FIELD OF THE INVENTION
[0001] The present invention generally relates to silicon solar cells. More particularly,
the present invention relates to a formation of a back or rear contact that provides
back surface passivation and optical confinement properties.
BACKGROUND OF THE INVENTION
[0002] Solar cells are devices that convert light energy into electrical energy. These devices
are also often called photovoltaic (PV) cells. Solar cells are manufactured from a
wide variety of semiconductors. One common semiconductor material is crystalline silicon.
[0003] Solar cells have three main elements: (1) a semiconductor; (2) a semiconductor junction;
and (3) conductive contacts. Semiconductors such as silicon may be doped n-type or
p-type. If an n-type silicon and p-type silicon are formed in contact with one another,
the region in the solar cell where they meet is a semiconductor junction. The semiconductor
absorbs light. The energy from the light may be transferred to the valence electron
of an atom in a silicon layer, which allows the valence electron to escape its bound
state leaving behind a hole. These photogenerated electrons and holes are separated
by the electric field associated with the p-n junction. The conductive contacts allow
current to flow from the solar cell to an external circuit.
[0004] Figure 1 shows the basic elements of a prior art solar cell. The solar cells can
be fabricated on a silicon wafer. The solar cell 5 comprises a p-type silicon base
10, an n-type silicon emitter 20, bottom conductive contact 40, and a top conductive
contact 50. The p-type silicon base 10 and the n-type silicon emitter 20 contact one
together to form the junction. The n-type silicon 20 is coupled to the top conductive
contact 50. The p-type silicon 10 is coupled to the bottom conductive contact 40.
The top conductive contact 50 and the bottom conductive contact 40 are coupled to
a load 75 to provide it with electricity.
[0005] The top conductive contact 50 ("front contact"), comprising silver, enables electric
current to flow into the solar cell 5. The top conductive contact 50, however, does
not cover the entire face of the cell 5 because silver is not entirely transparent
to light. Thus, the top conductive contact 50 has a grid pattern to allow light to
enter into the solar cell 5. Electrons flow from the top conductive contact 50, and
through the load 75, before uniting with holes via the bottom conductive contact 40.
[0006] The bottom conductive contact 40 ("rear contact" or "back contact") usually comprises
aluminum-silicon eutectic. This conductive contact 40 typically covers the entire
bottom of the p-type silicon 10 in order to maximize conduction. The aluminum is alloyed
with silicon at high temperatures of approximately 750 degrees Celsius, well above
the aluminum-silicon eutectic temperature of 577 degrees Celsius. This alloying reaction
creates a heavily-doped p-type region at the bottom of the base and gives rise to
a strong electric field there. This field aids in repelling the light-generated electrons
from recombining with holes at the back contact so that they can be collected more
efficiently at the p-n junction.
[0007] The interface between silicon and a conductive contact is typically an area having
high recombination. For example, the back surface recombination velocity of an aluminum
back surface field across the entire back surface may be 500 centimeters per second
or more. High back surface recombination velocities decrease cell efficiency
[0008] "
J. Rentsch et al., Photovoltaic energy conversion, Conference record of the 2006 IEEE
4th World Conference on, IEEE, PI, 1 May 2006, pages 1008-1011, disclose a rear passivated silicon solar cell.
J. Szlufcik et al., Proceedings of the IEEE, IEEE, New York, US vol. 85, n.5, 1 May
1997, pages 711-730 disclose technologies for crystalline silicon solar cells.
SUMMARY OF THE INVENTION
[0009] One method that has been used to reduce recombination at the back contact is to form
a dielectric layer of silicon dioxide on the rear surface of the silicon wafer. This
dielectric layer improves passivation, but creates other problems such as how to generate
openings from the dielectric layer to the silicon, and optimizing the size and spacing
of each window. In addition, the dielectric layer does not protect the silicon wafer
from aluminum-silicon alloying during contact formation, which may deform the silicon
wafer. Thin film silicon wafers are especially susceptible to deformation. The prior
art solutions for reducing recombination at the back surface do not adequately address
other issues such as preventing thin film silicon deformation, determining the size
and spacing of dielectric openings, cleaning the dielectric openings, and forming
quality back surface fields at the dielectric openings.
[0010] The solution as presented herein comprises a solar cell structure that has a dielectric
passivation layer and a rear contact with local aluminum back surface field as recited
in claim 1. A process for forming the rear contact is provided as recited in claim
8. In the embodiment, a dielectric layer is formed on the rear surface of a thin crystalline
wafer having an n-region and a p-region. An opening is made in the dielectric layer
by screen printing an etch paste, followed by a first heat treatment. A hydrofluoric
acid solution may be used to remove any residue left by the etch paste. The rear contact
is formed by screen printing a contact paste on the entire back surface followed by
a second heat treatment. The contact paste is comprised of aluminum and from one to
12 atomic percent silicon. The presence of the silicon in the contact paste saturates
the appetite of aluminum for silicon during the second heat treatment, and provides
a high-quality back surface field contact at the local openings. The use of little
or no glass frit in the aluminum helps to avoid significant aluminum spiking through
the dielectric layer which degrades device performance.
[0011] The foregoing is a summary and thus contains, by necessity, simplifications, generalizations
and omissions of detail; consequently, those skilled in the art will appreciate that
the summary is illustrative only and is not intended to be in any way limiting. Other
aspects, inventive features, and advantages of the present disclosure, as defined
solely by the claims, will become apparent in the non-limiting detailed description
set forth below.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012]
FIG. 1 is a cross-sectional view of a prior art solar cell.
FIG. 2 is a flowchart for one embodiment of a process for forming a back contact with
local back surface field.
FIG. 3A is a DESSIS simulation domain for a line back contact.
FIG. 3B is a DESSIS simulation domain for a point back contact.
FIG. 4A is a DESSIS output graph that shows spacing versus efficiency for contacts
having 75 micrometer width.
FIG. 4B is a DESSIS output graph that shows spacing versus efficiency for contacts
having 150 micrometer width.
FIG. 5A to 5D are cross-sectional views from an electron microscope of local back
surface fields for different aluminum contact pastes.
FIGS. 6A to 6E are cross-sectional views for one embodiment of a silicon wafer at
each stage of the back contact fabrication process.
FIG. 7A is a bottom plan view for one embodiment of window openings to silicon having
a point pattern.
FIG. 7B is a bottom plan view for one embodiment of window openings to silicon having
a line pattern.
FIG. 8 is a top view from an electron microscope of an opening of a dielectric layer
exposed with a screen printing etch paste.
DETAILED DESCRIPTION
[0013] In the following detailed description, numerous specific details are set forth in
order to provide a thorough understanding of the invention. However, it will be understood
by those skilled in the art that the present invention may be practiced without these
specific details. In other instances, well-known methods, procedures, components,
and circuits have not been described in detail so as not to obscure the present invention.
[0014] Figure 2 depicts a flowchart for forming a high quality rear contact that protects
the silicon wafer from damage during the alloying process and provides a local back
surface field. A local back surface field (BSF) is desirable because it helps to reduce
the recombination of electrons at the solar cell's back surface. Efficiency of the
solar cell is thereby increased if the solar cell has a high quality local BSF.
[0015] In operation 200, a p-type or n-type layer is formed on a silicon wafer. The silicon
wafer may be crystalline. The silicon wafer may have a thickness from 200 to 250 micrometers.
For another embodiment, the silicon wafer may have a thickness from 50 to 500 micrometers.
Aluminum-silicon alloying across the entire back surface of the silicon wafer may
deform thin silicon wafers. Thus, rather than forming full area contacts directly
on the silicon wafer, barrier and dielectric layers are grown on the front and back
sides of the silicon wafer in operation 210. The dielectric layers may be grown concurrently
or simultaneously. For one embodiment of the invention, the dielectric layers are
silicon dioxide. For another embodiment of the invention, the dielectric layers may
be aluminum oxide.
[0016] Silicon dioxide may be formed through a spin-on process to achieve a thickness from
1000 to 5000 angstroms on each side. During the spin-on process, the dielectric in
liquid form is deposited onto spinning wafers. The spin-on precursor may be a silicon
dioxide sol-gel. Silicon dioxide sol-gel is commercially available from Filmtronics,
Inc. under the name "20B." After the spin-on process, the wafer is dried at a temperature
from 150 to 250 degrees Celsius for between 10 and 20 minutes. The silicon dioxide
may be cured in oxygen ambient at a temperature from 875 to 925 degrees Celsius in
a conventional tube furnace. The spin-on process enables a thicker, more uniform,
silicon dioxide layer to be formed, which makes the dielectric a diffusion mask for
single sided diffusion.
[0017] Alternatively the silicon dioxide may be formed via a chemical vapor deposition process
or plasma enhanced chemical vapor deposition (PECVD) process. Such process may use
silane and oxygen as precursors at a temperature from 300 to 500 degrees Celsius for
10 to 20 minutes. A reaction chamber may be used to control the reactants for this
process.
[0018] In operation 215, a barrier layer is formed on the front and back sides of the wafer.
The barrier layer may be comprised of silicon nitride having a thickness from 100
to 700 angstroms. The silicon nitride layer may be formed using PECVD. Silane and
ammonia may be PECVD precursors of silicon and nitride, respectively. Alternatively,
the silicon nitride layer may be formed using a low pressure chemical vapor deposition
process in a suitable reaction chamber. The barrier layer on the front surface provides
an anti-reflective coating to help absorb light. The barrier layers also protect the
dielectric layers. Without the barrier layer on the back surface, the back surface
dielectric layer may be subjected to aluminum spiking and impurities through the air.
Moreover, the dielectric layers are more vulnerable to damage by high temperature
during the firing of the screen printed contacts without the barrier layers.
[0019] In operation 220, at least one opening is formed in the dielectric and barrier layers
on the back side of the silicon wafer. If a plurality of openings are formed, the
openings may be evenly distributed across the surface of the silicon wafer. For one
embodiment of the invention, the opening is made by applying a solar etch paste to
the barrier layer. An exemplary solar etch paste is that manufactured by Merck & Co.,
Inc. under the name "Solar Etch AX M1." The solar etch paste may also be used to make
openings to the front surface dielectric layer. The etch paste may comprise phosphoric
acid, hydrofluoric acid, ammonium fluoride, or ammonium hydrogen fluoride. The openings
formed in operation 220 may be in the shape of points or lines.
[0020] The paste should only be applied to the areas where openings in the dielectric layer
are desired. The paste may be applied using a screen printing machine. The optimum
size and spacing of the openings to the substrate are a function of the resistivity
of the wafer. Computer programs such as Device Simulations for Smart Integrated Systems
(DESSIS) may be used to determine the optimum size and spacing of the openings. DESSIS
calculates optimum spacing based on parameters including contact type (point or line),
contact size (75 micrometers or 150 micrometers), and lateral BSF (presence or absence).
The simulation domain is derived from the smallest unit cell that can be extended
periodically to represent the complete structure. To simplify the simulation problem,
front contact parameters may be defined such that the front contact is uniformly distributed.
Under this scenario, the size of the unit cell is controlled by the back contact geometry
in the DESSIS simulation.
[0021] The simulation domain for a line contact is shown in Figure 3A. The simulation domain
of Figure 3A comprises a p-type silicon 300, an n-type silicon 310, a dielectric layer
320, a first conductive contact 330, a second conductive contact 360, and a local
BSF 370. The p-type silicon 300 is coupled to n-type silicon 310, dielectric layer
320, and local BSF 370. The local BSF 370 is coupled to the second conductive contact
360. The n-type silicon 310 is coupled to the first conductive contact 330.
[0022] Similarly, a simulation domain for a point contact is shown in Figure 3B. The simulation
domain of Figure 3B comprises a p-type silicon 300, an n-type silicon 310, a dielectric
layer 320, a first conductive contact 330, a second conductive contact 360, and a
local BSF 370. The p-type silicon 300 is coupled to n-type silicon 310, dielectric
layer 320, and local BSF 370. The local BSF 370 is coupled to the second conductive
contact 360. The n-type silicon 310 is coupled to the first conductive contact 330.
[0023] The optical generation parameters may be set to assume a uniform light incident on
a textured silicon surface having a facet angle of 54.7 degrees, an antireflection
layer of index 2.0, and a thickness of 75 nanometers. The incident light may also
be decreased by approximately 8.5 percent to account for shading by a front contact
in the actual devices. The internal front surface reflection may be set to 92 percent.
The back surface reflection may be set to 85 percent.
[0024] The emitter profile may be a Gaussian profile with a peak n-type doping concentration
at the surface of 1.14x10
20 per cubic centimeter and a junction depth of 0.3 micrometers, which correspond to
an emitter having a sheet resistance of approximately 80 ohms per square. Alternatively,
an emitter sheet resistance may be varied from 70 to 90 ohms per square.
[0025] The local BSF at the back contact may be defined to have a constant p-type doping
concentration of 1x10
19 per cubic centimeter with a thickness of 1.47 micrometers. This results in an effective
surface recombination velocity of approximately 300 centimeters per second at the
contact on a 2.0 ohm-centimeter substrate. To simulate for lateral BSF, the BSF layer
may be extended laterally to at least 1.3 micrometers outside the contact edge. To
simulate for no lateral BSF, the BSF layer may be defined to only cover the contact
area.
[0026] Other parameter settings may include a cell thickness from 50 to 200 micrometers,
a resistivity from 1.5 to 2.5 ohm-centimeter, a front surface recombination velocity
from 50,000 to 70,000 centimeters per second, a back surface recombination velocity
at the dielectric from 40 to 60 centimeters per second, and a contact resistance of
zero ohm-centimeter squared. Using these parameters, a DESSIS output graph depicting
solar cell efficiency depending on contact spacing for contacts having a 75 micrometer
width is shown in Figure 4A, and a graph depicting solar cell efficiency depending
on contact spacing for contacts having a 150 micrometer width is shown in Figure 4B.
[0027] After applying the etch paste, the etch paste is exposed to a heat source at a temperature
from 300 to 380 degrees Celsius for 30 to 45 seconds. The heat source coupled with
the solar etch paste dissolves the barrier layer and the dielectric layer under the
paste leaving an opening to the substrate. A hydrofluoric acid solution may be used
to remove any resulting residue in or around the opening.
[0028] For another embodiment of the invention, the openings in the dielectric layer may
be made using a laser or a mechanical scribe. The openings may cover one to 10 percent
of the rear surface area. The dielectric layer remains on the remainder of the rear
surface following operation 220.
[0029] In operation 230, a rear contact layer is applied with an aluminum paste that contains
from one to 12 atomic percent silicon. For one embodiment of the invention, the aluminum
paste may be product number: AL 53-090, AL 53-110, AL 53-120, AL 53-130, AL 53-131,
or AL 5540 which are all commercially available from Ferro Corporation. For another
embodiment of the invention, the aluminum paste may be commercially available aluminum
paste manufactured by DuPont Corporation, Cermet Materials, Inc., Chimet Chemicals,
Cixi Lvhuan Healthy Products, Daejoo Electronic Materials, Exojet Electronic, Hamilton
Precision Metals, Inc., Metalor Technologies, PEMCO Corporation, Shanghai Daejoo,
Young Solar, or Zhonglian Solar Technology. The aluminum paste may comprise fine aluminum
particles dispersed in an organic vehicle. The organic vehicle may further comprise
a binder such as ethyl cellulose or methyl cellulose and a solvent such as terpineol
or carbitol. Silicon content is added to the aluminum paste such that the resulting
"contact paste" comprises from one to 12 atomic percent silicon.
[0030] Figures 5A to 5D show that silicon content in the aluminum paste improves the formation
of the local BSF. The quality of a BSF is defined by the uniformity and thickness
of the BSF region. Figures 5A to 5D are cross-sectional views from a scanning electron
microscope. Figure 5A is a local BSF formed from a fritted aluminum paste. Figure
5B is a local BSF formed from a fritless aluminum paste. Figure 5C is a local BSF
formed from a fritless aluminum paste having seven atomic percent silicon. Figure
5D is a local BSF formed from a fritless aluminum paste having 12 atomic percent silicon.
It is evident from Figures 5A to 5D that aluminum pastes having from one to 12 atomic
percent silicon produce higher quality BSF than aluminum paste having no silicon content.
A local BSF may help to achieve a good ohmic contact, especially on a substrate having
high resistivity.
[0031] Moreover, the local BSF helps to minimize the effect of high recombination at the
metal interface. The back surface recombination velocity of an aluminum BSF across
the entire back surface is approximately 500 centimeters per second. In contrast,
a dielectric back passivation with local aluminum BSF formed by an aluminum paste
with 12 percent silicon reduces the back surface recombination velocity to 125 centimeters
per second or less.
[0032] The contact paste with aluminum and silicon may be applied using a screen printing
machine. For one embodiment of the invention, the contact paste is fritless. For another
embodiment of the invention, the contact paste is low frit. Fritless or low frit aluminum
does not etch or disturb the dielectric layer.
[0033] A heat treatment is next applied to the contact paste. In operation 240, the heat
is "ramped up" to a temperature from 700 to 900 degrees Celsius. The ramp up time
to the peak temperature is from one to five seconds. Silicon dissolves into the aluminum
at a temperature greater than the eutectic temperature, which forms a molten aluminum
and silicon alloy. The fast ramp up time helps to form a more uniform BSF. Once the
peak temperature is reached, that temperature is maintained for three seconds or less
in operation 250. For example, the peak temperature may be maintained from one to
three seconds. Maintaining the peak temperature for this short period of time helps
to prevent junction leakage current because there is less chance for impurities to
diffuse to the junction.
[0034] Finally, the temperature is "ramped down" to 400 degrees Celsius or less in operation
260. The ramp down time is from three to six seconds. This fast ramp down time may
be achieved through a forced cool down. For example, a fan or a drive belt that removes
wafers from the heat source at a high speed may be used to rapidly ramp down the temperature
to 400 degrees Celsius or less.
[0035] The fast ramp down provides for passivation in the bulk region. In one embodiment
of the invention, the barrier layer may comprise a hydrogen concentration from 4x10
21 to 7x10
22 atoms per cubic centimeter. Hydrogen may be incorporated into the silicon nitride
layer by the PECVD precursors. During the heat treatment, hydrogen may thus be disassociated
from the barrier layer. The hydrogen atoms may then help passivation in the bulk region
of the silicon wafer by attaching to defects in the silicon.
[0036] The solubility of silicon in aluminum is proportional to the temperature of the alloy.
Therefore, during cool-down, the percentage of silicon in the alloy decreases. Excess
silicon is rejected from the melt and regrows epitaxially at the silicon liquid interface.
This regrowth layer gets doped with aluminum according to the finite solid solubility
of aluminum in silicon at the solidification temperature. The regrowth layer, consequently,
becomes a p+ BSF layer.
[0037] If pure aluminum is used rather than the aluminum and silicon combination, the aluminum
has an appetite for silicon at high temperatures. As a result, the rejection of silicon
onto the silicon surface in the openings is decreased. This degrades the quality of
rear surface passivation and lowers the cell performance.
[0038] The dielectric layer coupled with the aluminum rear contact having silicon also serves
to improve absolute cell efficiency. Absolute cell efficiency is measured by a solar
cell's ability to convert incoming light into energy. A full area aluminum eutectic
back contact has a back surface reflectance of approximately 60 percent. Back surface
reflectance is defined by the percentage of incident light that is reflected by the
back surface back into the silicon. The back contact disclosed in this invention produces
a back surface reflectance of greater than 85 percent. The dielectric layer coupled
to the aluminum and silicon rear contact improves the cell efficiency by one to two
percent.
[0039] The one to 12 atomic percent silicon additive in the contact paste serves to saturate
the aluminum of silicon. Because the aluminum has a silicon concentration, more silicon
is rejected from the melt to the opening during cool down. The rejected silicon has
an aluminum concentration and regrows epitaxially at the silicon liquid interface
forming a p+ BSF layer. Lab tests, the results of which are depicted in Figures 5A
to 5D, have shown that with the silicon additive, a local BSF depth from six to 15
micrometers may be achieved.
[0040] The rear contact is traditionally applied directly over the entire back surface of
the silicon wafer. If silicon is added to the aluminum paste and applied to the full
back surface of the substrate, then one will observe a reduction in the BSF layer
thickness because less silicon will be dissolved from the silicon substrate. Thus,
it is contrary to conventional wisdom to add silicon to aluminum paste. The inventors,
however, have uncovered that the addition of silicon to the aluminum paste increases
the depth of BSF for a local opening geometry. In the absence of silicon in the aluminum
paste, the aluminum layer away from the openings needs greater than 12 atomic percent
silicon to stay in equilibrium during the cool-down. This reduces the amount of silicon
available for regrowth in the openings, resulting in thinner local BSF. The addition
of silicon to the aluminum paste satisfies the appetite for silicon in the aluminum.
Therefore, most of the silicon in the molten aluminum-silicon alloy in the openings
is available for regrowth, resulting in thicker local BSF.
[0041] In addition to improving BSF, the contact paste with silicon may help to prevent
aluminum spiking. The solubility of silicon in aluminum rises as temperature increases.
As silicon diffuses into the aluminum, the aluminum will in turn fill voids created
by the departing silicon. If the aluminum penetrates the p-n or p
+-p junction of the silicon wafer, a lower performance will result.
[0042] As discussed above, because the contact paste has from one to 12 atomic percent silicon,
the aluminum will already be saturated with silicon atoms. Thus, silicon atoms from
the substrate are prevented from diffusing into the aluminum layer during the heat
treatment. Aluminum spiking is thereby avoided since no voids will be created in the
substrate by departing silicon.
[0043] Figures 6A through 6D depict cross sectional views for one embodiment of a silicon
wafer at various stages in the fabrication process. Figure 6A depicts a silicon wafer
having a doped substrate 600 coupled to a diffused layer 610.
[0044] A dielectric layer 620 is coupled to doped substrate 600 in Figure 6B. In addition,
a dielectric layer 630 is coupled to diffused layer 610. This dielectric layer 620
may be silicon dioxide. The dielectric layer 620 may be formed by a spin-on process
as described above.
[0045] Figure 6C depicts a barrier layer 640 that is coupled to the dielectric layer 620
and a barrier layer 650 that is coupled to the dielectric layer 630. The barrier layers
640 and 650 may be comprised of silicon nitride that is formed by PECVD. The barrier
layers 640 and 650 provide protection to the dielectric layers. Moreover, barrier
layer 650 may provide an anti-reflective coating to the front surface of the solar
cell.
[0046] Figure 6D depicts an opening 625 in the dielectric layer 620 and the barrier layer
640. An opening 635 may also be formed in dielectric layer 630 and barrier layer 650.
For one embodiment of the invention, the opening 625 and opening 635 may be formed
by applying a solar etch paste to the dielectric layer and then applying a heat treatment
to the dielectric layer. The heat treatment may involve a temperature from 300 to
380 degrees Celsius. The heat treatment dissolves the dielectric layer under the paste,
forming an opening to the silicon 810 in the dielectric layer 805 as shown in Figure
8. Figure 8 depicts a bottom plan view of dielectric layer 805 having opening to the
silicon 810. For another embodiment of the invention, the opening 625 and opening
635 may be formed by a laser. For yet another embodiment of the invention, the opening
625 and opening 635 may be formed by a mechanical scribe.
[0047] The opening 625 may be in the form of a point or a line. Figure 7A shows a bottom
plan view of a barrier layer 740 having openings 725 to the silicon in a point pattern.
Point openings may have a rectangular or circular shape. Figure 7B shows a bottom
plan view of a barrier layer 740 having openings 725 to the silicon in a line pattern.
[0048] Figure 6E depicts a rear contact 660 that is coupled to the dielectric layer 620,
barrier layer 640, and the doped substrate 600 via the opening 625. This rear contact
may be comprised of aluminum having from one to 12 atomic percent silicon. The addition
of the silicon in the aluminum provides for a high quality BSF 670 having a depth
from six to 15 micrometers.
[0049] In the forgoing specification, the invention has been described with reference to
specific exemplary embodiments thereof. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than restrictive sense.
1. A solar cell, comprising:
a thin crystalline silicon wafer (600) having a thickness less than 200 micrometers
comprising a p-region coupled to an n-region;
a first dielectric layer (620) coupled to the rear surface of the silicon wafer;
a first barrier layer (640) coupled to the first dielectric layer to protect the dielectric
layer, wherein the first barrier layer and the first dielectric layer define an opening
to the silicon wafer; and
a back contact (660) coupled to the silicon wafer, the first dielectric layer, and
the first barrier layer to conduct electric charge, wherein the entire back contact
comprises aluminum and silicon alloy, wherein the alloy forms a back surface field
having a thickness from six to 15 micrometers at the opening, characterised in that
the alloy comprises from one to 12 atomic percent silicon.
2. The solar cell of claim 1, wherein the aluminum is fritless aluminum.
3. The solar cell of claim 1, wherein the aluminum is low frit aluminum.
4. The solar cell of claim 1, wherein the opening to the silicon wafer is in the shape
of a point.
5. The solar cell of claim 1, wherein the opening to the silicon wafer is in the shape
of a line.
6. The solar cell of claim 1, further comprising:
a second dielectric layer (630) coupled to the front surface of the silicon wafer
to passivate the front surface.
7. The solar cell of claim 6, further comprising:
a second barrier layer (650) coupled to the second dielectric layer to provide an
anti-reflective coating.
8. A method, comprising:
forming a diffused layer (610) on a doped substrate (600) of a thin silicon wafer,
wherein the silicon wafer has a front surface and a back surface;
forming a dielectric layer (620) on at least the back surface of the silicon wafer
using a spin-on process;
forming a barrier layer (640) on the dielectric layer;
removing a portion of the barrier layer and the back surface dielectric layer to form
an opening to the substrate;
applying an aluminum paste having from one to 12 atomic percent silicon throughout
its entirety to the opening and the back surface of the silicon wafer; and
applying a heat treatment to the aluminum paste, wherein the aluminum paste is heated
to a peak temperature from 700 to 900 degrees Celsius.
9. The method of claim 8, wherein the removing of the portion of the back surface dielectric
layer is performed by screen printing an etch paste and applying a heat treatment
to the etch paste.
10. The method of claim 8, wherein a portion of the back surface dielectric layer is removed
by a laser.
11. The method of claim 8, wherein the aluminum paste is applied by a screen printing
machine.
12. The method of claim 9, further comprising:
determining etch paste application to portions of the surface area of the dielectric
layer using Device Simulations for Smart Integrated Systems (DESSIS).
13. The method of claim 12, further comprising:
entering parameters into DESSIS for determining etch paste application, wherein the
parameters comprise an emitter sheet resistance, a cell thickness, a resistivity,
a front surface recombination velocity, a back surface recombination velocity at the
dielectric, and a contact resistance.
1. Solarzelle, umfassend:
eine dünne kristalline Siliziumscheibe (600) mit einer Dicke von weniger als 200 Mikrometern,
umfassend einen p-Bereich, der mit einem n-Bereich gekoppelt ist,
eine erste dielektrische Schicht (620), die mit der hinteren Oberfläche der Siliziumscheibe
gekoppelt ist,
eine erste Sperrschicht (640), die mit der ersten Dielektrischenschicht gekoppelt
ist, um die dielektrische Schicht zu schützen, wobei die erste Sperrschicht und die
erste dielektrische Schicht eine Öffnung der Siliziumscheibe festlegen, und
einen hinteren Kontakt (660), der mit der Siliziumscheibe, der ersten dielektrischen
Schicht und der ersten Sperrschicht gekoppelt ist, um elektrische Ladung zu leiten,
wobei der gesamte hintere Kontakt eine Aluminium- und Siliziumlegierung umfasst, wobei
die Legierung eine hinteres Oberflächenfeld ausbildet, das eine Dicke von 6 bis 15
Mikrometern an der Öffnung aufweist,
dadurch gekennzeichnet, dass
die Legierung zwischen einem und 12 Atomprozent Silizium aufweist.
2. Solarzelle nach Anspruch 1, bei der das Aluminium fittenloses Aluminium ist.
3. Solarzelle nach Anspruch 1, bei der das Aluminium ein Aluminium mit wenig Fritte ist.
4. Solarzelle nach Anspruch 1, bei der die Öffnung in der Siliziumscheibe die Form eines
Punktes aufweist.
5. Solarzelle nach Anspruch 1, bei der die Öffnung in der Siliziumscheibe die Form einer
Linie aufweist.
6. Solarzelle nach Anspruch 1, ferner aufweisend eine zweite dielektrische Schicht (630),
die mit der vorderen Oberfläche der Siliziumscheibe verbunden ist, um die vordere
Oberfläche zu passivieren.
7. Solarzelle nach Anspruch 6, ferner aufweisend eine zweite Sperrschicht (650), die
mit der zweiten dielektrischen Schicht verbunden ist, um eine antireflektierende Beschichtung
vorzusehen.
8. Verfahren, umfassend:
Ausbilden einer diffundierten Schicht (610) auf einem dotierten Substrat (600) einer
dünnen Siliziumscheibe, wobei die Siliziumscheibe eine vordere Oberfläche und eine
hintere Oberfläche aufweist,
Ausbilden einer dielektrischen Schicht (620) auf zumindest der hinteren Oberfläche
der Siliziumscheibe verwendend einen Spin-on-Vorgang,
Ausbilden einer Sperrschicht (640) auf der dielektrischen Schicht;
Entfernen eines Abschnitts der Sperrschicht und der dielektrischen Schicht der hinteren
Oberfläche, um eine Öffnung in dem Substrat auszubilden;
Anwenden einer Aluminiumpaste mit einem bis 12 Atomprozent Silizium in ihrer Gesamtheit
an der Öffnung und der hinteren Oberfläche der Siliziumscheibe, und
Anwenden einer Wärmebehandlung an die Aluminiumpaste, wobei die Aluminiumpaste auf
eine Spitzentemperatur von 700 bis 900 Grad Celsius geheizt wird.
9. Verfahren nach Anspruch 8, bei dem das Entfernen des Abschnitts der dielektrischen
Schicht der hinteren Oberfläche durch Rasterdrucken einer Ätzpaste und durch Anwenden
einer Wärmebehandlung an die Ätzpaste durchgeführt wird.
10. Verfahren nach Anspruch 8, bei dem ein Abschnitt der dielektrischen Schicht der hinteren
Oberfläche durch einen Laser entfernt wird.
11. Verfahren nach Anspruch 8, bei dem die Aluminiumpaste mittels einer Rasterdruckmaschine
angebracht wird.
12. Verfahren nach Anspruch 9, ferner aufweisend das Ermitteln von Ätzpastenanwendung
verwendend Device Simulations for Smart Integrated Systems (DESSIS) an Abschnitten
des Oberflächenbereichs der dielektrischen Schicht.
13. Verfahren nach Anspruch 12, ferner aufweisend das Eingeben von Parametern zum Ermitteln
der Ätzpastenanwendung in DESSIS, wobei die Parameter einen Emitterbogenwiderstand,
eine Zelldicke, einen spezifischen Widerstand, eine Rekombinationsgeschwindigkeit
der vorderen Oberfläche, eine Rekombinationsgeschwindigkeit der hinteren Oberfläche
im Dielektrikum und einen Kontaktwiderstand umfassen.
1. Cellule solaire, comprenant :
une tranche de silicium cristallin mince (600) qui présente une épaisseur inférieure
à 200 micromètres et qui comprend une région p couplée à une région n ;
une première couche diélectrique (620) couplée à la surface arrière de la tranche
de silicium ;
une première couche barrière (640) couplée à la première couche diélectrique de manière
à protéger la couche diélectrique, dans laquelle la première couche barrière et la
première couche diélectrique définissent une ouverture vers la tranche de silicium
; and
un contact arrière (660) couplé à la tranche de silicium, à la première couche diélectrique
et à la première couche barrière de manière à conduire une charge électrique, dans
laquelle tout le contact arrière comprend un alliage d'aluminium et de silicium, dans
laquelle l'alliage forme un champ de surface arrière qui présente une épaisseur comprise
entre 6 et 15 micromètres au niveau de l'ouverture, caractérisée en ce que l'alliage comprend entre 1 et 12 pour cent atomique de silicium.
2. Cellule solaire selon la revendication 1, dans laquelle l'aluminium est un aluminium
sans fritte.
3. Cellule solaire selon la revendication 1, dans laquelle l'aluminium est un aluminium
à faible fritte.
4. Cellule solaire selon la revendication 1, dans laquelle l'ouverture vers la tranche
de silicium présente une forme de point.
5. Cellule solaire selon la revendication 1, dans laquelle l'ouverture vers la tranche
de silicium présente une forme de ligne.
6. Cellule solaire selon la revendication 1, comprenant en outre :
une seconde couche diélectrique (630) couplée à la surface avant de la tranche de
silicium de manière à passiver la surface avant.
7. Cellule solaire selon la revendication 6, comprenant en outre :
une seconde couche barrière (650) couplée à la seconde couche diélectrique de manière
à fournir une couche antireflet.
8. Procédé comprenant les étapes consistant à :
former une couche diffusée (610) sur un substrat dopé (600) d'une tranche de silicium
mince, dans lequel la tranche de silicium présente une surface avant et une surface
arrière ;
former une couche diélectrique (620) sur la surface arrière au moins de la tranche
de silicium en faisant appel à un procédé par rotation;
former une couche barrière (640) sur la couche diélectrique ;
retirer une partie de la couche barrière et de la couche diélectrique de surface arrière
de manière à former une ouverture vers le substrat ;
appliquer une pâte d'aluminium qui présente entre 1 et 12 pour cent atomique de silicium
dans sa totalité vers l'ouverture et la surface arrière de la tranche de silicium
; et
appliquer un traitement thermique à la pâte d'aluminium, dans lequel la pâte d'aluminium
est chauffée à une température de crête comprise entre 700 et 900 degrés Celsius.
9. Procédé selon la revendication 8, dans lequel le retrait de la partie de la couche
diélectrique de surface arrière est exécuté en sérigraphiant une pâte pour gravure
et en appliquant un traitement thermique à la pâte pour gravure.
10. Procédé selon la revendication 8, dans lequel une partie de la couche diélectrique
de surface arrière est retirée à l'aide d'un laser.
11. Procédé selon la revendication 8, dans lequel la pâte d'aluminium est appliquée par
une machine de sérigraphie.
12. Procédé selon la revendication 9, comprenant en outre une étape consistant à :
déterminer une application de la pâte pour gravure sur des parties de la superficie
de la couche diélectrique en faisant appel à des simulations de dispositif pour systèmes
intégrés intelligents (DESSIS).
13. Procédé selon la revendication 12, comprenant en outre une étape consistant à :
saisir des paramètres dans DESSIS afin de déterminer l'application de la pâte pour
gravure, dans laquelle les paramètres comprennent une résistance de couche d'émetteur,
une épaisseur de cellule, une résistivité, une vitesse de recombinaison superficielle
avant, une vitesse de recombinaison superficielle arrière au niveau du diélectrique
et une résistance de contact.