;
- (2) preparing samples of cDNA. This operation has two options: one is to directly
conduct reverse transcription reaction using 10µl of serum/plasma; the other is to
firstly extract the total RNA from serum/plasma (usually, about 10µg of RNA can be
enriched from 10ml of serum/plasma) with Trizol reagent (Invitrogen Co.), subsequently
obtain cDNA through RNA reverse transcription reaction. The reaction system of reverse
transcription includes 4µl 5×AMV buffer, 2µl 10mM each dNTP mixture (Takara Co.),
0.5µl RNase Inhibitor (Takara Co.), 2µl AMV (Takara Co.) and 1.5µl gene specific reverse
primers mixtures. The reaction steps successively include 15 minutes of incubation
at 16°C, 1 hour of reaction at 42 °C and 5 minutes of incubation at 85 °C ;
- (3) PCR and Electrophoresis observation. The cDNA is diluted by 1/50. To 1µl diluted
cDNA are added 0.3µl Taq polymerase (Takara Co.), 0.2µl 10µM forward primer, 0.2µl
10µM universal reverse primer, 1.2µl 25mM MgCl2, 1.6µl 2.5mM each dNTP mixture (Takara Co.), 2µl 10×PCR buffer, 13.5µl H2O, and PCR reaction is conducted in the 20µl system. The PCR reaction is done under
the following conditions: one cycle at 95°C for 5 mins followed by 40 cycles at 95°C
for 15 seconds and 60°C for 1 minute. 10µl PCR product is subjected to 3% Agarose
Gel Electrophoresis, which is observed under ultraviolet lamp after EB staining.
[0029] The detailed experimental results are shown in Fig. 1. Fig. 1 shows the experimental
results of RT-PCR directly conducted on the serum of normal persons. The all over
500 mature microRNAs in human being are selected for conducting RT-PCR reaction, of
which 12 microRNAs are shown in Fig.1 and each miR-181a, miR-181b, miR-223, miR-142-3p,
miR-142-5p, miR-150 with blood cell specificity; miR-1, miR-133a, miR-206 from cardiac
muscles and skeletal muscles; miR-9 and miR-124a from brain tissues; and miR-122a
from liver. It can be seen from the results that all microRNAs from the above-mentioned
four tissues are detectable in blood, and that not all over 500 mature microRNAs have
high expression level in the serum/plasma, with some microRNAs being in fairly trace
amount and even being normally nondetectable.
[0030] To further verify that there stably exist the microRNAs in serum/plasma, RNA is firstly
extracted from the serum of normal persons, then all over 500 mature microRNAs of
human are selected for PCR experiment. As shown in Fig. 2, the results of Fig. 2 is
quite consistent with that of Fig. 1, the singleness of the PCR products indicating
that both two assays can detect the expression and level of the microRNAs in people's
serum/plasma, and proving that there stably exist microRNAs of various tissues sources
in people's serum/plasma. In addition, the same method is used to detect the expression
and level of over 500 microRNAs in the serum/plasma of mouse, rat, fetal bovine, calf
and horse, it is also found that there is stable expression of microRNAs of various
tissues sources in serum/plasma of mouse, rat, fetal bovine, calf and horse (see Fig.
3).
Example 2: The real-time PCR experiments of microRNAs in serum/plasma
[0031] Quantitative PCR experiments of microRNAs in serum/plasma are conducted to study
the specific variation of microRNAs quantity in serum/plasma during the course of
various diseases, including various tumors, various acute and chronic infectious diseases,
e.g. viral diseases such as viral influenza, viral hepatitis, AIDS, SARS, bacterial
diseases such as tuberculosis, bacterial pneumonia, and other acute and chronic infectious
diseases caused by various pathogenic microorganisms; other acute and chronic diseases
such as diseases of respiratory system, diseases of immune system, diseases of blood
and hematopoietic system, diseases of circulatory system such as cardio-cerebrovascular
disease, metabolic diseases of endocrine system, diseases of digestive system, diseases
of nervous system, diseases of urinary system, diseases of reproductive system and
diseases of locomotor system. The experimental principles and experimental steps of
quantitative PCR are basically the same as those of RT-PCR, with the only difference
between them being the addition of a fluorescent dye EVA GREEN in the process of PCR.
An ABI Prism 7300 fluorescent quantitative PCR instrument is used to conduct PCR reaction
under the following conditions: one cycle at 95 °C for 5 mins followed by 40 cycles
at 95 °C for 15 seconds and 60 °C for 1 minute. The data processing method used is
ΔΔCT method, wherein CT is the number of cycles when the reaction reaches the threshold.
The expression level of each microRNAs relative to that of internal standard reference
can be expressed by the equation of 2-ΔCT, wherein ΔCT = CT
sample-CT
internal reference. Reverse transcription reactions are directly conducted on serum/plasma
samples of a patient and those of a normal person, and the quantities of microRNAs
contained in each sample of serum/plasma are compared through quantitative PCR reactions.
[0032] Serum samples of patients who suffer from aplastic anemia, breast cancer, osteosarcoma,
CNS (Central Nervous System) lymphoma, diabetes are selected, and at the same time,
all over 500 mature microRNAs of human beings are used to conduct PCR reaction experiments.
Fig. 4 shows the quantitative PCR experimental results of microRNAs within serum of
patients and normal persons which include the above-mentioned miR-181a, miR-181b,
miR-223, miR-142-3p, miR-142-5p, miR-150 with blood cell specificity; miR-1, miR-133a,
miR-206 from cardiac muscles and skeletal muscles; miR-9, miR-124a from brain tissues;
and miR-122a from liver. The ratio of the microRNAs quantity in serum between normal
persons and patients suffering from aplastic anemia, breast cancer, osteosarcoma,
CNS (Central Nervous System) lymphoma, diabetes are respectively up-regulated or down-regulated,
and the variation extent of the microRNAs quantity from the same tissue source differs
in patients with different diseases, indicating that there is specificity variation
of microRNAs quantity in the serum/plasma of patients with different diseases. They
can be taken as a type of novel markers for disease diagnosis.
Example 3: The superiority of serum/plasma microRNAs as disease markers
[0033] Through detecting the quantities of microRNAs and macroRNAs in serum and blood cells,
it is found that there is an abundant content of microRNAs in serum. See Fig. 5. As
represented by U6 molecules with a molecular weight of 100bp and ribosomal RNA molecules
with molecular weights being 18S and 28S respectively, the quantity of macroRNAs in
blood cells is at least tens times that in serum; while the quantity of microRNAs
in serum remains the same as that in blood cells except the microRNAs with blood cell
specificity. Therefore, serum/plasma will specifically enrich small molecule RNAs,
especially microRNAs.
[0034] It is also found that microRNAs are to some extent able to resist the action of endonuclease,
which is possibly one of the reasons why microRNAs can stably exist in serum/plasma.
Total RNAs extracted from cultured cell line are processed with endonuclease RNase
A and the remaining quantity of macroRNAs and microRNAs are then detected. As shown
in Fig. 6, it is found that microRNAs can to some extent resist the degradation of
endonuclease while the macroRNAs are substantially completely cut off. Therefore microRNAs
can stably exist in serum/plasma.
[0035] Based on the two characteristics of abundance in content and stable existence of
microRNAs in serum/plasma, microRNAs could be well applied in clinical test.
Example 4: Preparetion of the biochip of serum/plasma microRNAs useful for disease
diagnosis.
[0036] A biochip of serum/plasma microRNAs is fabricated to verify the reliability of a
kind of serum/plasma microRNAs probes relating to diseases which are selected through
quantitative PCR method. The biochip contains all microRNAs probes that can be normally
detected in people's serum/plasma, constituting a probe library. See Table 1.
[0037] When the probes are specifically applied in certain disease diagnosis or efficacy
screening, some probes of the probe library are put together to construct a probe
collection which makes it possible to quantitatively detect the variation of microRNAs
in the specific conditions. For example, when diagnosing colon cancer, the collection
of probes that have interaction with microRNAs of numbers 17-5p, 21, 103, 106a, 107,
126*, 143, 145, 150, 155 and 210 is used. For another example, when diagnosing myocardial
hypertrophy and chronic heart failure, the collection of probes that have interaction
with microRNAs of numbers 21, 23a, 23b, 24, 27a, 27b, 125b, 195, 199a, 214, 217, 133a
is used. In addition, the chip can also do high-throughput screening of the probes
of microRNAs varying stably in serum/plasma, and diseases can be predicted and diagnosed
based on the overall variation of microRNAs in serum/plasma.
[0038] Sequencing method or quantitative PCR method is firstly used to determine that there
is more than one copy of microRNAs in serum/plasma, and then reverse complementary
probes of these microRNAs are synthesized, after which these probes are spotted on
a chemically-modified slide in a size of 75×25 mm using a biochip microarrayer SmartArray
TM. The samples spotted on the chip also include U6 and tRNA as internal standard,
artificially-prepared external standard in length of 30 bases, Hex as positive control
etc. The entire lattice is divided into 4 sub-lattices and each sub-lattice has 23
rows and 21 columns, whrerein the spot distance is 185µm and the spot diameter is
about 130µm and each probe was repeatly spotted for 3 times.
[0039] The operational procedure of the biochip is: (1) extracting the total RNA from serum/plasma
and detecting its quality through formaldehyde denaturing gel electrophoresis; (2)
separation of microRNAs: 50-100µg total RNA is taken to separate microRNAs from total
RNA with Ambion's miRNA Isolation Kit (Cat #. 1560); (3) fluorescently-labeling of
microRNAs samples: microRNAs samples are fluorescently-labeling with T4 RNA ligase,
then precipitated with absolute ethanol, and then blown to dryness for chip hybridization;
(4) hybridization and cleaning: RNA is dissolved into 16µL hybridizing solution (15%
formamide, 0.2% SDS, 3×SSC and 50×Denhardt's solution), and hybridized at 42 °C overnight.
After completion of the hybridization, it is washed in a solution containing 0.2%
SDS and 2×SSC at about 42°C for 4 minutes, and then washed in a solution containing
0.2×SSC at room temperature for 4 minutes. Thereafter, the slides can be used for
scanning immediately after being dried; (5) chip scanning: the chip is scanned with
two-channel laser scanner LuxScan 10K/A; (6) data extracting and analysis: the chip
image is analyzed with an image analyzing software LuxScan 3.0, the image signal is
transformed into digital signal, and finally differentially-expressed genes are analyzed
and selected with SAM method.
[0040] A biochip is prepared as above by using a kind of serum/plasma microRNAs probes which
express greatly differently under disease condition and normal physiological condition
double-verified by quantitative PCR technique and biochip technique. As compared with
the traditional chip, there is no significant improvement in the manufacturing process
and operational procedure of this biochip, but this chip simplifies the probe library,
thereby greatly reducing the manufacturing cost and production time of the chip, and
hence is easy to preprare. Meanwhile it increases the pertinence and practicability
of chip. The application of the chip in practice can detect diseases in an early phase
with only need of the serum/plasma of a patient and no need of other tissues, which
helps guide the diagnosis and treatment.
Example 5: Preparetion of kits of microRNAs useful for disease diagnosis and prediction
[0041] The manufacturing processed and operational procedures of microRNAs kits useful for
diagnosis, prediction of complication occurrence and malignant disease relapse, evaluation
of therapeutic effects, screening of pharmaceutical active ingredients, assessment
of drug efficacy, forensic authentication and prohibited drug inspection, etc. of
all diseases are based on quantitative PCR technique and semi-quantitative PCR technique
and biochip technique. The above-mentioned diseases include various tumors; various
acute/chronic infectious diseases, e.g. viral diseases such as viral influenza, viral
hepatitis, AIDS, SARS, bacterial diseases such as tuberculosis, bacterial pneumonia,
and other acute/chronic infectious diseases caused by various pathogenic microorganisms;
other acute/chronic diseases such as diseases of respiratory system, diseases of immune
system, diseases of blood and hematopoietic system, diseases of circulatory system
such as cardio-cerebrovascular diseases, metabolic diseases of endocrine system, diseases
of digestive system, diseases of nervous system, diseases of urinary system, diseases
of reproductive system and diseases of locomotor system.
[0042] Sequencing method or quantitative PCR method is firstly used to determine that there
is more than one copy of microRNAs in serum/plasma. Then, a kind of serum/plasma mircoRNAs
that have a big difference between the expression levels in disease condition and
in normal physiological condition are screened out through the techniques of quantative
PCR and biochip, which are taken as an indicator for predicting whether canceration
or other disease occurs and diagnosing the pathological degree. Finally the number
of screened corresponding serum/plasma microRNAs of each disease would be controlled
to over ten to tens, which is the optimized condensement of the chip-probe library.
The kit contains a batch of serum/plasma mircoRNAs primers, Taq polymerase, dNTP,
etc. The value of the kit lies in making it possible to detect the changing trend
of microRNAs through the most simplified probe library and with only need of serum/plasma
and no need of any other tissue samples, and further predict the probability of occurrence
of diseases or diagnose the pathological phase of diseases based on this changing
trend detected. Thus, the application of this kit in practice can increase the possibility
of discovering diseases in an early phase, which helps guide the diagnosis and treatment
of diseases.
1. A combination of microRNAs for evaluating the physiological and/or pathological condition
of a subject, wherein the combination comprises all detectable microRNAs stably existing
in the serum/plasma of the subject.
2. The combination according to claim 1, characterized in that said all detectable microRNAs stably existing in the serum/plasma of a subject are
all mature microRNAs in human serum/plasma.
3. The combination according to claim 1 or 2, characterized in that said all detectable microRNAs stably existing in the serum/plasma of a subject are
let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-1, miR-100, miR-101,
miR-103, miR-105, miR-106a, miR-106b, miR-107, miR-10a, miR-10b, miR-122a, miR-124a,
miR-125a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129, miR-130a,
miR-130b, miR-132, miR-133a. miR-133b, miR-134, miR-135a, miR-135b, miR-136, miR-137.
miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-142-5p, miR-143. miR-144, miR-145,
miR-146a, miR-146b, miR-147, miR-148a, miR-148b. miR-149, miR-150, miR-151, miR-152,
miR-153, miR-154, miR-154*, miR-155, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p,
miR-181a, miR-181b, miR-181c, miR-181d, miR-182, miR-182*, miR-183, miR-184, miR-185,
miR-186, miR-187, miR-188, miR-189, miR-18a, miR-18a*, miR-18b, miR-190, miR-191,
miR-191*, miR-192, miR-193a, miR-193b, miR-194, miR-195, miR-196a, miR-196b, miR-197,
miR-198, miR-199a, miR-199a*, miR-199b, miR-19a, miR-19b, miR-200a, miR-200a*, miR-200b,
miR-200c, miR-202, miR-202*, miR-203, miR-204, miR-205, miR-206, miR-208, miR-20a,
miR-20b, miR-21, miR-210, miR-211, miR-212, miR-213, miR-214, miR-215, miR-216, miR-217,
miR-218, miR-219, miR-22, miR-220, miR-221, miR-222, miR-223, miR-224, miR-23a, miR-23b,
miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-27b, miR-28, miR-296, miR-299-3p, miR-299-5p,
miR-29a, miR-29b, miR-29c, miR-301, miR-302a, miR-302a*, miR-302b, miR-302b*, miR-302c,
miR-302c*, miR-302d, miR-30a-3p, miR-30a-5p, miR-30b, miR-30c, miR-30d , miR-30e-3p,
miR-30e-5p, miR-31, miR-32, miR-320, miR-323, miR-324-3p, miR-324-5p, miR-325, miR-326,
miR-328, miR-329, miR-33, miR-330, miR-331, miR-335, miR-337, miR-338, miR-339, miR-33b.
miR-340, miR-342, miR-345, miR-346, miR-34a, miR-34b, miR-34c, miR-361, miR-362, miR-363,
miR-363*, miR-365, miR-367, miR-368, miR-369-3p, miR-369-5p, miR-370, miR-371, miR-372,
miR-373, miR-373*, miR-374, miR-375, miR-376a, miR-376a*, miR-376b, miR-377, miR-378,
miR-379, miR-380-3p, miR-380-5p, miR-381, miR-382, miR-383, miR-384, miR-409-3p, miR-409-5p,
miR-410, miR-411, miR-412, miR-421, miR-422a, miR-422b, miR-423, miR-424, miR-425,
miR-425-5p, miR-429, miR-431, miR-432, miR-432*, miR-433, miR-448, miR-449, miR-450,
miR-451, miR-452, miR-452*, miR-453, miR-455, miR-483, miR-484, miR-485-3p. miR-485-5p,
miR-486, miR-487a, miR-487b, miR-488, miR-489, miR-490, miR-491, miR-492, miR-493,
miR-493-3p, miR-494, miR-495, miR-496, miR-497, miR-498, miR-499, miR-500, miR-501,
miR-502, miR-503, miR-504, miR-505, miR-506, miR-507, miR-508, miR-509, miR-510, miR-511,
miR-512-3p, miR-512-5p, miR-513, miR-514, miR-515-3p, miR-515-5p, miR-516-3p, miR-516-5p,
miR-517*, miR-517a, miR-517b, miR-517c, miR-518a, miR-518a-2*, miR-518b, miR-518c,
miR-518c*, miR-518d, miR-518e, miR-518f, miR-518f*, miR-519a, miR-519b, miR-519c,
miR-519d, miR-519e, miR-519e*, miR-520a, miR-520a*, miR-520b, miR-520c, miR-520d,
miR-520d*, miR-520e, miR-520f, miR-520g, miR-520h, miR-521, miR-522, miR-523, miR-524,
miR-524*, miR-525, miR-525*, miR-526a, miR-526b, miR-526b*, miR-526c, miR-527, miR-532,
miR-542-3p, miR-542-5p, miR-544, miR-545, miR-548a, miR-548b, miR-548c, miR-548d,
miR-549, miR-550, miR-551a, miR-552, miR-553, miR-554, miR-555, miR-556, miR-557,
miR-558, miR-559, miR-560, miR-561, miR-562, miR-563, miR-564, miR-565, miR-566, miR-567,
miR-568, miR-569, miR-570, miR-571, miR-572, miR-573, miR-574, miR-575, miR-576, miR-577,
miR-578, miR-579, miR-580, miR-581, miR-582, miR-583, miR-584, miR-585, miR-586, miR-587,
miR-588, miR-589, miR-590, miR-591, miR-592, miR-593, miR-594, miR-595, miR-596, miR-597,
miR-598, miR-599, miR-600, miR-601, miR-602, miR-603, miR-604, miR-605, miR-606, miR-607,
miR-608, miR-609, miR-610, miR-611, miR-612, miR-613, miR-614, miR-615, miR-616, miR-617,
miR-618, miR-619, miR-620, miR-621, miR-622, miR-623, miR-624, miR-625, miR-626, miR-627,
miR-628, miR-629, miR-630, miR-631, miR-632, miR-633, miR-634, miR-635, miR-636, miR-637,
miR-638, miR-639, miR-640, miR-641, miR-642, miR-643, miR-644, miR-645, miR-646, miR-647,
miR-648, miR-649, miR-650, miR-651, miR-652, miR-653, miR-654, miR-655, miR-656, miR-657,
miR-658, miR-659, miR-660, miR-661, miR-662, miR-663, miR-7, miR-9, miR-9*, miR-92,
miR-93, miR-95, miR-96, miR-98, miR-99a and miR-99b.
4. The combination according to any of claims 1 to 3, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
determine physiological and/or pathological condition of the subject after being administrated
a test sample.
5. The combination according to claim 4, characterized in that the combination is useful for screening the test sample for the activities on the
prevention and/or treatment of diseases.
6. The combination according to any of claims 1 to 3, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
diagnose and/or differentially diagnose the diseases of the subject.
7. The combination according to any of claims 1 to 3, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
evaluate the effectiveness of treating the diseases of the subject.
8. The combination of according to any of claims 1 to 3, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
predict the occurrence of diseases of the subject.
9. The combination according to claim 8, characterized in that the occurrence of diseases is the occurrence of complications and/or the relapse
of malignant diseases.
10. The combination according to any of claims 5 to 9, characterized in that the diseases include various tumors; various acute and chronic infectious diseases,
e.g. viral diseases such as viral influenza, viral hepatitis, AIDS, SARS, bacterial
diseases such as tuberculosis, bacterial pneumonia, and other acute and chronic infectious
diseases caused by various pathogenic microorganisms; other acute and chronic diseases
such as diseases of respiratory system, diseases of immune system, diseases of blood
and hematopoietic system, diseases of circulatory system such as cardio-cerebrovascular
diseases, metabolic diseases of endocrine system, diseases of digestive system, diseases
of nervous system, diseases of urinary system, diseases of reproductive system and
diseases of locomotor system.
11. The combination according to any of claims 1 to 3, characterized in that the combination is useful for detecting the subject for prohibited drugs-taking.
12. The combination according to any of claims 1 to 11, characterized in that the serum/plasma derives from living body, tissues, organs and/or corpuses of the
subject.
13. A method for evaluating the physiological and/or pathological condition of a subject,
wherein the method comprises determining all detectable microRNAs stably existing
in serum/plasma of the subject.
14. The method according to claim 13, characterized in that said all detectable microRNAs stably existing in serum/plasma of a subject are all
mature microRNAs in human serum/plasma.
15. The method according to claim 13 or 14, characterized in that said all detectable microRNAs stably existing in serum/plasma of a subjects are let-7a,
let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-1, miR-100, miR-101, miR-103,
miR-105, miR-106a, miR-106b, miR-107, miR-10a, miR-10b, miR-122a, miR-124a, miR-125a,
miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129, miR-130a, miR-130b,
miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b, miR-136, miR-137, miR-138,
miR-139, miR-140, miR-141, miR-142-3p, miR-142-5p, miR-143, miR-144, miR-145, miR-146a,
miR-146b, miR-147, miR-148a, miR-148b, miR-149, miR-150, miR-151, miR-152, miR-153,
miR-154, miR-154*, miR-155, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-181a,
miR-181b, miR-181c, miR-181d, miR-182, miR-182*, miR-183, miR-184, miR-185, miR-186,
miR-187, miR-188, miR-189, miR-18a, miR-18a*, miR-18b, miR-190, miR-191, miR-191*,
miR-192, miR-193a, miR-193b, miR-194, miR-195, miR-196a, miR-196b, miR-197, miR-198,
miR-199a, miR-199a*, miR-199b, miR-19a, miR-19b, miR-200a, miR-200a*, miR-200b, miR-200c,
miR-202, miR-202*, miR-203, miR-204, miR-205, miR-206, miR-208, miR-20a, miR-20b,
miR-21, miR-210, miR-211, miR-212, miR-213, miR-214, miR-215, miR-216, miR-217, miR-218,
miR-219, miR-22, miR-220, miR-221, miR-222, miR-223, miR-224, miR-23a, miR-23b, miR-24,
miR-25, miR-26a, miR-26b, miR-27a, miR-27b, miR-28, miR-296, miR-299-3p, miR-299-5p,
miR-29a, miR-29b, miR-29c, miR-301, miR-302a, miR-302a*, miR-302b, miR-302b*, miR-302c,
miR-302c*, miR-302d , miR-30a-3p , miR-30a-5p, miR-30b , miR-30c , miR-30d, miR-30e-3p,
miR-30e-5p, miR-31, miR-32, miR-320, miR-323, miR-324-3p, miR-324-5p, miR-325, miR-326,
miR-328, miR-329, miR-33, miR-330, miR-331, miR-335, miR-337, miR-338, miR-339, miR-33b,
miR-340, miR-342, miR-345, miR-346, miR-34a, miR-34b, miR-34c, miR-361, miR-362, miR-363,
miR-363*, miR-365, miR-367, miR-368, miR-369-3p, miR-369-5p, miR-370, miR-371, miR-372,
miR-373, miR-373*, miR-374, miR-375, miR-376a, miR-376a*, miR-376b, miR-377, miR-378,
miR-379, miR-380-3p, miR-380-5p, miR-381, miR-382, miR-383, miR-384, miR-409-3p, miR-409-5p,
miR-410, miR-411, miR-412, miR-421, miR-422a, miR-422b, miR-423, miR-424, miR-425,
miR-425-5p, miR-429, miR-431, miR-432, miR-432*, miR-433, miR-448, miR-449, miR-450,
miR-451, miR-452, miR-452*, miR-453, miR-455, miR-483, miR-484, miR-485-3p, miR-485-5p,
miR-486, miR-487a, miR-487b, miR-488, miR-489, miR-490, miR-491, miR-492, miR-493,
miR-493-3p, miR-494, miR-495, miR-496, miR-497, miR-498, miR-499, miR-500, miR-501,
miR-502, miR-503, miR-504, miR-505, miR-506, miR-507, miR-508, miR-509, miR-510, miR-511,
miR-512-3p, miR-512-5p, miR-513, miR-514, miR-515-3p, miR-515-5p, miR-516-3p, miR-516-5p,
miR-517*, miR-517a, miR-517b, miR-517c, miR-518a, miR-518a-2*, miR-518b, miR-518c,
miR-518c*, miR-518d, miR-518e, miR-518f, miR-518f*, miR-519a, miR-519b, miR-519c,
miR-519d, miR-519e, miR-519e*, miR-520a, miR-520a*, miR-520b, miR-520c, miR-520d,
miR-520d*, miR-520e, miR-520f, miR-520g, miR-520h, miR-521, miR-522, miR-523, miR-524,
miR-524*, miR-525, miR-525*, miR-526a, miR-526b, miR-526b*, miR-526c, miR-527, miR-532,
miR-542-3p, miR-542-5p, miR-544, miR-545, miR-548a, miR-548b. miR-548c, miR-548d,
miR-549, miR-550, miR-551a, miR-552, miR-553, miR-554, miR-555, miR-556, miR-557,
miR-558, miR-559, miR-560, miR-561, miR-562, miR-563, miR-564, miR-565, miR-566, miR-567,
miR-568, miR-569, miR-570, miR-571, miR-572, miR-573, miR-574, miR-575, miR-576, miR-577,
miR-578, miR-579, miR-580, miR-581. miR-582, miR-583, miR-584, miR-585, miR-586, miR-587,
miR-588, miR-589, miR-590, miR-591, miR-592, miR-593, miR-594, miR-595, miR-596, miR-597,
miR-598, miR-599, miR-600, miR-601, miR-602, miR-603, miR-604, miR-605, miR-606, miR-607,
miR-608, miR-609, miR-610, miR-611, miR-612, miR-613, miR-614, miR-615, miR-616, miR-617,
miR-618, miR-619, miR-620, miR-621, miR-622, miR-623, miR-624, miR-625, miR-626, miR-627,
miR-628, miR-629, miR-630, miR-631, miR-632, miR-633, miR-634, miR-635, miR-636, miR-637,
miR-638, miR-639, miR-640, miR-641, miR-642, miR-643, miR-644, miR-645, miR-646, miR-647,
miR-648, miR-649, miR-650, miR-651, miR-652, miR-653, miR-654, miR-655, miR-656, miR-657,
miR-658, miR-659, miR-660, miR-661, miR-662, miR-663, miR-7, miR-9, miR-9*, miR-92,
miR-93, miR-95, miR-96, miR-98, miR-99a and miR-99b.
16. The method according to any of claims 13 to 15, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
determine the physiological and/or pathological condition of the subject after being
administrated a test sample.
17. The method according to claim 16, characterized in that the method is useful for screening the test sample for the activities on the prevention
and/or treatment of diseases.
18. The method according to any of claims 13 to 15, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
diagnose and/or differentially diagnose the diseases of the subject.
19. The method according to any of claims 13 to 15, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
evaluate the effectiveness of treating the diseases of the subject.
20. The method according to any of claims 13 to 15, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
predict the occurrence of diseases of the subject.
21. The method according to claim 20, characterized in that the occurrence of diseases is the occurrence of complications and/or the relapse
of malignant diseases.
22. The method according to any of claims 17 to 21, characterized in that the diseases include various tumors; various acute and chronic infectious diseases
e.g. viral diseases such as viral influenza, viral hepatitis, AIDS, SARS; bacterial
diseases such as tuberculosis, bacterial pneumonia, and other acute and chronic infectious
diseases caused by various pathogenic microorganisms; other acute and chronic diseases
such as diseases of respiratory system, diseases of immune system, diseases of blood
and hematopoietic system, diseases of circulatory system such as cardio-cerebrovascular
disease, metabolic diseases of endocrine system, diseases of digestive system, diseases
of nervous system, diseases of urinary system, diseases of reproductive system and
diseases of locomotor system.
23. The method according to any of claims 13 to 15, characterized in that the method is useful for detecting the subject for prohibited drugs-taking.
24. The method according to any of claims 13 to 23, characterized in that the method for determining all detectable microRNAs stably existing in serum/plasma
of a subject is one or more selected from the group consisting of RT-PCR method, Real-time
PCR method, Northern blotting method, RNase protection assay, Solexa sequencing technology
and biochip method.
25. The method according to claim 24,
characterized in that the method is RT-PCR method which includes the following steps:
(1) extracting the total RNA from the serum/plasma of the subject, and obtaining cDNA
samples by RNA reverse transcription reaction; or collecting serum/plasma samples
from the subject and conducting reverse transcription reaction with serum/plasma being
a buffer so as to prepare cDNA samples;
(2) designing a primer by use of microRNAs and conducting PCR reaction;
(3) conducting agarose gel electrophoresis of PCR products; and
(4) observing agarose gel under ultraviolet Lamp after EB staining.
26. The method according to claim 24,
characterized in that the method is Real-time PCR which includes the following steps:
(1) extracting the total RNA from the serum/plasma of the subject, and obtaining cDNA
samples by RNA reverse transcription reaction; or collecting serum/plasma samples
from the subject, preparing cDNA samples by reverse transcription reaction with serum/plasma
being a buffer;
(2) designing a primer by use of microRNAs;
(3) adding a fluorescent probe to conduct PCR reaction;
(4) detecting and comparing the variation in levels of microRNAs in the serum/plasma
samples relative to those of microRNAs in normal serum/plasma.
27. The method according to any of claims 13 to 26, characterized in that the serum/plasma derives from living bodies, tissues, organs and/or corpuses of the
subject.
28. A kit for evaluating the physiological and/or pathological condition of a subject,
wherein the kit comprises the tools useful for determing all detectable microRNAs
stably existing in the serum/plasma of the subject.
29. The kit according to claim 28, characterized in that the kit comprises the primers of all mature microRNAs in human serum/plasma.
30. The kit according to claim 28 or 29, characterized in that the kit comprises the primers of let-7a, let-7b, let-7c, let-7d, let-7e, let-7f,
let-7g, let-7i, miR-1, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-106b, miR-107,
miR-10a, miR-10b, miR-122a, miR-124a, miR-125a, miR-125b, miR-126, miR-126*, miR-127,
miR-128a, miR-128b, miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134,
miR-135a, miR-135b, miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p.
miR-142-5p, miR-143, miR-144, miR-145, miR-146a, miR-146b, miR-147, miR-148a, miR-148b,
miR-149, miR-150, miR-151, miR-152, miR-153, miR-154, miR-154*, miR-155, miR-15a,
miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-181a, miR-181b, miR-181c, miR-181d, miR-182,
miR-182*, miR-183, miR-184, miR-185, miR-186, miR-187, miR-188, miR-189, miR-18a,
miR-18a*, miR-18b, miR-190, miR-191, miR-191*, miR-192, miR-193a, miR-193b, miR-194,
miR-195, miR-196a, miR-196b, miR-197, miR-198, miR-199a, miR-199a*, miR-199b, miR-19a,
miR-19b, miR-200a, miR-200a*, miR-200b, miR-200c, miR-202, miR-202*, miR-203, miR-204,
miR-205, miR-206, miR-208, miR-20a, miR-20b, miR-21, miR-210, miR-211, miR-212, miR-213,
miR-214, miR-215, miR-216, miR-217, miR-218, miR-219, miR-22, miR-220, miR-221, miR-222,
miR-223, miR-224, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-27b,
miR-28, miR-296, miR-299-3p, miR-299-5p, miR-29a, miR-29b, miR-29c, miR-301, miR-302a,
miR-302a*, miR-302b, miR-302b*, miR-302c, miR-302c*, miR-302d, miR-30a-3p, miR-30a-5p,
miR-30b, miR-30c, miR-30d, miR-30e-3p, miR-30e-5p, miR-31, miR-32, miR-320, miR-323,
miR-324-3p, miR-324-5p, miR-325, miR-326, miR-328, miR-329, miR-33, miR-330, miR-331,
miR-335, miR-337, miR-338, miR-339, miR-33b, miR-340, miR-342, miR-345, miR-346, miR-34a,
miR-34b, miR-34c, miR-361, miR-362, miR-363, miR-363*, miR-365, miR-367, miR-368,
miR-369-3p, miR-369-5p, miR-370, miR-371, miR-372, miR-373, miR-373*, miR-374, miR-375,
miR-376a, miR-376a*, miR-376b, miR-377, miR-378, miR-379, miR-380-3p, miR-380-5p,
miR-381, miR-382, miR-383, miR-384, miR-409-3p, miR-409-5p, miR-410, miR-411, miR-412,
miR-421, miR-422a, miR-422b, miR-423, miR-424, miR-425, miR-425-5p, miR-429, miR-431,
miR-432, miR-432*, miR-433, miR-448, miR-449, miR-450, miR-451, miR-452, miR-452*,
miR-453, miR-455, miR-483, miR-484, miR-485-3p, miR-485-5p, miR-486, miR-487a, miR-487b,
miR-488, miR-489, miR-490, miR-491, miR-492, miR-493, miR-493-3p, miR-494, miR-495,
miR-496, miR-497, miR-498, miR-499, miR-500, miR-501, miR-502, miR-503, miR-504, miR-505,
miR-506, miR-507, miR-508, miR-509, miR-510, miR-511, miR-512-3p, miR-512-5p, miR-513,
miR-514, miR-515-3p, miR-515-5p, miR-516-3p, miR-516-5p, miR-517*, miR-517a, miR-517b,
miR-517c, miR-518a, miR-518a-2*, miR-518b, miR-518c, miR-518c*, miR-518d, miR-518e,
miR-518f, miR-518f*, miR-519a, miR-519b, miR-519c, miR-519d, miR-519e, miR-519e*,
miR-520a, miR-520a*, miR-520b, miR-520c, miR-520d, miR-520d*, miR-520e, miR-520f,
miR-520g, miR-520h, miR-521, miR-522, miR-523, miR-524, miR-524*, miR-525, miR-525*,
miR-526a, miR-526b, miR-526b*, miR-526c, miR-527, miR-532, miR-542-3p, miR-542-5p,
miR-544, miR-545, miR-548a, miR-548b. miR-548c, miR-548d, miR-549, miR-550, miR-551a,
miR-552, miR-553, miR-554, miR-555, miR-556, miR-557, miR-558, miR-559, miR-560, miR-561,
miR-562, miR-563, miR-564, miR-565, miR-566, miR-567, miR-568, miR-569, miR-570, miR-571,
miR-572, miR-573, miR-574, miR-575, miR-576, miR-577, miR-578, miR-579, miR-580, miR-581,
miR-582, miR-583, miR-584, miR-585, miR-586, miR-587, miR-588, miR-589, miR-590, miR-591,
miR-592, miR-593, miR-594, miR-595. miR-596, miR-597, miR-598, miR-599, miR-600, miR-601,
miR-602, miR-603, miR-604, miR-605, miR-606, miR-607, miR-608, miR-609, miR-610, miR-611,
miR-612, miR-613, miR-614, miR-615, miR-616, miR-617, miR-618, miR-619, miR-620, miR-621,
miR-622, miR-623, miR-624, miR-625, miR-626, miR-627, miR-628, miR-629, miR-630, miR-631,
miR-632, miR-633, miR-634, miR-635, miR-636, miR-637, miR-638, miR-639, miR-640, miR-641,
miR-642, miR-643, miR-644, miR-645, miR-646, miR-647, miR-648, miR-649, miR-650, miR-651,
miR-652, miR-653, miR-654, miR-655, miR-656, miR-657, miR-658, miR-659, miR-660, miR-661,
miR-662, miR-663, miR-7, miR-9, miR-9*, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99a
and miR-99b.
31. The kit according to any of claims 28 to 30, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
determine the physiological and/or pathological condition of a subject after being
administrated a test sample.
32. The kit according to claim 31, characterized in that the kit is useful for screening the test sample for the activities on the prevention
and/or treatment of diseases.
33. The kit according to any of claims 28 to 30, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
diagnose and/or differentially diagnose the diseases of the subject.
34. The kit according to any of claims 28 to 30, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
evaluate the effectiveness of treating the diseases of the subject.
35. The kit according to any of claims 28 to 30, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
predict the occurrence of diseases of the subject.
36. The kit according to claim 35, characterized in that the occurrence of diseases is the occurrence of complications and/or the relapse
of malignant diseases.
37. The kit according to any of claims 32 to 36, characterized in that the diseases include various tumors, various acute and chronic infectious diseases
e.g. viral diseases such as viral influenza, viral hepatitis, AIDS, SARS, bacterial
diseases such as tuberculosis, bacterial pneumonia, and other acute and chronic infectious
diseases caused by various pathogenic microorganisms; other acute and chronic diseases
such as diseases of respiratory system, diseases of immune system, diseases of blood
and hematopoietic system, diseases of circulatory system such as cardio-cerebrovascular
disease, metabolic diseases of endocrine system, diseases of digestive system, diseases
of nervous system, diseases of urinary system, diseases of reproductive system and
diseases of locomotor system.
38. The kit according to any of claims 28 to 30, characterized in that the kit is useful for detecting the subject for prohibited drugs-taking.
39. The kit according to any of claims 28 to 38, characterized in that the serum/plasma of the subject are from living bodies, tissues, organs and/or corpuses
of the subject.
40. A biochip for evaluating the physiological and/or pathological condition of a subject,
wherein the biochip contains components useful for determing all detectable microRNAs
stably existing in the serum/plasma of the subject.
41. The biochip according to claim 40, characterized in that the biochip contains the probes for all mature microRNAs in human serum/plasma.
42. The biochip according to claim 40 or 41,
characterized in that the biochip comprises the following probes:
| Probes |
Corresponding microRNAs |
Sequences of probes |
| probe-let-7a |
let-7a |
AACTATACAACCTACTACCTCA |
| probe-let-7b |
let-7b |
AACCACACAACCTACTACCTCA |
| probe-let-7c |
let-7c |
AACCATACAACCTACTACCTCA |
| probe-let-7d |
let-7d |
ACTATGCAACCTACTACCTCT |
| probe-let-7e |
let-7e |
ACTATACAACCTCCTACCTCA |
| probe-let-7f |
let-7f |
AACTATACAATCTACTACCTCA |
| probe-let-7g |
let-7g |
ACTGTACAAACTACTACCTCA |
| probe-let-7i |
let-7i |
ACAGCACAAACTACTACCTCA |
| probe-miR-1 |
miR-1 |
TACATACTTCTTTACATTCCA |
| probe-miR-100 |
miR-100 |
CACAAGTTCGGATCTACGGGTT |
| probe-miR-101 |
miR-101 |
CTTCAGTTATCACAGTACTGTA |
| probe-miR-103 |
miR-103 |
TCATAGCCCTGTACAATGCTGCT |
| probe-miR-105 |
miR-105 |
ACAGGAGTCTGAGCATTTGA |
| probe-miR-106a |
miR-106a |
GCTACCTGCACTGTAAGCACTTTT |
| probe-miR-106b |
miR-106b |
ATCTGCACTGTCAGCACTTTA |
| probe-miR-107 |
miR-107 |
TGATAGCCCTGTACAATGCTGCT |
| probe-miR-10a |
miR-10a |
CACAAATTCGGATCTACAGGGTA |
| probe-miR-10b |
miR-10b |
ACAAATTCGGTTCTACAGGGTA |
| probe-miR-122a |
miR-122a |
ACAAACACCATTGTCACACTCCA |
| probe-miR-124a |
miR-124a |
TGGCATTCACCGCGTGCCTTAA |
| probe-miR-125a |
miR-125a |
CACAGGTTAAAGGGTCTCAGGGA |
| probe-miR-125b |
miR-125b |
TCACAAGTTAGGGTCTCAGGGA |
| probe-miR-126 |
miR-126 |
GCATTATTACTCACGGTACGA |
| probe-miR-126* |
miR-126* |
CGCGTACCAAAAGTAATAATG |
| probe-miR-127 |
miR-127 |
AGCCAAGCTCAGACGGATCCGA |
| probe-miR-128a |
miR-128a |
AAAAGAGACCGGTTCACTGTGA |
| probe-miR-128b |
miR-128b |
GAAAGAGACCGGTTCACTGTGA |
| probe-miR-129 |
miR-129 |
GCAAGCCCAGACCGCAAAAAG |
| probe-miR-130a |
miR-130a |
ATGCCCTTTTAACATTGCACTG |
| probe-miR-130b |
miR-130b |
ATGCCCTTTCATCATTGCACTG |
| probe-miR-132 |
miR-132 |
CGACCATGGCTGTAGACTGTTA |
| probe-miR-133a |
miR-133a |
ACAGCTGGTTGAAGGGGACCAA |
| probe-miR-133b |
miR-133b |
TAGCTGGTTGAAGGGGACCAA |
| probe-miR-134 |
miR-134 |
CCCTCTGGTCAACCAGTCACA |
| probe-miR-135a |
miR-135a |
TCACATAGGAATAAAAAGCCATA |
| probe-miR-135b |
miR-135b |
CACATAGGAATGAAAAGCCATA |
| probe-miR-136 |
miR-136 |
TCCATCATCAAAACAAATGGAGT |
| probe-miR-137 |
miR-137 |
CTACGCGTATTCTTAAGCAATA |
| probe-miR-138 |
miR-138 |
GATTCACAACACCAGCT |
| probe-miR-139 |
miR-139 |
AGACACGTGCACTGTAGA |
| probe-miR-140 |
miR-140 |
CTACCATAGGGTAAAACCACT |
| probe-miR-141 |
miR-141 |
CCATCTTTACCAGACAGTGTTA |
| probe-miR-142-3p |
miR-142-3p |
TCCATAAAGTAGGAAACACTACA |
| probe-miR-142-5p |
miR-142-5p |
GTAGTGCTTTCTACTTTATG |
| probe-miR-143 |
miR-143 |
TGAGCTACAGTGCTTCATCTCA |
| probe-miR-144 |
miR-144 |
CTAGTACATCATCTATACTGTA |
| probe-miR-145 |
miR-145 |
AAGGGATTCCTGGGAAAACTGGAC |
| probe-miR-146a |
miR-146a |
AACCCATGGAATTCAGTTCTCA |
| probe-miR-146b |
miR-146b |
AGCCTATGGAATTCAGTTCTCA |
| probe-miR-147 |
miR-147 |
GCAGAAGCATTTCCACACAC |
| probe-miR-148a |
miR-148a |
ACAAAGTTCTGTAGTGCACTGA |
| probe-miR-148b |
miR-148b |
ACAAAGTTCTGTGATGCACTGA |
| probe-miR-149 |
miR-149 |
GGAGTGAAGACACGGAGCCAGA |
| probe-miR-150 |
miR-150 |
CACTGGTACAAGGGTTGGGAGA |
| probe-miR-151 |
miR-151 |
CCTCAAGGAGCTTCAGTCTAGT |
| probe-miR-152 |
miR-152 |
CCCAAGTTCTGTCATGCACTGA |
| probe-miR-153 |
miR-153 |
TCACTTTTGTGACTATGCAA |
| probe-miR-154 |
miR-154 |
CGAAGGCAACACGGATAACCTA |
| probe-miR-154* |
miR-154* |
AATAGGTCAACCGTGTATGATT |
| probe-miR-155 |
miR-155 |
CCCCTATCACGATTAGCATTAA |
| probe-miR-15a |
miR-15a |
CACAAACCATTATGTGCTGCTA |
| probe-miR-15b |
miR-15b |
TGTAAACCATGATGTGCTGCTA |
| probe-miR-16 |
miR-16 |
CGCCAATATTTACGTGCTGCTA |
| probe-miR-17-3p |
miR-17-3p |
ACAAGTGCCTTCACTGCAGT |
| probe-miR-17-5p |
miR-17-5p |
ACTACCTGCACTGTAAGCACTTTG |
| probe-miR-181a |
miR-181a |
ACTCACCGACAGCGTTGAATGTT |
| probe-miR-181b |
miR-181b |
CCCACCGACAGCAATGAATGTT |
| probe-miR-181c |
miR-181c |
ACTCACCGACAGGTTGAATGTT |
| probe-miR-181d |
miR-181d |
AACCCACCGACAACAATGAATGTT |
| probe-miR-182 |
miR-182 |
TGTGAGTTCTACCATTGCCAAA |
| probe-miR-182* |
miR-182* |
TAGTTGGCAAGTCTAGAACCA |
| probe-miR-183 |
miR-183 |
CAGTGAATTCTACCAGTGCCATA |
| probe-miR-184 |
miR-184 |
ACCCTTATCAGTTCTCCGTCCA |
| probe-miR-185 |
miR-185 |
GAACTGCCTTTCTCTCCA |
| probe-miR-186 |
miR-186 |
AAGCCCAAAAGGAGAATTCTTTG |
| probe-miR-187 |
miR-187 |
CGGCTGCAACACAAGACACGA |
| probe-miR-188 |
miR-188 |
ACCCTCCACCATGCAAGGGATG |
| probe-miR-189 |
miR-189 |
ACTGATATCAGCTCAGTAGGCAC |
| probe-miR-18a |
miR-18a |
TATCTGCACTAGATGCACCTTA |
| probe-miR-18a* |
miR-18a* |
AGAAGGAGCACTTAGGGCAGT |
| probe-miR-18b |
miR-18b |
TAACTGCACTAGATGCACCTTA |
| probe-miR-190 |
miR-190 |
ACCTAATATATCAAACATATCA |
| probe-miR-191 |
miR-191 |
AGCTGCTTTTGGGATTCCGTTG |
| probe-miR-191* |
miR-191* |
GGGGACGAAATCCAAGCGCAGC |
| probe-miR-192 |
miR-192 |
GGCTGTCAATTCATAGGTCAG |
| probe-miR-193a |
miR-193a |
CTGGGACTTTGTAGGCCAGTT |
| probe-miR-193b |
miR-193b |
AAAGCGGGACTTTGAGGGCCAGTT |
| probe-miR-194 |
miR-194 |
TCCACATGGAGTTGCTGTTACA |
| probe-miR-195 |
miR-195 |
GCCAATATTTCTGTGCTGCTA |
| probe-miR-196a |
miR-196a |
CCAACAACATGAAACTACCTA |
| probe-miR-196b |
miR-196b |
CCAACAACAGGAAACTACCTA |
| probe-miR-197 |
miR-197 |
GCTGGGTGGAGAAGGTGGTGAA |
| probe-miR-198 |
miR-198 |
CCTATCTCCCCTCTGGACC |
| probe-miR-199a |
miR-199a |
GAACAGGTAGTCTGAACACTGGG |
| probe-miR-199a* |
miR-199a* |
AACCAATGTGCAGACTACTGTA |
| probe-miR-199b |
miR-199b |
GAACAGATAGTCTAAACACTGGG |
| probe-miR-19a |
miR-19a |
TCAGTTTTGCATAGATTTGCACA |
| probe-miR-19b |
miR-19b |
TCAGTTTTGCATGGATTTGCACA |
| probe-miR-200a |
miR-200a |
ACATCGTTACCAGACAGTGTTA |
| probe-miR-200a* |
miR-200a* |
TCCAGCACTGTCCGGTAAGATG |
| probe-miR-200b |
miR-200b |
GTCATCATTACCAGGCAGTATTA |
| probe-miR-200c |
miR-200c |
CCATCATTACCCGGCAGTATTA |
| probe-miR-202 |
miR-202 |
TTTTCCCATGCCCTATACCTCT |
| probe-miR-202* |
miR-202* |
AAAGAAGTATATGCATAGGAAA |
| probe-miR-203 |
miR-203 |
CTAGTGGTCCTAAACATTTCAC |
| probe-miR-204 |
miR-204 |
AGGCATAGGATGACAAAGGGAA |
| probe-miR-205 |
miR-205 |
CAGACTCCGGTGGAATGAAGGA |
| probe-miR-206 |
miR-206 |
CCACACACTTCCTTACATTCCA |
| probe-miR-208 |
miR-208 |
ACAAGCTTTTTGCTCGTCTTAT |
| probe-miR-20a |
miR-20a |
CTACCTGCACTATAAGCACTTTA |
| probe-miR-20b |
miR-20b |
CTACCTGCACTATGAGCACTTTG |
| probe-miR-21 |
miR-21 |
TCAACATCAGTCTGATAAGCTA |
| probe-miR-210 |
miR-210 |
TCAGCCGCTGTCACACGCACAG |
| probe-miR-211 |
miR-211 |
AGGCGAAGGATGACAAAGGGAA |
| probe-miR-212 |
miR-212 |
GGCCGTGACTGGAGACTGTTA |
| probe-miR-213 |
miR-213 |
GGTACAATCAACGGTCGATGGT |
| probe-miR-214 |
miR-214 |
CTGCCTGTCTGTGCCTGCTGT |
| probe-miR-215 |
miR-215 |
GTCTGTCAATTCATAGGTCAT |
| probe-miR-216 |
miR-216 |
CACAGTTGCCAGCTGAGATTA |
| probe-miR-217 |
miR-217 |
ATCCAATCAGTTCCTGATGCAGTA |
| probe-miR-218 |
miR-218 |
ACATGGTTAGATCAAGCACAA |
| probe-miR-219 |
miR-219 |
AGAATTGCGTTTGGACAATCA |
| probe-miR-22 |
miR-22 |
ACAGTTCTTCAACTGGCAGCTT |
| probe-miR-220 |
miR-220 |
AAAGTGTCAGATACGGTGTGG |
| probe-miR-221 |
miR-221 |
GAAACCCAGCAGACAATGTAGCT |
| probe-miR-222 |
miR-222 |
GAGACCCAGTAGCCAGATGTAGCT |
| probe-miR-223 |
miR-223 |
GGGGTATTTGACAAACTGACA |
| probe-miR-224 |
miR-224 |
TAAACGGAACCACTAGTGACTTG |
| probe-miR-23a |
miR-23a |
GGAAATCCCTGGCAATGTGAT |
| probe-miR-23b |
miR-23b |
GGTAATCCCTGGCAATGTGAT |
| probe-miR-24 |
miR-24 |
CTGTTCCTGCTGAACTGAGCCA |
| probe-miR-25 |
miR-25 |
TCAGACCGAGACAAGTGCAATG |
| probe-miR-26a |
miR-26a |
GCCTATCCTGGATTACTTGAA |
| probe-miR-26b |
miR-26b |
AACCTATCCTGAATTACTTGAA |
| probe-miR-27a |
miR-27a |
GCGGAACTTAGCCACTGTGAA |
| probe-miR-27b |
miR-27b |
GCAGAACTTAGCCACTGTGAA |
| probe-miR-28 |
miR-28 |
CTCAATAGACTGTGAGCTCCTT |
| probe-miR-296 |
miR-296 |
ACAGGATTGAGGGGGGGCCCT |
| probe-miR-299-3p |
miR-299-3p |
AAGCGGTTTACCATCCCACATA |
| probe-miR-299-5p |
miR-299-5p |
ATGTATGTGGGACGGTAAACCA |
| probe-miR-29a |
miR-29a |
AACCGATTTCAGATGGTGCTA |
| probe-miR-29b |
miR-29b |
AACACTGATTTCAAATGGTGCTA |
| probe-miR-29c |
miR-29c |
ACCGATTTCAAATGGTGCTA |
| probe-miR-301 |
miR-301 |
GCTTTGACAATACTATTGCACTG |
| probe-miR-302a |
miR-302a |
TCACCAAAACATGGAAGCACTTA |
| probe-miR-302a* |
miR-302a* |
AAAGCAAGTACATCCACGTTTA |
| probe-miR-302b |
miR-302b |
CTACTAAAACATGGAAGCACTTA |
| probe-miR-302b* |
miR-302b* |
AGAAAGCACTTCCATGTTAAAGT |
| probe-miR-302c |
miR-302c |
CCACTGAAACATGGAAGCACTTA |
| probe-miR-302c* |
miR-302c* |
CAGCAGGTACCCCCATGTTAAA |
| probe-miR-302d |
miR-302d |
ACACTCAAACATGGAAGCACTTA |
| probe-miR-30a-3p |
miR-30a-3p |
GCTGCAAACATCCGACTGAAAG |
| probe-miR-30a-5p |
miR-30a-5p |
CTTCCAGTCGAGGATGTTTACA |
| probe-miR-30b |
miR-30b |
AGCTGAGTGTAGGATGTTTACA |
| probe-miR-30c |
miR-30c |
GCTGAGAGTGTAGGATGTTTACA |
| probe-miR-30d |
miR-30d |
CTTCCAGTCGGGGATGTTTACA |
| probe-miR-30e-3p |
miR-30e-3p |
GCTGTAAACATCCGACTGAAAG |
| probe-miR-30e-5p |
miR-30e-5p |
TCCAGTCAAGGATGTTTACA |
| probe-miR-31 |
miR-31 |
CAGCTATGCCAGCATCTTGCC |
| probe-miR-32 |
miR-32 |
GCAACTTAGTAATGTGCAATA |
| probe-miR-320 |
miR-320 |
TTCGCCCTCTCAACCCAGCTTTT |
| probe-miR-323 |
miR-323 |
AGAGGTCGACCGTGTAATGTGC |
| probe-miR-324-3p |
miR-324-3p |
CCAGCAGCACCTGGGGCAGTGG |
| probe-miR-324-5p |
miR-324-5p |
ACACCAATGCCCTAGGGGATGCG |
| probe-miR-325 |
miR-325 |
ACACTTACTGGACACCTACTAGG |
| probe-miR-326 |
miR-326 |
CTGGAGGAAGGGCCCAGAGG |
| probe-miR-328 |
miR-328 |
ACGGAAGGGCAGAGAGGGCCAG |
| probe-miR-329 |
miR-329 |
AAAGAGGTTAACCAGGTGTGTT |
| probe-miR-33 |
miR-33 |
CAATGCAACTACAATGCAC |
| probe-miR-330 |
miR-330 |
TCTCTGCAGGCCGTGTGCTTTGC |
| probe-miR-331 |
miR-331 |
TTCTAGGATAGGCCCAGGGGC |
| probe-miR-335 |
miR-335 |
ACATTTTTCGTTATTGCTCTTGA |
| probe-miR-337 |
miR-337 |
AAAGGCATCATATAGGAGCTGGA |
| probe-miR-338 |
miR-338 |
TCAACAAAATCACTGATGCTGGA |
| probe-miR-339 |
miR-339 |
TGAGCTCCTGGAGGACAGGGA |
| probe-miR-33b |
miR-33b |
TGCAATGCAACAGCAATGCAC |
| probe-miR-340 |
miR-340 |
GGCTATAAAGTAACTGAGACGGA |
| probe-miR-342 |
miR-342 |
GACGGGTGCGATTTCTGTGTGAGA |
| probe-miR-345 |
miR-345 |
GCCCTGGACTAGGAGTCAGCA |
| probe-miR-346 |
miR-346 |
AGAGGCAGGCATGCGGGCAGACA |
| probe-miR-34a |
miR-34a |
AACAACCAGCTAAGACACTGCCA |
| probe-miR-34b |
miR-34b |
CAATCAGCTAATGACACTGCCTA |
| probe-miR-34c |
miR-34c |
GCAATCAGCTAACTACACTGCCT |
| probe-miR-361 |
miR-361 |
GTACCCCTGGAGATTCTGATAA |
| probe-miR-362 |
miR-362 |
CTCACACCTAGGTTCCAAGGATT |
| probe-miR-363 |
miR-363 |
TTACAGATGGATACCGTGCAAT |
| probe-miR-363* |
miR-363* |
AAATTGCATCGTGATCCACCCG |
| probe-miR-365 |
miR-365 |
ATAAGGATTTTTAGGGGCATTA |
| probe-miR-367 |
miR-367 |
TCACCATTGCTAAAGTGCAATT |
| probe-miR-368 |
miR-368 |
AAACGTGGAATTTCCTCTATGT |
| probe-miR-369-3p |
miR-369-3p |
AAAGATCAACCATGTATTATT |
| probe-miR-369-5p |
miR-369-5p |
GCGAATATAACACGGTCGATCT |
| probe-miR-370 |
miR-370 |
CCAGGTTCCACCCCAGCAGGC |
| probe-miR-371 |
miR-371 |
ACACTCAAAAGATGGCGGCAC |
| probe-miR-372 |
miR-372 |
ACGCTCAAATGTCGCAGCACTTT |
| probe-miR-373 |
miR-373 |
ACACCCCAAAATCGAAGCACTTC |
| probe-miR-373* |
miR-373* |
GGAAAGCGCCCCCATTTTGAGT |
| probe-miR-374 |
miR-374 |
CACTTATCAGGTTGTATTATAA |
| probe-miR-375 |
miR-375 |
TCACGCGAGCCGAACGAACAAA |
| probe-miR-376a |
miR-376a |
ACGTGGATTTTCCTCTATGAT |
| probe-miR-376a* |
miR-376a* |
CTCATAGAAGGAGAATCTACC |
| probe-miR-376b |
miR-376b |
AACATGGATTTTCCTCTATGAT |
| probe-miR-377 |
miR-377 |
ACAAAAGTTGCCTTTGTGTGAT |
| probe-miR-378 |
miR-378 |
ACACAGGACCTGGAGTCAGGAG |
| probe-miR-379 |
miR-379 |
TACGTTCCATAGTCTACCA |
| probe-miR-380-3p |
miR-380-3p |
AAGATGTGGACCATATTACATA |
| probe-miR-380-5p |
miR-380-5p |
GCGCATGTTCTATGGTCAACCA |
| probe-miR-381 |
miR-381 |
ACAGAGAGCTTGCCCTTGTATA |
| probe-miR-382 |
miR-382 |
CGAATCCACCACGAACAACTTC |
| probe-miR-383 |
miR-383 |
AGCCACAATCACCTTCTGATCT |
| probe-miR-384 |
miR-384 |
TATGAACAATTTCTAGGAAT |
| probe-miR-409-3p |
miR-409-3p |
AGGGGTTCACCGAGCAACATTCG |
| probe-miR-409-5p |
miR-409-5p |
TGCAAAGTTGCTCGGGTAACCT |
| probe-miR-410 |
miR-410 |
AACAGGCCATCTGTGTTATATT |
| probe-miR-411 |
miR-411 |
CGTACGCTATACGGTCTACTA |
| probe-miR-412 |
miR-412 |
ACGGCTAGTGGACCAGGTGAAGT |
| probe-miR-421 |
miR-421 |
GCGCCCAATTAATGTCTGTTGAT |
| probe-miR-422a |
miR-422a |
GGCCTTCTGACCCTAAGTCCAG |
| probe-miR-422b |
miR-422b |
GGCCTTCTGACTCCAAGTCCAG |
| probe-miR-423 |
miR-423 |
CTGAGGGGCCTCAGACCGAGCT |
| probe-miR-424 |
miR-424 |
TTCAAAACATGAATTGCTGCTG |
| probe-miR-425 |
miR-425 |
GGCGGACACGACATTCCCGAT |
| probe-miR-425-5p |
miR-425-5p |
TCAACGGGAGTGATCGTGTCATT |
| probe-miR-429 |
miR-429 |
ACGGTTTTACCAGACAGTATTA |
| probe-miR-431 |
miR-431 |
TGCATGACGGCCTGCAAGACA |
| probe-miR-432 |
miR-432 |
CCACCCAATGACCTACTCCAAGA |
| probe-miR-432* |
miR-432* |
AGACATGGAGGAGCCATCCAG |
| probe-miR-433 |
miR-433 |
ACACCGAGGAGCCCATCATGAT |
| probe-miR-448 |
miR-448 |
ATGGGACATCCTACATATGCAA |
| probe-miR-449 |
miR-449 |
ACCAGCTAACAATACACTGCCA |
| probe-miR-450 |
miR-450 |
TATTAGGAACACATCGCAAAAA |
| probe-miR-451 |
miR-451 |
AAACTCAGTAATGGTAACGGTTT |
| probe-miR-452 |
miR-452 |
GTCTCAGTTTCCTCTGCAAACA |
| probe-miR-452* |
miR-452* |
CTTCTTTGCAGATGAGACTGA |
| probe-miR-453 |
miR-453 |
CGAACTCACCACGGACAACCTC |
| probe-miR-455 |
miR-455 |
CGATGTAGTCCAAAGGCACATA |
| probe-miR-483 |
miR-483 |
AGAAGACGGGAGGAGAGGAGTGA |
| probe-miR-484 |
miR-484 |
ATCGGGAGGGGACTGAGCCTGA |
| probe-miR-485-3p |
miR-485-3p |
AGAGGAGAGCCGTGTATGAC |
| probe-miR-485-5p |
miR-485-5p |
GAATTCATCACGGCCAGCCTCT |
| probe-miR-486 |
miR-486 |
CTCGGGGCAGCTCAGTACAGGA |
| probe-miR-487a |
miR-487a |
AACTGGATGTCCCTGTATGATT |
| probe-miR-487b |
miR-487b |
AAGTGGATGACCCTGTACGATT |
| probe-miR-488 |
miR-488 |
TTGAGAGTGCCATTATCTGGG |
| probe-miR-489 |
miR-489 |
GCTGCCGTATATGTGATGTCACT |
| probe-miR-490 |
miR-490 |
CAGCATGGAGTCCTCCAGGTTG |
| probe-miR-491 |
miR-491 |
TCCTCATGGAAGGGTTCCCCACT |
| probe-miR-492 |
miR-492 |
AAGAATCTTGTCCCGCAGGTCCT |
| probe-miR-493 |
miR-493 |
AATGAAAGCCTACCATGTACAA |
| probe-miR-493-3p |
miR-493-3p |
CTGGCACACAGTAGACCTTCA |
| probe-miR-494 |
miR-494 |
AAGAGGTTTCCCGTGTATGTTTCA |
| probe-miR-495 |
miR-495 |
AAAGAAGTGCACCATGTTTGTTT |
| probe-miR-496 |
miR-496 |
GAGATTGGCCATGTAAT |
| probe-miR-497 |
miR-497 |
ACAAACCACAGTGTGCTGCTG |
| probe-miR-498 |
miR-498 |
GAAAAACGCCCCCTGGCTTGAAA |
| probe-miR-499 |
miR-499 |
TTAAACATCACTGCAAGTCTTAA |
| probe-miR-500 |
miR-500 |
CAGAATCCTTGCCCAGGTGCAT |
| probe-miR-501 |
miR-501 |
TCTCACCCAGGGACAAAGGATT |
| probe-miR-502 |
miR-502 |
TAGCACCCAGATAGCAAGGAT |
| probe-miR-503 |
miR-503 |
CTGCAGAACTGTTCCCGCTGCTA |
| probe-miR-504 |
miR-504 |
ATAGAGTGCAGACCAGGGTCT |
| probe-miR-505 |
miR-505 |
GAGGAAACCAGCAAGTGTTGAC |
| probe-miR-506 |
miR-506 |
TCTACTCAGAAGGGTGCCTTA |
| probe-miR-507 |
miR-507 |
TTCACTCCAAAAGGTGCAAAA |
| probe-miR-508 |
miR-508 |
TCTACTCCAAAAGGCTACAATCA |
| probe-miR-509 |
miR-509 |
TCTACCCACAGACGTACCAATCA |
| probe-miR-510 |
miR-510 |
TGTGATTGCCACTCTCCTGAGTA |
| probe-miR-511 |
miR-511 |
TGACTGCAGAGCAAAAGACAC |
| probe-miR-512-3p |
miR-512-3p |
GACCTCAGCTATGACAGCACTT |
| probe-miR-512-5p |
miR-512-5p |
GAAAGTGCCCTCAAGGCTGAGTG |
| probe-miR-513 |
miR-513 |
ATAAATGACACCTCCCTGTGAA |
| probe-miR-514 |
miR-514 |
CTACTCACAGAAGTGTCAAT |
| probe-miR-515-3p |
miR-515-3p |
ACGCTCCAAAAGAAGGCACTC |
| probe-miR-515-5p |
miR-515-5p |
CAGAAAGTGCTTTCTTTTGGAGAA |
| probe-miR-516-3p |
miR-516-3p |
ACCCTCTGAAAGGAAGCA |
| probe-miR-516-5p |
miR-516-5p |
AAAGTGCTTCTTACCTCCAGAT |
| probe-miR-517* |
miR-517* |
AGACAGTGCTTCCATCTAGAGG |
| probe-miR-517a |
miR-517a |
AACACTCTAAAGGGATGCACGAT |
| probe-miR-517b |
miR-517b |
AACACTCTAAAGGGATGCACGA |
| probe-miR-517c |
miR-517c |
ACACTCTAAAAGGATGCACGAT |
| probe-miR-518a |
miR-518a |
TCCAGCAAAGGGAAGCGCTTT |
| probe-miR-518a-2* |
miR-518a-2* |
AAAGGGCTTCCCTTTGCAGA |
| probe-miR-518b |
miR-518b |
ACCTCTAAAGGGGAGCGCTTTG |
| probe-miR-518c |
miR-518c |
CACTCTAAAGAGAAGCGCTTTG |
| probe-miR-518c* |
miR-518c* |
CAGAAAGTGCTTCCCTCCAGAGA |
| probe-miR-518d |
miR-518d |
GCTCCAAAGGGAAGCGCTTTG |
| probe-miR-518e |
miR-518e |
ACACTCTGAAGGGAAGCGCTTT |
| probe-miR-518f |
miR-518f |
TCCTCTAAAGAGAAGCGCTTT |
| probe-miR-518f* |
miR-518f* |
AGAGAAAGTGCTTCCCTCTAGAG |
| probe-miR-519a |
miR-519a |
GTAACACTCTAAAAGGATGCACTTT |
| probe-miR-519b |
miR-519b |
AAACCTCTAAAAGGATGCACTTT |
| probe-miR-519c |
miR-519c |
ATCCTCTAAAAAGATGCACTTT |
| probe-miR-519d |
miR-519d |
ACACTCTAAAGGGAGGCACTTTG |
| probe-miR-519e |
miR-519e |
ACACTCTAAAAGGAGGCACTTT |
| probe-miR-519e* |
miR-519e* |
GAAAGTGCTCCCTTTTGGAGAA |
| probe-miR-520a |
miR-520a |
ACAGTCCAAAGGGAAGCACTTT |
| probe-miR-520a* |
miR-520a* |
AGAAAGTACTTCCCTCTGGAG |
| probe-miR-520b |
miR-520b |
CCCTCTAAAAGGAAGCACTTT |
| probe-miR-520c |
miR-520c |
AACCCTCTAAAAGGAAGCACTTT |
| probe-miR-520d |
miR-520d |
AACCCACCAAAGAGAAGCACTTT |
| probe-miR-520d* |
miR-520d* |
CAGAAAGGGCTTCCCTTTGTAGA |
| probe-miR-520e |
miR-520e |
CCCTCAAAAAGGAAGCACTTT |
| probe-miR-520f |
miR-520f |
AACCCTCTAAAAGGAAGCACTT |
| probe-miR-520g |
miR-520g |
ACACTCTAAAGGGAAGCACTTTGT |
| probe-miR-520h |
miR-520h |
ACTCTAAAGGGAAGCACTTTGT |
| probe-miR-521 |
miR-521 |
ACACTCTAAAGGGAAGTGCGTT |
| probe-miR-522 |
miR-522 |
AACACTCTAAAGGGAACCATTTT |
| probe-miR-523 |
miR-523 |
CCCTCTATAGGGAAGCGCGTT |
| probe-miR-524 |
miR-524 |
ACTCCAAAGGGAAGCGCCTTC |
| probe-miR-524* |
miR-524* |
GAGAAAGTGCTTCCCTTTGTAG |
| probe-miR-525 |
miR-525 |
AGAAAGTGCATCCCTCTGGAG |
| probe-miR-525* |
miR-525* |
GCTCTAAAGGGAAGCGCCTTC |
| probe-miR-526a |
miR-526a |
AGAAAGTGCTTCCCTCTAGAG |
| probe-miR-526b |
miR-526b |
AACAGAAAGTGCTTCCCTCAAGAG |
| probe-miR-526b* |
miR-526b* |
GCCTCTAAAAGGAAGCACTTT |
| probe-miR-526c |
miR-526c |
AACAGAAAGCGCTTCCCTCTAGAG |
| probe-miR-527 |
miR-527 |
AGAAAGGGCTTCCCTTTGCAG |
| probe-miR-532 |
miR-532 |
ACGGTCCTACACTCAAGGCATG |
| probe-miR-542-3p |
miR-542-3p |
TTTCAGTTATCAATCTGTCACA |
| probe-miR-542-5p |
miR-542-5p |
CTCGTGACATGATGATCCCCGA |
| probe-miR-544 |
miR-544 |
ACTTGCTAAAAATGCAGAAT |
| probe-miR-545 |
miR-545 |
CACACAATAAATGTTTGCTGAT |
| probe-miR-548a |
miR-548a |
GCAAAAGTAATTGCCAGTTTTG |
| probe-miR-548b |
miR-548b |
ACAAAAGCAACTGAGGTTCTTG |
| probe-miR-548c |
miR-548c |
GCAAAAGTAATTGAGATTTTTG |
| probe-miR-548d |
miR-548d |
GCAAAAGAAACTGTGGTTTTTG |
| probe-miR-549 |
miR-549 |
AGAGCTCATCCATAGTTGTCA |
| probe-miR-550 |
miR-550 |
ATGTGCCTGAGGGAGTAAGACA |
| probe-miR-551a |
miR-551a |
TGGAAACCAAGAGTGGGTCGC |
| probe-miR-552 |
miR-552 |
TTGTCTAACCAGTCACCTGTT |
| probe-miR-553 |
miR-553 |
AAAACAAAATCTCACCGTTTT |
| probe-miR-554 |
miR-554 |
ACTGGCTGAGTCAGGACTAGC |
| probe-miR-555 |
miR-555 |
ATCAGAGGTTCAGCTTACCCT |
| probe-miR-556 |
miR-556 |
CATATTACAATGAGCTCATC |
| probe-miR-557 |
miR-557 |
AGACAAGGCCCACCCGTGCAAAC |
| probe-miR-558 |
miR-558 |
ATTTTGGTACAGCAGCTCA |
| probe-miR-559 |
miR-559 |
TTTTGGTGCATATTTACTTTA |
| probe-miR-560 |
miR-560 |
GGCGGCCGGCCGGCGCACGC |
| probe-miR-561 |
miR-561 |
ACTTCAAGGATCTTAAACTTTG |
| probe-miR-562 |
miR-562 |
GCAAATGGTACAGCTACTTT |
| probe-miR-563 |
miR-563 |
GGGAAACGTATGTCAACCT |
| probe-miR-564 |
miR-564 |
GCCTGCTGACACCGTGCCT |
| probe-miR-565 |
miR-565 |
AAACAGACATCGCGAGCCAGCC |
| probe-miR-566 |
miR-566 |
GTTGGGATCACAGGCGCCC |
| probe-miR-567 |
miR-567 |
GTTCTGTCCTGGAAGAACATACT |
| probe-miR-568 |
miR-568 |
GTGTGTATACATTTATACAT |
| probe-miR-569 |
miR-569 |
ACTTTCCAGGATTCATTAACT |
| probe-miR-570 |
miR-570 |
TGCAAAGGTAATTGCTGTTTTC |
| probe-miR-571 |
miR-571 |
CTCACTCAGATGGCCAACTCA |
| probe-miR-572 |
miR-572 |
TGGGCCACCGCCGAGCGGAC |
| probe-miR-573 |
miR-573 |
CTGATCAGTTACACATCACTTCAG |
| probe-miR-574 |
miR-574 |
GTGGGTGTGTGCATGAGCGTG |
| probe-miR-575 |
miR-575 |
GCTCCTGTCCAACTGGCTC |
| probe-miR-576 |
miR-576 |
CAAAGACGTGGAGAAATTAGAAT |
| probe-miR-577 |
miR-577 |
CAGGTACCAATATTTTATCTA |
| probe-miR-578 |
miR-578 |
ACAATCCTAGAGCACAAGAAG |
| probe-miR-579 |
miR-579 |
ATCGCGGTTTATACCAAATGAAT |
| probe-miR-580 |
miR-580 |
CCTAATGATTCATCATTCTCAA |
| probe-miR-581 |
miR-581 |
ACTGATCTAGAGAACACAAGA |
| probe-miR-582 |
miR-582 |
AGTAACTGGTTGAACAACTGTAA |
| probe-miR-583 |
miR-583 |
GTAATGGGACCTTCCTCTTTG |
| probe-miR-584 |
miR-584 |
CTCAGTCCCAGGCAAACCATAA |
| probe-miR-585 |
miR-585 |
TAGCATACAGATACGCCCA |
| probe-miR-586 |
miR-586 |
GGACCTAAAAATACAATGCATA |
| probe-miR-587 |
miR-587 |
GTGACTCATCACCTATGGAAA |
| probe-miR-588 |
miR-588 |
GTTCTAACCCATTGTGGCCAA |
| probe-miR-589 |
miR-589 |
TCTGGGAACCGGCATTTGTTCTGA |
| probe-miR-590 |
miR-590 |
CTGCACTTTTATGAATAAGCTC |
| probe-miR-591 |
miR-591 |
ACAATGAGAACCCATGGTCT |
| probe-miR-592 |
miR-592 |
ACATCATCGCATATTGACACAA |
| probe-miR-593 |
miR-593 |
GCTGAGCAATGCCTGGCTGGTGCCT |
| probe-miR-594 |
miR-594 |
AAAGTCACAGGCCACCCCAGATGGG |
| probe-miR-595 |
miR-595 |
AGACACACCACGGCACACTTC |
| probe-miR-596 |
miR-596 |
CCCGAGGAGCCGGGCAGGCTT |
| probe-miR-597 |
miR-597 |
ACAGTGGTCATCGAGTGACACA |
| probe-miR-598 |
miR-598 |
TGACGATGACAACGATGACGTA |
| probe-miR-599 |
miR-599 |
GTTTGATAAACTGACACAAC |
| probe-miR-600 |
miR-600 |
GAGCAAGGCTCTTGTCTGTAAGT |
| probe-miR-601 |
miR-601 |
CTCCTCCAACAATCCTAGACCA |
| probe-miR-602 |
miR-602 |
GGGCCGCAGCTGTCGCCCGTGTC |
| probe-miR-603 |
miR-603 |
GCAAAAGTAATTGCAGTGTGTG |
| probe-miR-604 |
miR-604 |
GTCCTGAATTCCGCAGCCT |
| probe-miR-605 |
miR-605 |
AGGAGAAGGCACCATGGGATTTA |
| probe-miR-606 |
miR-606 |
ATCTTTGATTTTCAGTAGTTT |
| probe-miR-607 |
miR-607 |
GTTATAGATCTGGATTTGAAC |
| probe-miR-608 |
miR-608 |
ACGGAGCTGTCCCAACACCACCCCT |
| probe-miR-609 |
miR-609 |
AGAGATGAGAGAAACACCCT |
| probe-miR-610 |
miR-610 |
TCCCAGCACACATTTAGCTCA |
| probe-miR-611 |
miR-611 |
GTCAGACCCCGAGGGGTCCTCGC |
| probe-miR-612 |
miR-612 |
AAGGAGCTCAGAAGCCCTGCCCAGC |
| probe-miR-613 |
miR-613 |
GGCAAAGAAGGAACATTCCT |
| probe-miR-614 |
miR-614 |
CCACCTGGCAAGAACAGGCGTTC |
| probe-miR-615 |
miR-615 |
AGAGGGAGACCCAGGCTCGGA |
| probe-miR-616 |
miR-616 |
AAGTCACTGAAGGGTTTTGAGT |
| probe-miR-617 |
miR-617 |
GCCACCTTCAAATGGGAAGTCT |
| probe-miR-618 |
miR-618 |
ACTCAGAAGGACAAGTAGAGTTT |
| probe-miR-619 |
miR-619 |
ACTGGGCACAAACATGTCCAGGTC |
| probe-miR-620 |
miR-620 |
ATTTCTATATCTATCTCCAT |
| probe-miR-621 |
miR-621 |
AGGTAAGCGCTGTTGCTAGCC |
| probe-miR-622 |
miR-622 |
GCTCCAACCTCAGCAGACTGT |
| probe-miR-623 |
miR-623 |
ACCCAACAGCCCCTGCAAGGGAT |
| probe-miR-624 |
miR-624 |
TGAACACAAGGTACTGGTACTA |
| probe-miR-625 |
miR-625 |
AGGACTATAGAACTTTCCCCCT |
| probe-miR-626 |
miR-626 |
AAGACATTTTCAGACAGCT |
| probe-miR-627 |
miR-627 |
TCCTCTTTTCTTAGAGACTCAC |
| probe-miR-628 |
miR-628 |
CGACTGCCACTCTTACTAGA |
| probe-miR-629 |
miR-629 |
GCTGGGCTTACGTTGGGAGAAC |
| probe-miR-630 |
miR-630 |
ACCTTCCCTGGTACAGAATACT |
| probe-miR-631 |
miR-631 |
GCTGAGGTCTGGGCCAGGTCT |
| probe-miR-632 |
miR-632 |
TCCCACAGGAAGCAGACAC |
| probe-miR-633 |
miR-633 |
TTTATTGTGGTAGATACTATTAG |
| probe-miR-634 |
miR-634 |
GTCCAAAGTTGGGGTGCTGGTT |
| probe-miR-635 |
miR-635 |
GGACATTGTTTCAGTGCCCAAGT |
| probe-miR-636 |
miR-636 |
CTGCGGGCGGGACGAGCAAGCACA |
| probe-miR-637 |
miR-637 |
ACGCAGAGCCCGAAAGCCCCCAGT |
| probe-miR-638 |
miR-638 |
AGGCCGCCACCCGCCCGCGATCCCT |
| probe-miR-639 |
miR-639 |
ACAGCGCTCGCAACCGCAGCGAT |
| probe-miR-640 |
miR-640 |
AGAGGCAGGTTCCTGGATCAT |
| probe-miR-641 |
miR-641 |
GAGGTGACTCTATCCTATGTCTTT |
| probe-miR-642 |
miR-642 |
CAAGACACATTTGGAGAGGGAC |
| probe-miR-643 |
miR-643 |
CTACCTGAGCTAGCATACAAGT |
| probe-miR-644 |
miR-644 |
GCTCTAAGAAAGCCACACT |
| probe-miR-645 |
miR-645 |
TCAGCAGTACCAGCCTAGA |
| probe-miR-646 |
miR-646 |
GCCTCAGAGGCAGCTGCTT |
| probe-miR-647 |
miR-647 |
GAAGGAAGTGAGTGCAGCCAC |
| probe-miR-648 |
miR-648 |
ACCAGTGCCCTGCACACTT |
| probe-miR-649 |
miR-649 |
GACTCTTGAACAACACAGGTTT |
| probe-miR-650 |
miR-650 |
GTCCTGAGAGCGCTGCCTCCT |
| probe-miR-651 |
miR-651 |
CAAAAGTCAAGCTTATCCTAAA |
| probe-miR-652 |
miR-652 |
TGCACAACCCTAGTGGCGCCATT |
| probe-miR-653 |
miR-653 |
GTTCAGTAGAGATTGTTTCAA |
| probe-miR-654 |
miR-654 |
GCACATGTTCTGCGGCCCACCA |
| probe-miR-655 |
miR-655 |
AAAGAGGTTAACCATGTATTAT |
| probe-miR-656 |
miR-656 |
AGAGGTTGACTGTATAATATT |
| probe-miR-657 |
miR-657 |
CCTAGAGAGGGTGAGAACCTGCC |
| probe-miR-658 |
miR-658 |
ACCAACGGACCTACTTCCCTCCGCC |
| probe-miR-659 |
miR-659 |
TGGGGACCCTCCCTGAACCAAG |
| probe-miR-660 |
miR-660 |
CAACTCCGATATGCAATGGGTA |
| probe-miR-661 |
miR-661 |
ACGCGCAGGCCAGAGACCCAGGCA |
| probe-miR-662 |
miR-662 |
CTGCTGGGCCACAACGTGGGA |
| probe-miR-663 |
miR-663 |
GCGGTCCCGCGGCGCCCCGCCT |
| probe-miR-7 |
miR-7 |
CAACAAAATCACTAGTCTTCCA |
| probe-miR-9 |
miR-9 |
TCATACAGCTAGATAACCAAAGA |
| probe-miR-9* |
miR-9* |
ACTTTCGGTTATCTAGCTTTA |
| probe-miR-92 |
miR-92 |
CAGGCCGGGACAAGTGCAATA |
| probe-miR-93 |
miR-93 |
CTACCTGCACGAACAGCACTTT |
| probe-miR-95 |
miR-95 |
TGCTCAATAAATACCCGTTGAA |
| probe-miR-96 |
miR-96 |
GCAAAAATGTGCTAGTGCCAAA |
| probe-miR-98 |
miR-98 |
AACAATACAACTTACTACCTCA |
| probe-miR-99a |
miR-99a |
CACAAGATCGGATCTACGGGTT |
| probe-miR-99b |
miR-99b |
CGCAAGGTCGGTTCTACGGGTG |
43. The biochip according to any of claims 40 to 42, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
determine the physiological and/or pathological condition of the subject after being
administrated a test sample.
44. The biochip according to claims 43, characterized in that the biochip are useful for screening the test sample for the activities on the prevention
and/or treatment of diseases.
45. The biochip according to any of claims 40 to 42, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
diagnose and/or differentially diagnose the diseases of the subject.
46. The biochip according to any of claims 40 to 42, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
evaluate the effectiveness of of treating the diseases of the subject.
47. The biochip according to any of claims 40 to 42, characterized in that said evaluating the physiological and/or pathological condition of a subject is to
predict the occurrence of diseases of the subject.
48. The biochip according to claim 47, characterized in that the occurrence of diseases is the occurrence of complications and/or the relapse
of malignant diseases.
49. The biochip according to any of claims 44 to 48, characterized in that the diseases include various tumors, various acute and chronic infectious diseases
e.g. viral diseases such as viral influenza, viral hepatitis, AIDS, SARS, bacterial
diseases such as tuberculosis, bacterial pneumonia, and other acute and chronic infectious
diseases caused by various pathogenic microorganisms; other acute and chronic diseases
such as diseases of respiratory system, diseases of immune system, diseases of blood
and hematopoietic system, diseases of circulatory system such as cardio-cerebrovascular
disease, metabolic diseases of endocrine system, diseases of digestive system, diseases
of nervous system, diseases of urinary system, diseases of reproductive system and
diseases of locomotor system.
50. The biochip according to any of claims 40 to 42, characterized in that the biochip are useful for detecting the subject for prohibited drugs-taking.
51. The chip according to any of claims 40 to 50, characterized in that the serum/plasma the subject is from living bodies, tissues, organs and/or corpuses
of the subject.