
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

14
1

65
1

A
2

��&��
�������
�
(11) EP 2 141 651 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
06.01.2010 Bulletin 2010/01

(21) Application number: 09157660.3

(22) Date of filing: 08.04.2009

(51) Int Cl.:
G06T 1/00 (2006.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL
PT RO SE SI SK TR

(30) Priority: 08.04.2008 US 123463 P
08.04.2008 US 123549 P

(71) Applicant: Avid Technology, Inc.
Tewksbury, MA 01876 (US)

(72) Inventors:
• Mathur, Shailendra

Beaconsfield
QC, H9W 4M7 (CA)

• Eid, Michel
Ville Mont-Royal
HP3 2M1 QC (CA)

• Beaudry, Daniel
Montreal
QC H1T 2L2 (CA)

• Lamarre, Mathieu
Ville Saint-Laurent
QC H4R 2R3 (CA)

• Tice, Ray
Billerica MA 01821 (US)

(74) Representative: Cole, Douglas Lloyd et al
Mathys & Squire LLP
120 Holborn
London
EC1N 2SQ (GB)

(54) Framework to integrate and abstract processing of multiple hardware domains, data types
and format

(57) A portable development and execution frame-
work for processing media objects. The framework in-
volves: accepting an instruction to perform a media
processing function; accepting a media object to be as-
sociated with the media processing function; wrapping
the media object with an attribute that specifies a type
and format of the media object, and a hardware domain
associated with the media object; and causing an exe-

cution domain to perform the media processing function
on the media obj ect. The instruction to perform the media
processing function is expressed in a form that is inde-
pendent of the hardware domain associated with the me-
dia object, and may also be independent of the type and
format of the media object. The media object may be an
image, and the media processing function may include
an image processing function performed on a GPU.

EP 2 141 651 A2

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

[0001] Post-production and image processing soft-
ware applications can take advantage of custom hard-
ware and, increasingly, of generic hardware in order to
accelerate the processing of their video effects. Exploit-
ing the processing speed-ups provided by newly intro-
duced technologies becomes ever more important as the
technical quality of cinematic and television content con-
tinues to improve. High definition home theatre systems
with Blu-ray disc players have become a commodity,
while digital cinema projection with 2K or even 4K line
resolutions are gaining in popularity. This comes at the
price of increased data processing requirements in the
whole motion picture and broadcasting production pipe-
line. Image and video processing systems need to scale
up their performance in order to handle such media.
[0002] Among the generic hardware available to media
processing systems are various host CPU technologies,
such as SSE2 for Intel-based platforms and Altivec for
Apple Macintosh platforms, numerous graphics process-
ing units (GPUs) commonly installed in off-the-shelf
workstations, as well as other specialized hardware, such
as Larrabee from Intel Corporation. The computer games
market has helped make the GPU into a commodity.
These GPUs have much more arithmetic processing
power than equally priced central processing units
(CPUs). GPUs make use of the inherent parallel nature
of image rendering to outperform control-oriented CPUs,
especially in gaming applications.
[0003] Image rendering for games and image process-
ing applications involve similar processes. A developing
research field, called general-purpose computing on
GPU (GPGPU), explores techniques for using the GPU
for a variety of problems including image processing.
However, existing GPU-accelerated image processing
systems are not easily programmed by developers using
general purpose-programming languages such as C or
C++. Current GPU-accelerated image processing sys-
tems require intricate knowledge of GPU components,
the rendering pipeline, and rendering APIs.
[0004] There is also a general lack of GPU program-
ming services that are directly targeted towards the
needs of video processing on off-the-shelf platforms, op-
erating systems, graphics cards and shader languages.
Video processing requirements are primarily character-
ized by high bandwidth transfer requirements between
host and GPU memory, and by other services that deal
with the particular format and type of processing required
for processing of video based visual effects.
[0005] The frequent introduction of new technologies
greatly increases the complexity of software coding. In
order to take advantage of the performance acceleration
that the new technologies can provide, software needs
to be intimately tied to the specific hardware type and
model, the operating system, and the platform used. This

means that in order to allow the same application to run
optimally on different hardware and system configura-
tions, multiple versions of the code are required.
[0006] The traditional approach to using newly intro-
duced hardware is to develop individual low-level librar-
ies specific to each new technology upon which the soft-
ware is to run. These libraries are dedicated to and highly
optimized for specific hardware and operating systems.
They have their own protocol and particularities, and
adopt a programming model that is often heavily influ-
enced by the target hardware. This makes the application
software difficult to maintain as the hardware evolves,
and hinders rapid development of new software applica-
tions, such as new video effects. It prevents adoption of
new hardware execution domains without the need for
significant change in the client applications.
[0007] Once hardware-specific low-level libraries are
developed, debugged and optimized, application devel-
opers and users seek to combine the strengths of these
mature libraries. This is usually achieved by unifying
some of the data structures and code of the various li-
braries. However, this can destabilize previously de-
bugged software.

SUMMARY OF THE INVENTION

[0008] In general, the invention features an efficient
portable, execution domain-agnostic framework to allow
easier hosting, integration and expansion of low-level li-
brary capabilities and hardware execution domains, ac-
cessed through a standard common interface, without
requiring modifications on the libraries themselves or to
the client applications that provide features based on the
low level libraries running on the new hardware.
[0009] In one aspect, the framework includes a porta-
ble, platform and operating system agnostic, component-
based architecture (e.g., a component processing li-
brary) that provides a set of consistent interfaces on top
of toolboxes that process plug-in media objects such as
image rasters or graphics objects that are in plug-in for-
mats and reside in plug-in hardware domains. The hard-
ware domains include computer RAM, video RAM
(VRAM), onboard GPU memory, and memory associat-
ed with custom hardware. The processing framework is
referred to as CPL (Component Processing Library), and
serves both as a framework for application software de-
velopment as well as execution.
[0010] In another aspect, the invention features an im-
age and video processing programming service that al-
lows the transparent hosting and fast execution of GPU-
based effects on a range of different platforms, operating
systems, graphics cards and shader languages. The
service taps into the GPUs customarily supplied as a
component of current computer systems in order to per-
form accelerated image processing. Spatial, temporal
and functional image processing acceleration is
achieved using a framework in accordance with the in-
vention. The framework also features the ability to specify

1 2

EP 2 141 651 A2

3

5

10

15

20

25

30

35

40

45

50

55

pixel shading functions on a per-pixel basis that simulta-
neously utilizes as many of the pixel shaders present on
the computer system as necessary and, when possible,
exploits vector math accelerations based on details of
the underlying program’s algorithm.
[0011] In general, in another aspect, the invention fea-
tures a media processing system comprising a plurality
of execution domains and a memory associated one of
the plurality of execution domains, wherein the memory
comprises instructions readable by one of the plurality of
execution domains, the instructions when executed on
one of the plurality of execution domains, causes it to:
accept an instruction to perform a media processing func-
tion; accept a media object to be associated with the me-
dia processing function, wherein the media object is
wrapped with an attribute that specifies a type of the me-
dia object, a format of the media object, and a hardware
domain associated with the media object; and cause at
least one of the plurality of execution domains to perform
the media processing function on the media object,
wherein the instruction to perform the media processing
function is expressed in a form that is independent of the
hardware domain associated with the media object. Em-
bodiments of the invention include one or more of the
following features.
[0012] The instruction to perform the media processing
function is expressed in a form that is independent of the
media object type and/or of the media object format. The
plurality of execution domains includes a CPU and a GPU
and one of the plurality of execution domains is a CPU.
The media processing function is an image effect and
the type of the media object is a raster image. The image
effect includes one of a dissolve, a color correction, in-
sertion of text, and a motion effect. The media processing
function is an image effect and the media object type is
a graphics object. Each of the plurality of execution do-
mains is associated with a low-level library of instructions,
and at least a subset of a low-level library associated with
one of the execution domains is incompatible with a cor-
responding subset of a low-level library associated with
another one of the execution domains. The system iden-
tifies a mismatch between the media processing function
and at least one of the media object type, media object
format, and execution domain associated with the media
object and eliminates the identified mismatch by either
converting the type of the media object into another type,
or converting the format of the media object into another
format, or associating another hardware domain with the
media object.
[0013] The media object attribute is one of a set of
acceptable attributes, and the set of acceptable attributes
can be augmented to include at least one of a new media
object type, a new media object format, or a new asso-
ciated hardware domain without the need to rewrite or
recompile the instructions. The media object is split into
portions that are sent sequentially over a data bus con-
necting the first execution domain to a second execution
domain, and the media processing function is performed

on one of the portions at a time. The instructions include
a plurality of processing units and the media processing
function is performed by executing at least a first one of
the processing units, that calls a second one of the plu-
rality of processing units. The instructions involve spawn-
ing from the called processing unit a thread that is exe-
cuted asynchronously while the processing unit contin-
ues to perform the media processing function on the me-
dia object.
[0014] In general, in yet another aspect, the invention
features a method of processing a media object that in-
volves accepting an instruction to perform a media
processing function, accepting the media object to be
associated with the media processing function, wherein
the media object is wrapped with an attribute that spec-
ifies a type of the media object, a format of the media
object, and a hardware domain associated with the media
object; and causing at least one of a plurality of execution
domains to perform the media processing function on the
media object, wherein the instruction to perform the me-
dia processing function is expressed in a form that is
independent of the hardware domain associated with the
media object.
[0015] In general, in a further aspect, the invention fea-
tures an image processing system comprising: a central
processing unit (CPU); a graphics processing unit (GPU);
and a memory associated with the CPU, wherein the
memory comprises instructions readable by the CPU,
the instructions when executed on the CPU, causing the
CPU to: accept an instruction to perform an image
processing function; accept an image to be associated
with the image processing function, wherein the image
is wrapped with an attribute that specifies a format of the
image and a hardware domain associated with the im-
age; and cause the GPU to perform the image processing
function on the image, wherein the instruction to perform
the image processing function is expressed in a form that
is independent of the hardware domain associated with
the image.
[0016] In general, in another aspect, the invention fea-
tures an image processing method comprising accepting
from a client application running on a CPU an instruction
to perform an image processing function; accepting from
the client application an indication of an image to be as-
sociated with the image processing function; wrapping
the image with an attribute that specifies a format of the
image and a hardware domain associated with the im-
age; and causing a GPU to perform the image processing
function on the image, wherein the instruction to perform
the image processing function is expressed in a form that
is independent of the hardware domain associated with
the image.
[0017] The method also includes one of more of the
following features. The GPU has an associated shader
language, and the instruction to perform the image
processing function is expressed in a form that is inde-
pendent of the shader language. Execution of the instruc-
tions is controlled by an operating system that runs on

3 4

EP 2 141 651 A2

4

5

10

15

20

25

30

35

40

45

50

55

the CPU, and the instruction to perform the image
processing function is expressed in a form that is inde-
pendent of the operating system. The GPU includes an
image rendering data buffer, wherein a type of the image
rendering buffer is one of a texture, a frame buffer object,
a multi-sample render buffer, a read only pixel buffer ob-
ject, a write only pixel buffer object, and a read-write pixel
buffer object, and the image is represented in a form that
is independent of the type of the image rendering buffer.
The GPU includes image rendering texture parameters
that comprise at least one of color space, pixel depth and
pixel range, and the image is represented in a form that
is independent of the image rendering texture parame-
ters. Causing the GPU to perform the image processing
function on the image includes multiple pass execution,
caching on the CPU a just-in-time compiled multi-pass
pixel program, partially compiling the pixel program, and
caching and retrieving the partially compiled pixel pro-
gram. The CPU is associated with a memory, and the
CPU allocates a portion of the memory to store image
data, and causing the GPU to perform the image process-
ing function on the image includes recycling the allocated
portion of the memory without allocating a new portion
of the memory to store the image. The image is repre-
sented as an 8-bit RGB color space image, an 8-bit YCC
image, or an 8-bit YCCA image, and causing the GPU
to perform the image processing function on the image
includes packing the image into a BGRA texture. The
instruction to perform the image processing function is
expressed in a form that is independent of a color space,
and/or pixel depth, and/or pixel range that is used to rep-
resent the image, and/or independent the memory layout
and packing that is used to store the image. Causing the
GPU to perform the image processing function on the
image involves asynchronous execution of a processing
thread on the GPU.
[0018] The invention also provides a computer pro-
gram or computer program product comprising software
code adapted, when executed on a data processing ap-
paratus, to perform any method as set out herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Figure 1 is a block diagram of an example com-
puting configuration for implementing a media process-
ing system.
[0020] Figure 2 is a diagram illustrating the software
layers of a media processing system that incorporates a
portable development and execution framework.
[0021] Figure 3 is a diagram of a processing unit within
a portable framework.
[0022] Figure 4 is a block diagram of an image process-
ing system incorporating a portable development and ex-
ecution framework.
[0023] Figure 5 is a flow diagram of an example video
processing application using a portable development and
execution framework.

DETAILED DESCRIPTION

[0024] An exemplary computing configuration 100
within which the invention may be implemented is illus-
trated in Figure 1. Computing configuration 100 is com-
prised of a plurality of electronic components found in
general purpose computers and/or workstations. For ex-
ample, computing configuration 100 may be comprised
of: one or more central processing units (CPUs) 102,
104; random access memory accessible by CPUs 102,
104, denoted host memory or simply RAM 106; one or
more graphical processing units (GPUs) 108,110; cus-
tom proprietary hardware and random access memory
accessible by the GPU, denoted GPU memory or VRAM
112. The configuration may also include disk 114, (mag-
netic disk, solid state disk, or RAM-disk), as well as ad-
ditional storage and processing elements.
[0025] Computing configuration 100 includes a multi-
tasking operating system, O/S 116, and GPU driver 118.
O/S 116 includes one of the common operating systems,
including Microsoft Windows running on PC, Apple’s
OS/X on MacPPC/MacIntel, and Linux. O/S 116 hosts
client programs, such as drivers, APIs such as high-level
APIs OpenGL (for Mac and Linux) and DirectX (Micro-
soft), and applications such as media processing soft-
ware, for example Avid Media Composer.
[0026] High-level APIs serve as a software layer over
the GPU, allowing programs to send out specific process-
ing and rendering jobs to it. The term "3D API" is used
interchangeably with "high-level APIs" in this document.
High-level APIs permit the ’pushing’ of geometries, tex-
tures and shader programs onto the hardware, as well
as allowing users to compile/expand their high-level
shader language programs into the hardware-specific in-
struction sets that the hardware underneath can recog-
nize.
[0027] With reference to Figure 2, the described em-
bodiment features portable development and execution
framework 202 comprised of an abstraction of hardware
execution domains, data structure type and data struc-
ture formats of media objects. The abstraction provided
is over a set of originally incompatible algorithms belong-
ing to low-level libraries 204a-204f, each of which is spe-
cific to a particular hardware domain. Framework 202
permits an interaction between the various data domains,
hardware execution domains, data types and formats
through processing units, converters, and utilities imple-
mented within CPL layer 216. CPL layer 216 includes
image processing components 206, graphics processing
components 208, converters 210, and utilities 212. Each
of these processing components works with a common
data object structure 214.
[0028] The componentized nature of development and
execution framework 202 permits the expansion of the
set of hosted media objects that can be processed. This
allows a plug-in architecture for new media types, formats
and hardware domains. It also expands the set of hosted
algorithm implementations optimized to process the me-

5 6

EP 2 141 651 A2

5

5

10

15

20

25

30

35

40

45

50

55

dia objects in their native type, format or computation
domain. The algorithms may be contained within external
low-level libraries.
[0029] Portable development and execution frame-
work 202 permits the hosting of the algorithms of existing
low-level libraries 204a-204f without requiring modifica-
tion of the libraries themselves. The low-level libraries
204a-204f may be unified so that their data and process-
ing algorithms can be used in the same pipeline. Multi-
threaded utilization of the low-level library resources is
achieved through a stateless class execution layer, re-
flected as CPL layer 216.
[0030] Portable development and execution frame-
work 202 provides a standardized set of interfaces to set
up, control and execute algorithms on data, regardless
of the library implementation. It further provides a stand-
ard structure to handle all its parameters and properties
making it easy to be used through a scripting system.
[0031] Portable development and execution frame-
work 202 is invoked by client application layer 218. In the
described embodiment, the client application includes a
media processing application that includes applying ef-
fects 220, 222, and 224 to media objects. Upon execution
of the client application, and particularly when an effect
is required, the client application interfaces with frame-
work 202 to invoke the resources of the available hard-
ware domains. Framework 202 can determine which do-
main is appropriate for execution of a required algorithm
on a particular media object. However, the client appli-
cation permits a user to force the execution on a selected
hardware domain. In addition, it also permits the re-use
of its own processing units within other processing units
in order to achieve the full encapsulation of complex pipe-
lines.
[0032] The hardware domain abstraction provided by
framework 202 bundles the processing functions of the
domain with its associated storage and proprietary for-
mat. For example, the hardware domain can refer to the
disk-based, RAM-based or GPU-memory based data
buffers allocated to the media object, as well as to the
execution code that recognizes where the buffers are
allocated and is optimized to operate on data located in
those domains.
[0033] We now describe the abstractions that are im-
plemented within development and execution framework
202 in order to achieve the advantages of portability and
low-level library independence referred to above. In the
described embodiment, framework 202 is named the
Component Processing Layer (CPL).
[0034] Data abstraction
[0035] Within framework 202, media objects are pro-
vided with a wrapper, called component data (CData)
that facilitates the data abstraction. In the described em-
bodiment, the CData wrapper (referred to below simply
as CData) allows the description of each specific data
structure within the wrapper via a three-part attribute: da-
ta type, data format, and data domain. The data type
describes the kind of data structure hosted by the CData.

Examples of the data type include a raster image, a curve,
a mesh, another type of parametric media object, audio,
or text. The data format describes the format of the data
structure hosted by the CData. For example, if the data
type is a raster image, the data format includes formats
that specify the spatial resolution, aspect ratio, color
space, and temporal frame rate. If the data type is a curve,
the data format includes formats that specify whether the
curve is a linear, quadratic, or cubic curve. If the data
type is audio, the formats include MP3, WAV, etc., and
if the data type is text, the formats include HTML, Word,
XML, and so on. The data domain indicates the primary
hardware domain of the media object data, which may
be the buffer allocated to it and/or the hardware that is
to provide execution of processing functions on the media
object. Examples of the data domain include a CPU, a
GPU, a Cell processor, and a Larrabee GPU from Intel
Corporation.
[0036] Each CData can be fitted with properties, re-
ferred to through a name (string). Each property has a
specific type, such as scalars, string, data block or even
another CData. Through the CData component, the user
can manipulate the media object (i.e., low-level) data
structure at a higher level because its implementation
details are hidden behind the standard CData interface.
[0037] Processing abstraction
[0038] Low-library operations and algorithms are host-
ed within framework 202’s standard execution paradigm
that features a thread-safe construct called a processing
unit (PU). The parameters needed for an execution pass
are handled through an object called the CContext object.
The CContext is an object that holds the PU state infor-
mation, including the input/output parameters, as well as
the desired execution domain, data type and data format.
In the described embodiment, client 218 creates and in-
itializes a CContext in order to pass this state information
to the PU via an interface, referred to herein as the PU
FX interface, since in the described embodiment, the cli-
ent application uses framework 202 to implement video
effects (FX). However, the interface is not limited to video
effects, and other functionalities can be called from the
client application using the PU FX interface.
[0039] The processing abstraction includes external
PUs and internal PUs. An external PU is used to logically
bind together one or more internal PUs that implement
hardware-specific algorithms found in the various low-
level libraries. Each internal PU contains the low-level,
library-specific code that implements the relevant oper-
ation for one or more CData attributes. For example, the
blur operation might have two hardware-specific imple-
mentations found in two separate libraries, one for the
CPU, the other for the GPU. The external PU handling
the blur operation logically binds the two internal PUs,
i.e., the PU that handles the CPU blur and the PU that
handles the GPU blur. In other embodiments, instead of
using a CData wrapper concept, the abstraction of media
object data is performed by attaching media type, format
and domain information to the media object in others

7 8

EP 2 141 651 A2

6

5

10

15

20

25

30

35

40

45

50

55

ways that enable the portable framework to associate
the media object with its attribute.
[0040] The external PU defines a standard set of pa-
rameters on the CContext that are needed to convey the
given operations. Each internal PU is responsible for
passing the standard parameter set, transmitted through
the CContext, in a form suitable for the targeted low-level
library. The internal PUs are implemented within the CPL
layer 126, and perform the low-level library calls required
to perform the task in accordance with the requested do-
main, data type and data format (i.e., the three-part CDa-
ta attribute). The external PUs have a set of common
standard interfaces used to control the various aspects
of the execution of an operation, such as asynchronous
execution, and a compiler interface to pass information
about the hosted processing, etc. We describe PUs and
their interaction with other components of media process-
ing system 100 in connection with Figure 3 below.
[0041] CPL framework 202 defines a single, unified
coordinate (or reference) system for placing individual
media objects. CPL media objects having position and
size properties, or position, size and distance properties
are positioned with respect to this unique coordinate sys-
tem. The internal PUs convert position, size, and distance
information from the CPL coordinate system to the spe-
cific low-level library (e.g., IL, Gk, ...) coordinate systems.
[0042] An example of a full media processing system
pipeline includes several external PUs that implement
various operations, several CData that serve as inputs
and/or outputs to external PUs, and several CContext
used to store the parameters of the various executions.
[0043] In some instances, a PU is composed of multi-
ple individual PUs, thus allowing more complex opera-
tions to be built from the existing framework. An interface
is provided to extract the graph of individual operations
within a PU, thus exposing to the CPL client a graph of
the internal PUs. For example, a keyer effect is composed
of multiple effects stages: pre-blur, keying, post-blur,
grow-shrink, shape, and composite. CPL framework 202
defines single keyer PU that is used by client 218, with
this PU including a graph of more granular PUs com-
posed of a Blur PU feeding a Key PU feeding a Blur PU
feeding a Growshrink PU feeding a Shape PU, finally
feeding a Composite PU. A single client call to a Keyer
PU performs this full pipeline of execution, which is easier
for the application programmer to use as it reduces the
number of effect calls required, and provides a higher
level of abstraction. Making a graph of internally used
PUs available to the client enables the client application,
for example a media player, to negotiate the hardware
resource required at the graph element PU level.
[0044] CPL framework enables the user to specify the
execution domain via the CContext in order to force ex-
ecution of a particular PU on a specific domain for a spe-
cific format and media type, provided that processing
code for these three attributes is available.
[0045] To limit the contention on hardware domains
that have large upload or download penalty, such as for

a GPU, and, whenever possible for any particular CData
attribute, the execution of a PU is sequenced. This se-
quencing is typically hardware domain specific and takes
into account the parallelism and pipelining nature of the
target hardware. The data may be tiled spatially or tem-
porally. The inputs and outputs are automatically divided
into smaller chunks by the CPL framework core, then are
concurrently or sequentially uploaded to the hardware,
fed to the PU and downloaded to be inserted in the input.
This has the added benefit of allowing the PU to bypass
hardware-specific limitations on data size.
[0046] An implementation of contention limiting and
bypassing of hardware-specific limitations on data size
proceeds as follows. In broad terms, a CPL execution
pass starts with an upload of the data from the input do-
main to the execution domain, followed by a data
processing stage on the execution domain, followed by
a download from the execution domain to the target do-
main. The upload and download steps are absent if the
input/output domain coincide with the execution domain.
When uploading/downloading is required, there is a time
penalty to be paid to transfer the data that varies with
each domain. Depending on the nature of the processing,
this latency period can be much larger than the time need-
ed to process data residing on the domain. Without con-
tention-limiting, the PU would: (1) start the upload of the
whole input data set; (2) wait for the transfer to be com-
pleted; (3) start the processing; (4) wait for the processing
to be completed; (5) start the download of the whole out-
put data set; and (6) wait for the transfer to finish. By
contrast, with contention-limiting, CPL accelerates this
process by taking advantage of domains supporting con-
current transfers and execution by dividing the input and
output data into smaller chunks that, because of their
smaller size, are uploaded and downloaded faster than
the whole data set. The execution sequence becomes:
(1) start the upload chunk #1, and wait for completion of
this operation; (2) start the processing of chunk #1, start
the upload of chunk #2, and wait for completion of these
two operations; (3) start the download of chunk #1, start
the processing of chunk #2, start the upload of chunk #3,
and wait for completion of these three operations (4) start
the download of chunk #2, start the processing of chunk
#3, start the download of chunk #4, wait for completion
of these three operations; and (5) so on, until there are
no more chunks to be processed. With the appropriate
chunk size, the target domain hardware is continuously
processing data, while its next data set is being uploaded
and previous results are downloaded.
[0047] Thus the sequencing in CPL can result in two
benefits. First, a system performance gain achieved by
limiting the effect of upload/download latency on domains
supporting concurrent transfers and execution. The only
remaining idle time occurs when the first chunk is up-
loaded (and there is nothing to process yet) and when
the last chunk is downloaded (and there is nothing to be
processed anymore). Second, the ability to process input
data sets that are too large to fit in the execution domains

9 10

EP 2 141 651 A2

7

5

10

15

20

25

30

35

40

45

50

55

memory or exceed its current specifications since the
resources taken on the target domain never exceed 3
chunks per CData parameter.

Conversion abstraction

[0048] Converters are implemented as a set of special
external PUs. They bind a set of internal PUs used to
convert from one CData attribute to some other CData
attribute. Conversions can be invoked explicitly by calling
the external processing unit with the objects to convert,
or implicitly when a CData of an unexpected attribute is
given as input to an external PU. Whenever there is a
mismatch, an automatic conversion is performed as re-
quired by the CPL framework core to ensure that the
parameters given can always be understood by the PUs
(lazy evaluation).
[0049] When a new attribute or a new PU is added to
the CPL framework by a CPL developer, input and output
converters for the existing attribute instances integrate
the new processing units and new attributes to the cur-
rently existing set. This makes interoperability possible
between the new attributes and processing units. For ex-
ample, IL operates on data of the IDSImage kind that
must be located in main (RAM) memory. IL-GPU oper-
ates on data formatted into IDSGPUImage kind that
needs to be located in VRAM, which is the memory as-
sociated with a GPU. Converters automatically move da-
ta (a CPU raster, for example) from one domain (IL/CPU
RAM/IDSImage, in our example) to another (ILGPU/GPU
VRAM/IDSGPUImage, for example).
[0050] The parameters and properties found on the
various objects are string-named, thereby permitting
easy interfacing through a scripting engine.
[0051] Objects associated with CPL framework 202
are developed as individual components that require no
external library linkage. The CPL protocol is implemented
via an interface between PUs within framework 202 and
low-level libraries that are specific to the various available
execution and storage hardware domains. A CPL devel-
oper can add new low-level libraries to the set, new data
types, new PUs as well as expand already existing PUs
by adding new implementations without changing the cli-
ent application that uses the CPL framework.
[0052] With reference again to Figure 2, CPL layer 216
represents a middle layer between the client application
218 and the low-level libraries 204a-204fused for domain
specific media processing. In the described embodiment,
CPL layer 216 is comprised of: CPL data objects 214,
the data objects used throughout development and ex-
ecution framework 202, and CPL PUs which comprise a
set of objects performing meaningful operations on the
data objects, and which are the functional equivalent of
function calls controlled by well defined interfaces. The
CPL PUs include image processing units generically la-
beled as CPL::IP 206, graphics processing units gener-
ically labeled as CPL::GP 208, converters labeled as
CPL::Converters 210, which implement domain, type

and format conversions, and utilities labeled as CPL::
Utils 212, such as display drivers.
[0053] Client application 218 does not require direct
linking to any of the low-level libraries 204a-204f. A key
feature of CPL framework 202 is that objects hosted with-
in it are platform independent. The object adhere to a
uniform component format (CF), with each component
implemented as a CF plug-in. New objects or new domain
implementations can be made available to clients by sim-
ply adding a new plug-in file into the appropriate folder
on the computing system.
[0054] CP::Data objects 214 are used to uniquely rep-
resent data while abstracting the data’s associated hard-
ware domain, type (e.g., raster, parametric shapes), and
format (which is bound to the object type and includes
information about the quality of the data presented.)
CPL::Data objects 214 serve as wrappers around any of
the data objects defined in domain specific low-level li-
braries 102a-102f. Each of the CPL::IP 206 and CPL::
GP 208 PUs accepts any appropriate CPL::Data object
214. Framework 202 allows for lazy evaluation using a
proxy design pattern. For example, rasters are not cre-
ated until pixels are requested, and are generated by
means of concatenation operations.
[0055] With reference to Figure 3, an individual PU 300
is comprised of external PU 302 and several internal PUs
304. PU 300 is a member of the set of image PUs (CPL::
IP 206) or graphics PUs (CPL::GP 208) from the CPL
processing units and represents the processing objects
that perform graphic and image processing on CPL::Data
objects 124. PU 300 takes an arbitrary number of input
CPL::Data objects (including zero for a source PU, such
as a file reader PU), and produces an arbitrary number
of output CPL::Data objects (including zero for a sink PU,
such as a PU that generates an output display). PU 300
is a stateless object, storing its internal or contextual state
in an execution context passed to it by the client. In the
described embodiment, PU 300 exposes FX interface
306 and compiler interface 308. FX interface 306 inter-
faces with client application 218, which is, for example,
a media player. Using FX interface 306, client application
218 invokes the one or more PUs required to execute a
media processing function, such as a video effect (FX)
using instructions that are independent of the specific
type of the target media object, the format in which the
target media object is represented/stored, or the hard-
ware upon which the effect is to be executed.
[0056] In the described embodiment, FX interface 306
includes: (i) a specification of the input and output CPL::
Data objects; (ii) specification of the input parameters;
(iii) whether or not a specific execution domain is to be
forced; and (iv) whether or not a specific execution type
and format is to be forced, making use of available con-
verters if needed. Other parameters can be specified in-
stead of or in addition to these.
[0057] Compiler interface 308 enables PU 300 to query
the capabilities available to it, including the supported
execution domains, data object types and formats. It also

11 12

EP 2 141 651 A2

8

5

10

15

20

25

30

35

40

45

50

55

queries the preferred execution domain, type, and format
for that PU. With the information obtained via compiler
interface 308, PU 300 can optimize the use of the hard-
ware resources available to it, such as the host CPU, a
GPU, or other hardware such as a custom graphics
processing device such as a Cell processor or Larrabee
GPU. The information supplied via the compiler interface
also enables PU 300 to properly negotiate the way in
which the data objects travel through sequential function-
al units of client application 218. For example, in the case
of a media player application, PU 300 ensures the data
objects can be passed through the various player nodes,
such as codecs, effects, converters, and displays. In the
described embodiment, the compiler resides in CPL layer
216.
[0058] PU 300 provides calls to low level libraries
204a-f via interfaces 310a-d to internal processing units
312a-d that call the domain-specific libraries. For exam-
ple, GPU interface 310a interfaces external PU 302 with
internal PU 312a that calls GPU 108 (referring to Figure
1), and can invoke both the GPU image library IL-GPU
204b (referring to Figure 2) and the GPU graphics library
Gk-GPU 204e. Similarly, interface 310b interfaces exter-
nal PU 302 with internal PU 312b that calls CPU image
library IL 204a and the CPU graphics library Gk 204d.
Other low-level interfaces are available to PU 300 de-
pending on what additional domains are available to me-
dia processing system 100. For example, interface 310c
between external PU 302 and internal PU 312c is avail-
able if the Avid Technology Nitris system is present, en-
abling PU 300 to interface with the Nitris image library
IL-DLE 204c. Similarly, interface 310d would be available
if a cell processor was present to enable external PU 302
to call internal PU 312d that can call a Cell processor. In
addition, other interfaces would be available to allow PU
300 to interact with other domains, such as disk drives,
via parser libraries 204f.
[0059] CPL::IP PUs 206 perform image processing op-
erations, and primarily handle media objects that are
raster images. Examples of CPL:IP PUs include color
correction, blur, and shape based matte adjustment.
CPL::GP PUs 208 perform geometry and other graphics
operations, primarily handling media objects that are
curves, surfaces, and volumes with parametric represen-
tations. Examples of CPL::GP PUs include the glyph gen-
erator and shape deformation.
[0060] The execution of a PU proceeds according to
execution attributes that are based on the CData at-
tribute, i.e., on the specified data domain, type and for-
mat. The execution attributes are either forced by client
218 or automatically determined by the PU itself. To force
specific execution attributes, client 218 returns from the
context the desired domain, type and format using an
interface between client 218 and CPL layer 216. For ex-
ample, client 218 or the PU can force synchronous exe-
cution of a PU, in which case the method is blocking, or
asynchronous execution, in which case the method is
non-blocking. To make the execution asynchronous, cli-

ent 218 returns an "advise callback "via context object
CContext.
[0061] For certain domains it may be necessary or ad-
vantageous to split an input media object into smaller
chunks. For example, though the CPU has ample mem-
ory to process a whole raster media object at once, some
GPUs may have more limited memories that cannot han-
dle an entire raster. To overcome this issue, a tiled exe-
cution model is required. Development framework 202
provides an automatic tiling mechanism, hidden from the
client, which tiles the input objects, feeds them to the PU
and then recomposes the intended output from the output
tiles. This mechanism is tailored according to the current
hardware configuration and domain used.
[0062] The tiled execution model does not require mul-
ti-threading. However if a particular domain permits buff-
er transfers and execution to be performed in parallel,
framework 202 will exploit this feature. Multi-threading
by splitting and parallelizing the processing into smaller
execution blocks is managed at the client level, rather
than at the CPL framework level, as illustrated in Figure
2 by multi-threader block 226. It is the client responsibility
to call a PU in a multi-threaded manner. In some cases,
region of interest and field masking functionality of the
called PU can be invoked for this purpose. In order to do
so, client application 218 is provided with access to multi-
threader services that are CPL aware. These services
determine how to multi-thread or pipeline a PU call based
on the operation performed, domain and format used, as
well as on additional directions provided by the client,
such as the number of allowed parallel tasks, specifica-
tion of a pool of threads, thread affinity and priority.
[0063] CPL::Converters 210 are specialized PUs tak-
ing as input a CPL::Data (Cdata object) having a three-
part attribute (type, format, domain), and converting it to
a specified output CData object with a different attribute.
Converters 210 convert media objects from one type to
another, from one format to another, and from one do-
main to another. In some instances, a converter PU con-
verts more than one of the three components of a media
object attribute in a single step rather than doing so se-
quentially. Type converters include rasterizers that con-
vert parametrically defined graphics objects, such as
curves, surfaces, and volumes to raster images, as used,
for example, in scene renderers. Conversely, a "synthe-
sizer" type converter can convert a raster image to a par-
ametrically defined object, as, for example, in a magic-
wand. Format converters include image format convert-
ers, for example converting a YCC image into an RGB
image. One example of a domain converter converts a
media object from being associated with the GPU to be-
ing associated with the CPU host. Converters 210 are
integrated within CPL framework 202 rather than being
implemented as a scattered set of utility routines.
[0064] CPL Utilities PUs 212 include primitive drawing
tools, such as line tool LineTo() and rectangle tool Rect
(), as well as simple readers and writers from and to files.
These PUs are utilized primarily for testing purposes.

13 14

EP 2 141 651 A2

9

5

10

15

20

25

30

35

40

45

50

55

[0065] The low-level libraries 102a-f comprise the low-
level toolboxes that implement various domain and plat-
form specific image and graphic processing. In the de-
scribed embodiment, available low-level libraries include
libraries to implement raster/image processing functions
on CPU 102 (IL 204a), graphic processing on CPU 102
(Gk 204d), raster/image processing on GPU 108 (IL-GPU
204b), graphic processing on GPU 108 (Gk-GPU 204e),
and processing of media objects located on or to be out-
put to disk 118 (Parsers 204f).
[0066] Each low-level library is generally independent
of the others. It is to be expected that there will be incom-
patibilities between the object types they contain, the lev-
el of abstraction they implement and their syntax.
[0067] We now describe in further detail an application
of framework 202 that facilitates development and exe-
cution of accelerated image processing by using hard-
ware developed primarily for graphics processing hard-
ware domains, such as GPUs 108 and 110. The image
processing functions involved service client application
218 that includes image processing functionality, such
as a media player, editor, or image processing system.
Using the concepts developed above, the described em-
bodiment implements such accelerated image process-
ing on one or more GPUs, referred to herein as GPGPU
processing, for media objects having a CData type cor-
responding to a raster image or a graphics object, and
an execution domain corresponding to a GPU. CPL layer
216 permits GPGPU abstraction over high-level image
processing APIs, such as DirectX and OpenGL, or over
any existing available technologies as the Pinnacle 3D-
Server or the Apple Core Image library.
[0068] Referring to Figure 4, CPL abstraction layer 216
implements client image processing system 402 on the
GPU via GPGPU sublayer 404 and 3D rendering layer
406. GPGPU sublayer 404 facilitates using the GPU for
pixel, vector and data processing. 3D rendering sublayer
406 abstracts the 3D API for rendering 3D scenes on the
GPU. Layers 404 and 406 may be comprised of a subset
of APIs 408 offered by OpenGL 410, DirectX 412, Core
Image 414 and 3D-Server 416, as well as other proprie-
tary or open APIs. In the illustrated embodiment, the low-
level libraries are implemented on GPUs hosted by com-
mercially available personal computer platforms, includ-
ing a PC running a Windows operating system from Mi-
crosoft Corp. (418, 422), and a Macintosh system running
an operating system provided by Apple Inc., such as Mac
OS X (420, 424).
[0069] As discussed above, framework 202 enables
application software, including video effects 220, 222,
and 224 (referred to in Figure 2) to be independent of the
choice of media processing system 100, including CPU
102, operating system 116, and graphics hardware 108,
110. For performing GPGPU processing, framework 202
primarily uses GPU 108 as a pixel processing engine,
implementing a subset of the raster low-level library and
graphics low-level library on the GPU as IL-GPU 204b
and Gk-GPU 204e respectively. Gk 3D rendering capa-

bilities of the GPU may also be utilized, resulting in high-
quality rendering involving lights and shadows.
[0070] Framework 202 also provides a GPU-acceler-
ated image processing system that abstracts textures,
frame buffer objects, multi-sample render buffers and
read only/write only/read-write pixel buffer objects (i.e.,
many different image rendering data buffers) into a single
image interface. In addition, framework 202 also ab-
stracts image rendering texture parameters into a single
image interface, including color space, pixel depth and
pixel range.
[0071] In the described embodiment, the transfer of 8-
bit textures is optimized. Natively and because of legacy
issues, GPU drivers transfer 8-bit BGRA formats directly.
All other 8-bit formats first undergo a conversion stage
on the CPU to BGRA format before being transferred in
the native fashion. In the described embodiment, the
GPU driver is "fooled" into accepting other 8-bit texture
formats, whether they be in RGB, YCC, or another format,
as a native, BGRA texture. This allows bypassing of the
slow CPU conversion stage. To access such image data
that is transferred "as is" on the GPU, shader programs
stored on the GPU use a small software layer that is
made aware of the real source data format and unscram-
bles the various channels to their right position on the fly
as they are accessed. Since this is performed on the
GPU itself, it is executed much faster than with standard,
built-in conversion methods that utilize the driver to han-
dle the conversions. This transfer optimization only ap-
plies to 8-bit textures, as other larger formats, such as
16-bits, floating point, etc., are natively transferred in RG-
BA since these formats have been developed more re-
cently and are not impacted by legacy implementations
and conventions.
[0072] The GPU-accelerated image processing sys-
tem is able to pack RGBA image data in an optimal format
for host-to-GPU memory transfer and GPU processing.
An optimal internal format for host to GPU transfers for
8-bit data is BGRA, while the optimal internal format for
host to GPU transfers for all other data types is RGBA.
In one embodiment, all 8-bit RGB color space images
are packed into a BGRA texture. A pixel channel layout
conversion layer wraps all pixel programs in such a way
that these programs can access and write pixels as RG-
BA. The layer converts the read/write operations to ac-
cess the right channel in the GPU texture.
[0073] In one embodiment, a GPU-accelerated image
processing system packs YCC image data in an optimal
format for host to GPU memory transfer and GPU
processing in which the internal format for 8 bit data is
BGRA, 8-bit YCC color space images are packed into
BGRA textures, and the internal format for all other data
types is RGBA. All other YCC color space images are
packed into RGBA textures. A pixel color space conver-
sion layer wraps the pixel programs in such a way that
the programs can access and write pixels as RGBA data.
CPL layer 216 converts the read/write operations to per-
form the color space conversions on the fly.

15 16

EP 2 141 651 A2

10

5

10

15

20

25

30

35

40

45

50

55

[0074] In another embodiment, a GPU-accelerated im-
age processing system packs YCC images with separate
alpha channel (YCCA) in the optimal format for host to
GPU memory transfers and GPU processing using
BGRA for 8 bit data is, packing all 8-bit YCCA color space
images into BGRA textures, and, for all other data types,
using is RGBA. Other YCCA color space images are
packed into RGBA textures, while the packing of the al-
pha channel is performed by appending a rectangular
region to the right side of the texture. In this way, YCCA
images are stored in single texture, which is optimal for
host to GPU transfer. Packing the alpha channel hori-
zontally has the advantage of not wasting texture mem-
ory space and allows the spatial resolution of the alpha
channel to be different from the spatial resolution of the
chrominance channels.
[0075] The system may cache just-in-time compiled
multi-pass pixel programs, with intelligent partial program
compilation, caching, and retrieval on a per-pass basis.
[0076] The system may recycle each of the GPU data
buffer types with a memory pool. The buffer types con-
tained within the pool include textures of any format, read
only/write only/read-write pixel buffer objects, frame buff-
er objects and multi-sample render buffers. Recycling
GPU buffers is much faster than allocating and deallo-
cating buffers. When the system is performing video
processing, the recycling of buffers has the added benefit
of avoiding fragmentation of VRAM 112.
[0077] In another embodiment, the GPU-accelerated
image processing system provides automatic handling
of color space (RGB,YCC601, YCC709), pixel depth (8-
bit, 16-bit, 32-bit, integer/float-signed/unsigned), pixel
range (video levels, graphic levels, normalized float lev-
els), and/or memory layout and packing (RGB, RGBA,
BGRA, 422, 444, separate alpha, top-down/bottom-up.)
[0078] The GPU-accelerated image processing sys-
tem may also provide automatic masking services to an
algorithm including: processing pixel masking operations
using a separate mask image, write field (odd/even lines)
masking, processing channel masking (red-green-blue-
and/or alpha) masking, and/or region-of-interest mask-
ing.
[0079] The system also achieves improved host to
GPU memory and GPU to host memory transfers with
multiple display configuration, and an easy to use pixel
program to C++ function object binding mechanism.
[0080] In various embodiments, framework 202 pro-
vides the following data structures and functionalities to
image processing application developers through user
interface 120 connected to computing configuration 100:
image functionality, permitting a developer to define
and/or manage memory allocation and ownership (on
the host or the GPU); interfaces to many kinds of GPU
buffers, including textures, read-only pixel buffer objects,
write-only pixel buffer objects, read-write pixel buffer ob-
jects, frame buffer objects, and multiple sample render
buffer objects; color spaces, such as RGB, YCC601, and
YCC709; pixel depths, such as 8-bit, 16-bit, 32-bit-inte-

ger/float-signed/unsigned; pixel ranges, such as video
levels, graphic levels, and normalized float levels; and
memory layout and packing, including RGB, RGBA,
BGRA, 422, 444, separate alpha, and top-down/bottom-
up. The framework also provides image pool functional-
ity, permitting the developer to define and/or manage fast
image recycling, including recycling buffers, which is fast-
er than allocating and deallocating each buffer, and re-
cycling of any of the GPU buffers in computing configu-
ration 100.
[0081] Framework 202 can provide a C-like language
in which pixel programs can be written, a base class to
bind a pixel program to a simple C++ function object that
supports algorithms having multiple inputs and outputs
and that support source algorithms that have no input.
The framework also features a library to hold C++ func-
tion objects for reuse and a pixel program cache facili-
tating just-in-time compilation of pixel programs, hashing
and fast retrieval of already compiled program, multiple
pass pixel programs, a pass being the execution of some
pixel operation on part of or on the whole image, and just-
in-time compilation and caching performed at the pass
level in which the granularity of the cache is a single pass.
[0082] In various embodiments framework 202 also
provides automatic masking of any processing operation,
including processing pixel masking using an arbitrary
mask image, write field masking (e.g., odd / even lines),
processing channel masking (e.g., RGB and/or alpha
masking), and region-of-interest masking. Also provided
are optimized functions to transfer images from the host
memory to the GPU memory and from the GPU memory
to host memory and a window interface for real-time dis-
play of the framework images.
[0083] Within framework 202, a processing unit that
uses a GPU can be made an active object. As such, a
developer can create a program that calls this object to
perform work in a non-blocking manner. The calling pro-
gram can proceed with other tasks, retaining a future
value, while execution proceeds within the processing
unit. When the point of final synchronization occurs and
the results need to be brought together, the future value
can be accessed in a blocking manner and the data can
be merged. The processing units have the capability of
publishing their affinity with a particular kind of hardware,
such as one of the GPUs 108, 110, or another domain,
to help make the decision about which hardware should
be used while dispatching a given unit of work.
[0084] A developer interfacing with the framework 202
can write a new image processing algorithm and inte-
grate it in an existing application or reuse an existing
image processing routine. Framework 202 obviates the
need to write different versions of the new algorithm for
each of the target hardware domains, data type, and data
format. This reduces the time and cost required to add
new functionality to client 218, and reduces debugging
and compatibility issues.
[0085] Figure 5 illustrates the flow of data and execu-
tion between client 218 and low-level library IL-GPU 204b

17 18

EP 2 141 651 A2

11

5

10

15

20

25

30

35

40

45

50

55

via GPU framework layer 502. GPU framework layer 502
receives calls from PUs within CPL layer 216 when re-
quests are issued to the GPU domain. More specifically,
Figure 5 shows the flow of pixel data, image allocations,
C++ function calls, and pixel program code between the
client application 218 and the interfaces and elements
implemented within IL-GPU. The dark arrows show the
flow of pixel data, the dash-dot arrows track memory al-
locations, and the bold dashed lines indicate the C++
function calls that are needed in order to accomplish a
full operation with the IL-GPU, i.e., uploading data to the
GPU, executing a program, and downloading the output
to the CPU. The dotted lines indicate where the programs
reside and where they are required for execution.
[0086] In order to implement a new image-processing
algorithm for client application 218, a developer writes a
separate pixel program 504 for each processing pass
using a C-like shader language with compiler macros that
abstract the differences between OpenGL GLSL and
Direct3D HLSL. A new C++ function object class 506 is
derived from the main pixel processor base class and
implemented a single function that returns the pixel pro-
gram code for each processing pass
[0087] The main pixel processor base class accepts
the client application parameters, including input images
508, output images 510, region of interest parameters,
and masking parameters. At run-time the main pixel proc-
essor base class performs the following actions in a just-
in-time fashion upon execution of the C++ function object
that implements the new algorithm. (1) For each process-
ing pass, it checks the pixel program cache 512 to see
if the pixel program pass is already compiled and, if not:
(a) it queries the code for each processing pass from the
derived class implementing the new algorithm; (b) ap-
pends automatic conversion functions to the pixel pro-
gram according to the input and output image pixel depth,
pixel range, color space and memory layout, the conver-
sion functions being hooks that are called in the new pixel
program to read and write pixels in order for the compi-
lation to succeed); (c) appends the automatic pixel mask-
ing operation to the pixel program according to the client
application parameters; (d) sends the code to the
OpenGL driver for pixel program compilation; and (e)
stores the compiled program in pixel program cache 510.
(2) It binds the input textures as source textures for ren-
dering. (3) It also binds the output textures as OpenGL
frame buffers (also known as render targets). (4) For each
processing pass, it launches the rendering of one or many
textured rectangle with OpenGL. The rendering is per-
formed with the pixel program obtained in the previous
step from the pixel program cache. The client application
parameters for region of interest determine the size of
the rectangle and of the OpenGL viewport.
[0088] The C++ function object that implements the
new algorithm only accepts images that wrap OpenGL
texture. Other functions provide for a means of converting
regular images from the system’s host memory to
OpenGL texture in video memory.

[0089] The GPU runtime component (ILGPU 204b)
provides the following services to be able to call the afore-
mentioned C++ function object. (1) Memory allocation
functions for the various types of buffers, including: (a)
textures - used as input and output to the C++ function
object; (b) read-only pixel buffer objects - for fast GPU
to host transfers; (c) write-only pixel buffer objects - for
fast host to GPU transfers; (d) read-write pixel buffer ob-
jects - for versatile host buffers; (e) frame buffer objects
- used by the framework in combination with the textures
for output - not exposed to the client application; and (f)
multiple sample render buffer objects - used by the frame-
work for anti-aliasing - not exposed to the client applica-
tion. (2) Image transfer and conversions in a single func-
tion of: (a) pixel depth, range, color space and memory
layout; (b) write only pixel buffer object host memory to
GPU texture memory transfer using optimal texture chan-
nel ordering that includes for 8-bit data ordering as
BGRA, and for other data types ordering as RGBA; (c)
GPU texture memory to read only pixel buffer object host
memory; and (d) the various combinations of the memory
allocation functions (described in point (1) above) pro-
vided by a single function, with conversion and transfer
occurring at the same time. No rendering pass is required
for pixel format that is natively supported by the GPU. A
single rendering pass is automatically performed by the
conversion function to carry out the actual conversion
arithmetic processing on the GPU, which executes these
operations much faster than the CPU.
[0090] Framework 502 provides memory pool 514 as
a background service that is used by the allocation func-
tions mentioned above. It works by hashing buffers by
their size and type into two lists of used and ready-to-
recycle buffers. Allocation functions retrieve buffers from
the memory pool if a ready-to-recycle buffer is available.
Deallocation functions append buffers to the ready-to-
recycle list of buffers.
[0091] Memory pool 514 improves the performance of
the allocation functions in video processing applications
by the following techniques. Whenever appropriate, vid-
eo processing application 218 reuses same sized imag-
es, enabling framework 502 to recycle the image buffer,
thereby speeding up the allocations by about two orders
of magnitude compared to the OpenGL standard alloca-
tion function. In addition, the memory pool also provides
client application 218 with query functions to manage the
video memory. Further, the memory pool alleviates mem-
ory fragmentation problems.
[0092] Having now described an example embodi-
ment, it should be apparent to those skilled in the art that
the foregoing is merely illustrative and not limiting, having
been presented by way of example only. Numerous mod-
ifications and other embodiments are within the scope of
one of ordinary skill in the art and are contemplated as
falling within the scope of the invention as defined in the
appended claims.

19 20

EP 2 141 651 A2

12

5

10

15

20

25

30

35

40

45

50

55

Claims

1. A media processing system comprising:

a plurality of execution domains; and
a memory associated with a first one of the plu-
rality of execution domains, wherein the memory
comprises instructions readable by the first one
of the plurality of execution domains, the instruc-
tions when executed on the first one of the plu-
rality of execution domains, causing the first one
of the plurality of execution domains to:

accept an instruction to perform a media
processing function;
accept a media object to be associated with
the media processing function, wherein the
media object is wrapped with an attribute
that specifies a type of the media object, a
format of the media object, and a hardware
domain associated with the media object;
and
cause at least one of the plurality of execu-
tion domains to perform the media process-
ing function on the media object, wherein
the instruction to perform the media
processing function is expressed in a form
that is independent of the hardware domain
associated with the media object.

2. The media processing system of claim 1, wherein
the instruction to perform the media processing func-
tion is expressed in a form that is independent of one
or both of the media object type and the media object
format.

3. The media processing system of claim 1 or 2, where-
in the plurality of execution domains includes a cen-
tral processing unit (CPU) and a graphics processing
unit (GPU) and the first one of the plurality of execu-
tion domains is a CPU.

4. The media processing system of any of the preced-
ing claims, wherein the media processing function
is an image effect and the type of the media object
is a raster image or a graphics object, the image
effect preferably including one of a dissolve, a color
correction, insertion of text, and a motion effect.

5. The media processing system of any of the preced-
ing claims, wherein each of the plurality of execution
domains is associated with a low-level library of in-
structions, and wherein at least a subset of a low-
level library associated with one of the execution do-
mains is incompatible with a corresponding subset
of a low-level library associated with another one of
the plurality of execution domains.

6. The media processing system of any of the preced-
ing claims, further including instructions, that when
executed on the first one of the plurality of execution
domains, cause the first execution domain to:

identify a mismatch between the media process-
ing function and at least one of the media object
type, media object format, and execution do-
main associated with the media object; and
eliminate the identified mismatch by either con-
verting the type of the media object into another
type, or converting the format of the media object
into another format, or associating another hard-
ware domain with the media object.

7. The media processing system of any of the preced-
ing claims, wherein the attribute is one of a set of
acceptable attributes, and wherein the set of accept-
able attributes can be augmented to include a new
attribute having least one of a new media object type,
a new media object format, and a new associated
hardware domain, and wherein the instruction to per-
form the media processing function can cause the
media processing function to be performed on a me-
dia object wrapped in the new attribute without the
need to rewrite or recompile the instruction.

8. The media processing system of any of the preced-
ing claims, further including instructions, that when
executed on the first one of the plurality of execution
domains, cause the first one of the plurality of exe-
cution domains to split the media object into portions,
send the portions sequentially over a data bus con-
necting the first execution domain to a second exe-
cution domain, and perform the media processing
function on one of the portions at a time.

9. The media processing system of any of the preced-
ing claims, wherein the instructions comprise a plu-
rality of processing units and the media processing
function is performed by executing at least a first one
of the plurality of processing units, the first one of
the plurality of processing units, when executed on
the first one of the plurality of execution domains,
calling a second one of the plurality of processing
units.

10. The media processing system of any of the preced-
ing claims, wherein the instructions comprise a plu-
rality of processing units, and wherein performing
the media processing function involves calling one
of the plurality of processing units, spawning from
the called processing unit a thread that is executed
asynchronously while the called processing unit con-
tinues to perform the media processing function on
the media object.

11. A method of processing a media object, the method

21 22

EP 2 141 651 A2

13

5

10

15

20

25

30

35

40

45

50

55

comprising:

accepting an instruction to perform a media
processing function;
accepting the media object to be associated with
the media processing function, wherein the me-
dia object is wrapped with an attribute that spec-
ifies a type of the media object, a format of the
media object, and a hardware domain associat-
ed with the media object; and
causing at least one of a plurality of execution
domains to perform the media processing func-
tion on the media object, wherein the instruction
to perform the media processing function is ex-
pressed in a form that is independent of the hard-
ware domain associated with the media object.

12. An image processing system comprising:

a central processing unit (CPU);
a graphics processing unit (GPU); and
a memory associated with the CPU, wherein the
memory comprises instructions readable by the
CPU, the instructions when executed on the
CPU, causing the CPU to:

accept an instruction to perform an image
processing function;
accept an image to be associated with the
image processing function, wherein the im-
age is wrapped with an attribute that spec-
ifies a format of the image and a hardware
domain associated with the image; and
cause the GPU to perform the image
processing function on the image, wherein
the instruction to perform the image
processing function is expressed in a form
that is independent of the hardware domain
associated with the image.

13. The image processing system of claim 12, wherein
the GPU has an associated shader language, and
the instruction to perform the image processing func-
tion is expressed in a form that is independent of the
shader language.

14. The image processing system of claim 12 or 13,
wherein execution of the instructions is controlled by
an operating system that runs on the CPU, and the
instruction to perform the image processing function
is expressed in a form that is independent of the op-
erating system.

15. The image processing system of any of claims 12 to
14, wherein the GPU includes image rendering data
buffers that comprise at least one of a texture, a
frame buffer object, a multi-sample render buffer, a
read only pixel buffer object, a write only pixel buffer

object, and a read-write pixel buffer object, and the
image is represented in a form that is independent
of the image rendering buffers.

16. The image processing system of any of claims 12 to
15, wherein the GPU includes image rendering tex-
ture parameters that comprise at least one of color
space, pixel depth and pixel range, and the image
is represented in a form that is independent of the
image rendering texture parameters.

17. The image processing system of any of claims 12 to
16, wherein causing the GPU to perform the image
processing function on the image includes multiple
pass execution, caching on the CPU a just-in-time
compiled multi-pass pixel program, partially compil-
ing the pixel program, and caching and retrieving the
partially compiled pixel program.

18. The image processing system of any of claims 12 to
17, wherein the CPU allocates a portion of the mem-
ory to store image data, and causing the GPU to
perform the image processing function on the image
includes recycling the allocated portion of the mem-
ory without allocating a new portion of the memory
to store the image.

19. The image processing system of any of claims 12 to
18, wherein the image is represented as one of an
8-bit RGB color space image, an 8-bit YCC color
space image, and an 8-bit YCC color space image
with separate alpha channel (YCCA), and wherein
causing the GPU to perform the image processing
function on the image includes packing the image
into a BGRA texture.

20. The image processing system of any of claims 12 to
19, wherein the instruction to perform the image
processing function is expressed in a form that is
independent of at least one of: a color space that is
used to represent the image, a pixel depth that is
used to represent the image, a pixel range that is
used to represent the image, and a memory layout
and packing that is used to store the image.

21. An image processing method comprising:

accepting from a client application running on a
CPU an instruction to perform an image
processing function;
accepting from the client application an indica-
tion of an image to be associated with the image
processing function;
wrapping the image with an attribute that spec-
ifies a format of the image and a hardware do-
main associated with the image; and
causing a GPU to perform the image processing
function on the image, wherein the instruction

23 24

EP 2 141 651 A2

14

5

10

15

20

25

30

35

40

45

50

55

to perform the image processing function is ex-
pressed in a form that is independent of the hard-
ware domain associated with the image.

22. The image processing method of claim 21, wherein
causing the GPU to perform the image processing
function on the image involves asynchronous exe-
cution of a processing thread on the GPU.

23. A computer program or computer program product
comprising software code adapted, when executed
on a data processing apparatus, to perform a method
as claimed in claim 11, 21 or 22.

25 26

EP 2 141 651 A2

15

EP 2 141 651 A2

16

EP 2 141 651 A2

17

EP 2 141 651 A2

18

EP 2 141 651 A2

19

	bibliography
	description
	claims
	drawings

