EP 2151 758 A2

(1 9) Européisches

Patentamt

European
Patent Office
Office européen

des brevets

(11) EP 2 151 758 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
10.02.2010 Bulletin 2010/06

(21) Application number: 09175954.8

(22) Date of filing: 18.12.1996

(51) IntCl.:

GO6F 9/46 (2005.07) GO6F 15/80(2006.07)

(84) Designated Contracting States:
DE FR GB IT NL SE

(30) Priority: 20.12.1995 GB 9526009

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
96943202.0 / 0 880 740

(71) Applicant: MBDA UK Limited
Stevenage
Hertfordshire SG1 2DA (GB)

(72) Inventors:
¢ Simpson, H.R.
Stevenage, Hertfordshire SG1 2DA (GB)

e Campbell, E.R..
Stevenage, Hertfordshire SG1 2DA (GB)

(74) Representative: BAE SYSTEMS plc

Group IP Department

P.O. Box 87

Warwick House

Farnborough Aerospace Centre
Farnborough

Hampshire GU14 6YU (GB)

Remarks:

This application was filed on 13-11-2009 as a
divisional application to the application mentioned
under INID code 62.

(54) Integrated circuits for multi-tasking support in single or multiple processor networks

(57) An integrated circuit (7A) for multitasking sup-
port for processing unit (1A) holds control variables for
each task (or activity) to run on its associated processor
(1A) and identifies the next task that should run. The cir-

1A Fig.1.

cuit (7A) employs level-driven, clock free ripple logic and
is configured as a two-dimensional array of "tiles", each
tile being composed of simple logic gates and performing
a dedicated function. The circuit has particular applica-
tion to asynchronous multiple processor networks.

1B
CPU CPU
2A 3B
2B
Private /3A Private
Memory ol Memory
/5 A ADPM
Asynchronous 8A 8B Asynchronous _§B
Device L Device
B6A
Synchronous Tln;er Synchronous _jB
Device 1 ‘ Device
v v !
BUTLER BUTLER
CHIP CHIP
—7A 781

Printed by Jouve, 75001 PARIS (FR)

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2
Description

[0001] This invention relates to integrated circuits and particularly, though not exclusively to integrated circuits for use
in single or multi-processor systems.

[0002] One object of the invention is to provide an integrated circuit, (to be referred to herein as a "Butler Chip") which
is capable of directly supporting the shared data and multi-tasking concepts of real-time networks in the context of single
or multi-processor systems.

[0003] A further object is to provide a more deterministic (in the temporal sense) execution environment so as to
eliminate some aspects of pessimistic timing analysis at the fundamental level of computer operation.

[0004] For a better understanding of an application of the "Butler Chip" to be described herebelow, reference is made
to our co-pending Patent Application W0O91/16681. Therein, two Central Processing Units (CPU) are able to interact
through an Asynchronous Dual Port Memory (ADPM). The ADPM can carry many communications routes (spatially
multiplexed) such that there is no temporal interference between these routes, and where the temporal interaction
between operations at the two sides of the same route is confined entirely to that interaction which is implicit in the
protocol which characterises the dynamics of the route.

[0005] The latter property is dependent upon the fact that the ADPM has two completely independent access paths
to every memory element and itself applies no exclusion.

[0006] Support for the protocols of the multi-processor communications systems of W091/16681 is provided by a
Communications Executive Chip (CEC) which contains logic for many parallel routes of various types. Support for
scheduling is provided by a Kernel Executive Chip (KEC) which contains the logic for controlling 64 activities organised
in 8 priority levels with 8 activities in each level. Selection at each level is controlled by a round robin polling logic. The
highest priority level can be stimulated from external devices, including the set of CECs associated with a CPU.
[0007] Both the CEC and the KEC are accessed as memory attached to a private bus of each CPU, with individual
chip functions being associated with particular access addresses. This allows the KEC’s and CEC'’s to be used with any
type of processor.

[0008] A particular feature of the approach to the implementation of routes between activities in adjacent processors,
concerns the way in which implicit stimuli are handled. A CEC can multiplex a number (eg 32) of stims (termed secondary
stims) and can indicate to the KEC (by means of a "primary stim" that a secondary stim is present. Itis therefore necessary
to use software to unpack and distribute the secondary stims. In W091/16681, this has to be effected by infrastructure
software containing stim servers. Disadvantageously, this arrangement introduces temporal indeterminacy because the
stim servers run and impede the progress of application level activities.

[0009] The "Butler chips" proposed in the present invention can fulfil the role of the KEC and also absorb CEC functions
where feasible. One advantage of using the "Butler chip" in the above context is the removal of the aforementioned
temporal indeterminacy by eliminating the need for stim servers. It also facilitates a more flexible priority and poll set
scheme.

[0010] Inone aspect of the invention, an integrated circuit for use as a schedule of activities to be run on an associated
CPU, is configured to support a "control node" mechanism by incorporating:

a "stim-wait" channel for holding statuses for at least one pair of control variables corresponding to each of said
activities, to control the scheduling of said activities, each of the activities being associated with at least one stim-
wait channel, a control variable of each of the stim-wait channels being settable to waiting status in relation to its
associated activity, and

a plurality of inputs each operable to set a control variable of a respective

stim-wait channel to stimmed status,

wherein each stim-wait channel associated with an activity has a ready output when the statuses of a pair of control
variables of the channel are both stimmed and waiting, the ready output identifying the associated activity as ready for
running on the processor.

[0011] The "Butler chip" may be used in association with kernel primitive and builder operations. The "kernel" is
software running on the associated CPU which switches in and out the tasks/activities to be performed by the CPU. The
"Butler chip" supports the kernel.

[0012] The"stim-wait" channels allow an activity to selectively wait and be selectively stimmed. Each of these stim-
wait channels supports to a control node in software. A control node is introduced to provide a control point at which an
activity may wait to be "stimmed" into operation by another activity.

[0013] The provision of multiple stim-wait channels allows each activity to put itself into a condition where it selectively
waits for stimuli from a plurality of sources eg. from its associated CPU, a peripheral device or from another "Butler chip”.
[0014] In addition to the stim-wait channels, each activity may have associated with it, other control variables to be
described in detail here below.

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

[0015] In another aspect, an integrated circuit for use as a scheduler of activities to be run on an associated CPU is
of modular structure being constructed from an assembly of "tiles",

wherein each tile defines a building block having logic and structure, said tiles being abutted one against the other to
form a two-dimensional array of n rows and m columns which realises an overall functionality for the integrated circuit
and wherein each of the n rows of tiles provides the control logic for each one of n schedulable activities and each of
the m columns of tiles provides a particular function.

[0016] The control logic includes means for holding control variables corresponding to each activity. Some of these
control variables may comprise at least one stim-wait channel.

[0017] A top row of tiles may be added to provide the interfacing circuitry to external devices, such as a CPU.
[0018] The word "tile" in this context means a design building block which when butted to other tiles to form a two
dimensional array, encapsulates the electronic circuitry and structural information needed for realising overall functionality
and direct physical silicon layout.

[0019] Thus the "Butler chip" of the present invention is provided with a physical construction that combines simple
logic elements with defined interfaces into a regular structure in order to achieve the required functionality.

[0020] As all the necessary signal connections are automatically made when the tiles are abutted, there is no require-
ment for any additional inter-tile routing.

[0021] In contrast to conventional clock-driven logic, the "Butler chip” of the present invention uses level-driven, clock-
free ripple logic. Asynchronous operation is used with the "Butler chip" responding to events: eg instructions from an
associated local processor or asynchronous stimuli from external sources.

[0022] Such "external sources" could comprise local peripherals or even other processor’s associated "Butler chips".
By virtue of the structural design of the "Butler chip"; following an event, the internal logic freely ripples to establish its
final stable condition. Where memory elements are required, non-clocked latches are used.

[0023] Theinvention offers many advantages. The design can be easilyimplemented in different technologies because
it is not dependent on critical timing parameters. There are no clock signals to distribute and consequently no clock-
skew or set-up and hold violation problems. All of the circuitry is related to the application, using minimum circuitry per
function. Furthermore, the asynchronous circuitry has non-demanding power-supply requirements particularly if CMOS
technology is employed. The chip design can be analysed for correctness by formal mathematical methods and manu-
factured devices may be tested, in isolation, to achieve full fault coverage.

[0024] The "Butler chip" is particularly suited to hard, real-time embedded systems and to systems that need to
demonstrate quantifiable levels of dependability.

[0025] It can be used with any type of processor. For example, it can provide support for multi-tasking in a single or
multiple processor system. Specifically, it is used to hold control variables for each task or activity assigned to run on
an associated processor and to identify the next task that should run. These control variables can be set at any time
from different sources. The logic for selecting the next task can be programmed (ie via software). Tasks that are given
the same priority level can be selected by the "Butler chip" on a round robin basis within their group. Asynchronous
stimuli (eg interrupts from local peripherals) can be handled directly by the "Butler chip" which schedules the relevant
task whenits turn arrives, according to the programmed priority level selection. Co-operative and pre-emptive scheduling
schemes can be supported.

[0026] Inthe example of a multiprocessor system, each processor has its own associated "Butler chip" and connections
are made between 11Butler chips", A request for scheduling any task is always registered with a processor’s own "Butler
chip". Where the task resides on a different processor, "Butler chips" communicate directly and schedule the relevant
task on the destination processor when its turn arrives. This avoids the need to unnecessarily interrupt any task running
on the destination processor, thereby providing an efficient, temporally deterministic operation.

[0027] Some embodiments of the invention will now be described, by way of example only, with reference to the
drawings of which:

Figure 1 is a schematic circuit diagram illustrating the use of the "Butler chip" in accordance with the invention in a
multiprocessor network;

Figure 2 is a diagram showing the layout of the different types of tile which comprise a "Butler chip" array which is
suitable for use with the network of Figure 1;

Figures 3 - 10 are logic circuit diagrams of the tiles comprising a "main array" of a "Butler chip";

Figures 11-18 are logic circuit diagrams of the tiles comprising a "top row" of a "Butler chip", and

Figure 19 is a series of wiring diagrams illustrating the customising of the tiles of figures 5 and 6.

[0028] In Figure 1 a dual processor system comprises two central processing units (CPU) 1A, 1B, each CPU being
linked to a private memory 2A, 2B via a data bus 3A, 3B. The CPU’s 1A, 1B are linked to each other by means of an
asynchronous dual port memory (ADAM) 4. Each CPU 1A, 1B also has access to asynchronous devices (peripherals)
5A, 5B, synchronous devices (ie peripherals which can generate an external stimulus) 6A, 6B and an associated "Butler

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

chip" 7A, 7B respectively. The "Butler chips" 7A, 7B are connected with one another.

[0029] An interrupt line 8A, 8B, runs from each "Butler chip" 7A, 7B to its associated CPU 1A, 1B, This can be used
to trigger task switching when using pre-emptive scheduling or to indicate a watch-dog timer overrun when using co-
operative scheduling.

[0030] Each "Butler chip" may be provided with a standard memory interface for connection to its associated processor.
Conveniently, this could comprise a 16-bit bi-directional data bus, three address lines and three memory control line inputs.
[0031] A preferred example is provided with active-low asynchronous local inputs for use by peripherals. Each may
register a request for service at any time. Additionally, there are four groups of asynchronous external inputs. In a multiple
processor system these would be connected to other processor’s associated "Butler chips". Each group has six lines
that are used to identify a specific task number, and an associated active-low stimulus input that registers a request for
service. Ten outputs are provided for connection to the external inputs of up to four other "Butler chips". Six are used to
identify a specific task number and are connected to all adjacent "Butler chips". The other four outputs are the active-
low stimulus outputs, each connected to a different processors "Butler chip".

[0032] One further input line is provided; to the "Butler chip’s" internal counter, either from the CPU’s clock or from an
external timer 9.

[0033] The structure of a "Butler chip" (7A or 7B of Figure 1) will now be described with reference to Figure 2.
[0034] As mentioned above, a "Butler chip" comprises a two-dimensional array of tiles. Each tile consists of a plurality
of interconnected logic gates and input/output connections for interfacing with adjacent tiles. Each tile type fulfils a
particular function.

[0035] In the specific example to follow, a "Butler chip" array 10 is comprised of a main array 11 of 1312 tiles and a
top row 12 of a further 21 tiles.

[0036] There are eight different tile types, represented in Figure 2 by the letters S, U, P, E, R, M, A, N. Each tile
comprises a few simple logic gates.

[0037] The main array 11 has sixty-four rows that each hold the control variables for an activity.

[0038] Row O is associated with activity zero, with activity numbers incrementing for the remaining rows 1 to 63 down
the array.

[0039] Each row of the main array 11 contains twenty and a half tiles (Tile N is a double height tile that spans two
rows). From left to right these are: -

one tile of type Tile_S
two tiles of type Tile_U
one tile of type Tile_P
two tiles of type Tile_U
one tile of type Tile_P
three tiles of type Tile_U
one tile of type Tile_P
two tiles of type Tile_U
one tile of type Tile_P
two tiles of type Tile_U
one tile of type Tile_E
one tile of type Tile_R
one tile of type Tile_M
one tile of type Tile_A
half tile of type Tile_N

[0040] The circuitry of the top row 12 is designed to generate main array control signals and to interface with a CPU,
and other "Butler Chips"

[0041] There are eight different tile types, each comprising a few simple gates. The row contains 21 tiles, one at the
top of each column. From left to right these are:

one tile of type Tile_Stop
two tiles of type Tile_Utop
one tile of type Tile_Ptop
two tiles of type Tile_Utop
one tile of type Tile_Ptop

10

15

20

25

30

35

40

45

50

55

[0042]

active-high

active-low

activity
array

array-operation the

clrall

clrpollend

clrstarted

established
high

latch

low

nextact

pollset
reset

set

EP 2 151 758 A2

(continued)

three tiles of
one tile of
two tiles of
one tile of
two tiles of
one tile of
one tile of
one tile of
one tile of
one tile of

type Tile_Utop
type Tile_Ptop
type Tile_Utop
type Tile_Ptop
type Tile_Utop
type Tile_Etop
type Tile_Rtop
type Tile_Mtop
type Tile_Atop
type Tile_Ntop

In the following description of the preferred embodiments, meanings of certain terms used are listed below:

A boolean variable whose true value is represented by a high and false value is represented by
a low.

A boolean variable whose true value is represented by a low and false value is represented by
a high.

The number assigned to a software task that can be scheduled.
The arrangement of tiles that form the main BUTLER structure.

An event initiated pulse that freely ripples along a logic chain in array to set or reset a pre-selected
srlatch.

The array-operation where all (except 'Last’) srlatches in the array are reset. Initiated by a Clear_
All BUTLER instruction

The array-operation where the 'Pollend’ srlatch is reset for an activity. Initiated by a Clear_Pollend
BUTLER instruction to remove a pollset boundary.

The array-operation where the 'Started’ srlatch is reset for an activity. Initiated by a Clear_Started
BUTLER instruction for an activity that is to be excluded from being scheduled.

The final stable condition of a signal when any ripple logic transient effects have subsided.

A positive voltage level.

An arrangement of gates used to form a memory element. Latches are given single-word names
with an upper-case first letter, lower-case subsequent letters and are enclosed in single quotes
(e.g. 'Latch’). Where reference is made to the boolean variable implemented by a single-bit latch,
the latch name enclosed in double quotes is used (e.g. "Latch").

A zero voltage level.

The array-operation when the activity chosen to be the next for scheduling is being returned to
the processor. Initiated by a Nextact BUTLER instruction.

A contiguous group of activities designated to have equal priorities.
As a noun, the false state of a srlatch. As a verb, applying the make-false input to a srlatch.

As a noun, the true state of a srlatch. As a verb, applying the make-true input to a srlatch.

10

15

20

25

30

35

40

45

50

55

setpollend

setstarted

setstimmed

setsuspended

setwaiting

signal

srlatch

suspend

taken

tlatch

transmitted

value

EP 2 151 758 A2

The array-operation where the 'Pollend’ srlatch is set for an activity. Initiated by a Set Pollend
BUTLER instruction to insert a pollset boundary.

The array-operation where the ’Started’ srlatch is set for an activity.
Initiated by a Set-Started BUTLER instruction for an activity that is allowed to be included as a
candidate for being scheduled.

The array-operation where the 'Stimmed’ latch(es) are set for an activity'. Initiated by a Do_Stim
BUTLER instruction.

The array-operation where the 'Suspended’ latch is set for an activity. Initiated by a Set-Suspended
BUTLER instruction.

The array-operation when the 'Waiting’ srlatch(es) are set for the activity most recently returned
to the processor for scheduling.

Initiated by a Do-Wait BUTLER instruction (when the activity currently running on the processor
co-operatively offers a reschedule point having finished its current work).

A physical line able to assume a high or low value. Active-high signals are given single-word
names with an upper-case first letter and lower-case or numerical subsequent characters (e.g.
Signal3).

Active-low signal names are prefixed with an upper-case N (e.g.

NSigna17). Where it is necessary to individually identify the two ends of a signal that forms a
connection between tile rows, each end is postfixed with an A or B (e.g. Signal4B would be directly
connected to Signal4A in the tile below). Where it is necessary to individually identify the two
ends of a signal that forms a connection between tile columns, each end is postfixed with an L
or R (e.g. Signal2L would be directly connected to Signal2R in the tile to the Left; Signal2R would
be directly connected to Signal2L in the tile to the right).

Aboolean latch withindependent make-true and make-false inputs that may be applied atany time.
The array-operation when the 'Suspended’ srlatch is set for the activity most recently returned to
the processor for scheduling. Initiated by a Suspend BUTLER instruction (when the activity cur-

rently running on the processor cooperatively offers a reschedule point but wishes to continue).

The active condition of a signal during an array-operation. (e.g.
Signal3 is taken high during suspend).

A latch with a control signal that selects one of two modes of operation. Either the latch is trans-
parent and its output tracks its input, or it is latched when its output retains the value it held when
last transparent.

The value existing at one place is established at another.

The high or low condition of a signal. Operations of each "Butler chip" are carried out in response
to memory writes or reads from its associated CPU, as shown in the table below.

ADDRESS "WRITE" INSTRUCTION "READ" INSTRUCTION
A2 | A1 A0

0 0 0 Load_Mask [D15-D0] Do_Stim

0 0 1 Load_Activity [D5-DO0] Do_Wait

0 1 0 Do_Stimx Suspend

0 1 1 Clear_All Set_Suspended

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

(continued)

ADDRESS "WRITE" INSTRUCTION "READ" INSTRUCTION
A2 | A1 A0

1 0 0 Clear_Started Set_Started

1 0 1 Clear_Pollend Set_Pollend

1 1 0 Load_Counter-Lo [D15-D0] | Nextact [D15-D0]

1 1 1 Load_Counter_Hi[D15-D0] | Control_Interrupts

[0043] Writes to, and reads from a "Butler chip" are used to load operational data, return data to each CPU and to
initiate internal "Butler chip" operations. To minimise the temporal constraints on the CPU interface, write accesses that
are used to load operational data to a "Butler chip" do not initiate operations within the chip.

[0044] Writes to a "Butler chip" may be carried out by the associated CPU at any time.

[0045] Instructions Load_Mask, Load_Counter_Lo and Load_Counter_Hi use the values on all sixteen data lines
(D15-DO). These enter the "Butler chip" via tiles N,S_top, U_top and P_top (labelled Datain and Din in the accompanying
figures). The mask is an array of sixteen bits used to select one or more stim_wait channels as an argument for "Butler
chip" operations.

[0046] Each activity/task to be scheduled has sixteen pairs of "stimmed" and "waiting" (control) variables, each pair
being referred to as a "stim-wait" channel. Some instructions can operate on individual or groups of stim-wait channels.
The "stim-wait" channels to be operated on are specified by including a logic "one" in an appropriate bit position in the
data word of the "Load Mask" instruction.

[0047] The instruction Load_Activity uses only the values on the six data lines (D5-DO) which enter the "Butler chip”
via tile E_top. No data line values are used by the other "write" instructions.

[0048] Reads from a "Butler chip" may be carried out by the CPU at any time. In general, read instructions will not
return valid data to the CPU. Read instructions will return valid data on all sixteen data lines (DO-D15) in defined
circumstances to be described below. During normal operation only data returned by a "Nextact" instruction is used
(Nextact returns the number of the next activity to be scheduled to the CPU). "Nextact" will return valid data when the
time from a preceding "Suspend" or "Do Wait" instruction is sufficient to have allowed the next activity selection logic to
have stabilised.

[0049] Each "Butler chip" performs specified functions when accessed as memory. It is not intended for use where
unintentional memory accesses may occur, such as in direct-memory-access, cache or refresh memory systems.
[0050] Each "Butler chip" holds the control variables for each activity assigned to run on its associated CPU. In the
specific example, sixteen "stim-wait" channels are for internal use (ie interactions between a "Butler chip" 7A and its
associated CPU 1A) these are held on the SU and P tiles. Four of the sixteen "stim-wait" channels are additionally for
interactions from a neighbouring "Butler chip" 7B. These are held on the 'P’ tiles. One of the sixteen "stim-wait" channels
is additionally for interactions with the peripheral 6A. This is held on the S tile. The number of U and P tiles may be varied
to suit the application or dispensed with altogether.Depending upon the values of these control variables and others as
described herebelow, the Butler chip" continuously computes the next activity to be scheduled, taking into account any
currently programmed priority levels.

[0051] The "Butler chip" is designed to operate correctly in an asynchronous environment. The next activity selection
logic operates continuously and can respond to multiple inputs that may arrive at any time from temporarily incoherent
sources. The outputs from the next activity selection logic are put onto the least significant seven bits (D6-DO0) of the
data bus during all read instructions. Because a result may be in the process of being updated during a read operation,
read instructions will not always return valid data.

[0052] During normal operation only the Nextact read instruction is required to return valid data. (The number of the
next activity to be scheduled.) This is achieved by temporarily inhibiting any changes to the asynchronously stimulated
variables from entering the next activity selection logic, and allowing time for the next activity selection logic to stabilise
before executing a Nextact instruction. A preceding Suspend or Do_Wait instruction is used to inhibit visibility of any
changes to the asynchronously stimulated variables from entering the next-activity-selection logic.

[0053] The maximum time for the next activity selection logic to stabilise in response to a change is determined by
the ripple logic search chain. This worse case time also applies to all instructions that may alter the next activity selected,
including "Stimmed", "Waiting", "Suspended", "Started" and "Pollend" variables (to be described below). The value of
this time is implementation specific and is calculated by a summation of the worst case gate delays in the complete
search logic chain.

[0054] A "Clear-All" instruction from the CPU disables interrupts, removes any pollset boundaries and initialises (i.e.

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

makes false) the "started", the "suspended" and the sixteen "stimmed" and "waiting" control variables for all activities.

[0055] Some instructions operate on a specified activity number. This activity number is specified in the data word of
a Load_Activity instruction and is held on the "Butler chip".

[0056] Activities (or tasks) are numbered from zero to sixty-four. When priority levels apply, smaller activity numbers
have the higher priorities. Activity number sixty-four always has the lowest priority and can be used to schedule an idle
activity at a time when no other activities are candidates for scheduling.

[0057] Following a "Clear All" instruction activities numbered zero to sixty-three are assigned equal priorities. Priority
levels can be allocated to individual activities or to groups of activities, by inserting "pollset" boundaries.

[0058] A "SetPollend" instruction will insert a pollset boundary. The activity specified in the most recent "Load Activity"
instruction will then become the largest number in this pollset. (The following activity number will automatically become
the smallest activity number in the next priority pollset). A "Clear Pollend" instruction will remove the pollset boundary
(if it exists) at the activity number specified in the most recent "Load Activity" instruction. Pollset boundaries may be
inserted or removed at any time.

[0059] Where more than one activity is a candidate for scheduling at any one time, the next activity selection logic will
select an activity from the highest priority pollset that contains a candidate. Ifthis pollset contains more than one candidate,
selection is made on a round robin basis within the pollset, the search starting from the activity following the activity that
was last returned for scheduling in that pollset.

[0060] An activity will only be included as a candidate for scheduling when it is started and ready:

A "Set Started" instruction will make the "started" control variable true for the activity specified in the most recent
"Load Activity" instruction. A "Clear Started" instruction will make the "started" control variable false for the activity
specified inthe most recent "Load Activity" instruction. The nstarted" variable thus indicates whether or not an activity
can be considered for scheduling.

An activity is ready when either its "suspended" variable is true, or it has a matched pair of true "stimmed" and
"waiting" control variables.

[0061] A "Set Suspended" instruction will make the "suspended" variable true for the activity specified in the most
recent "Load Activity" instruction. A "Suspend" instruction will make the "suspended" variable true for the activity currently
running on the CPU (ie the last activity returned to the CPU for scheduling). The "suspended" variable will be made false
when the activity is returned to the CPU as the next activity to be scheduled. A Suspend instruction allows an activity to
suspend its operation and ensures that a request for continued operation is registered by means of the "suspended”
variable. This instruction operates on the current activity whose activity number is remembered on the "Butler chip" as
well as being passed back to the CPU.

[0062] A "Do Wait" instruction will make the "waiting" variable true for the stim-wait channel(s) specified in the most
recent "Load Mask" instruction for the activity currently running on the CPU. The "waiting" variable will be made false
when this activity is returned to the CPU as the next activity to be scheduled.

[0063] Both the Suspend and Do Wait instructions are always associated with the end of a processing slice and
therefore always shortly precede the Nextact instruction which will notify the CPU of the next activity to be scheduled.
For this reason and as described in greater detail below, the outputs associated with asynchronous stimuli are latched
in order to temporarily prevent their onward propagation.

[0064] A "Do Stim" instruction will make the "stimmed" variable true for the stim-wait channel(s) specified in the most
recent "Load Mask" instruction for the activity specified in the most recent "Load Activity" instruction. The "stimmed"
variable will be made false when the activity is returned to the CPU as the next activity to be scheduled.

[0065] When an activity is selected for scheduling, the suspended and all its, stimmed and waiting variables are cleared
to false.

[0066] When "Butler chips" are interconnected, each chip is able to make "stimmed" variables true in other chips.
Certain stim-wait channels for one "Butler chip" can be associated with a stim-wait channel in another chip by physical
connection. A "Do Stimx" instruction will make the associated "stimmed" variable in a connected chip true for the activity
specified in the most recent "Load Activity" instruction.

[0067] Following a "Clear All" instruction the interrupt output line will be held in its non-active state (ie High) with
interrupts disabled.

[0068] A "Control interrupts" instruction uses the least significant two bits of the activity number specified in the most
recent "Load Activity" instruction (Actbitl and ActbitO) to define its operation.

[0069] A "Control interrupts" instruction when Actbitl is high will allow interrupts to be generated when the "Butler chip"
detects that there is a candidate for scheduling with a higher priority than the activity currently running on the CPU. When
this is the case, the interrupt output line will be held low. A "Do Wait" or a "Suspend" instruction will restore the interrupt
line to its non-active state. A "Nextact" instruction will allow further interrupts to be generated. A "Control Interrupts"
instruction when Actbitl is low will prevent generation of these interrupts.

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

[0070] Each "Butler chip" has a 32-bit down-counter that counts low to high transitions on the counter input line. A
"Do Wait" or a "Suspend" instruction initialises the counter to the 32-bit number that is held on the "Butler chip". A
"Nextact" instruction enables the counter to start counting.

[0071] The 32-bit number that is used to initialise the counter is programmable. A "Load_Counter_Lo" instruction loads
the data word into the least significant 16-bits of the number. A "Load_Counter Hi" instruction loads the data word into
the most significant 16-bits of the number.

[0072] A "Control Interrupts" instruction when ActbitO is high will cause an interrupt to be generated when the "Butler
chip" counter has received a programmed number (plus one) of signal transitions on its counter input line. When this is
the case, the interrupt output line will be held low. A "Do Wait" or a "Suspend" instruction will restore the interrupt line
toits non-active state. A "Nextact" instruction will allow further interrupts to be generated. A "Control Interrupts" instruction
when ActbitO is low will prevent generation of these interrupts.

[0073] The tiles of the main array 11 will now be described with reference to Figures 3 - 10.

[0074] The structure of tile type 'S’ is shown in Figure 3. The function of this tile is to hold an activity’s "Suspended"
and local "Stimmed" and "Waiting" Boolean variables and to indicate whenever either "Suspended" is true or both
"Stimmed" and "Waiting" are true.

Outputs: Ready to Tile_U

SetwaitB to Tile S below
SetstimB to Tile_S below
NSuspB to Tile_S below
NSetsusB to Tile_S below

Inputs: SetwaitA from Tile_S above

SetstimA from Tile_S above
NSuspA from Tile_S above
NSetsusA from Tile_S above
Slice from Tile_U
Curract from Tile_U
NReset from Tile_U
Act from Tile_U

NStimp from BUTLER I/O input

The operation of tile type ’S’ is as follows:

[0075] Cross-coupled gates 7 and 8 form a srlatch.This 'Suspended’ latch is set via gates 13,17 and 18 when NSuspA
is low and Curract is high, or via gates 6, 13 and 19 when NSetsusA is low and Act is high. (NSuspA is taken low during
suspend; Curract is high when this was the last activity returned to a CPU for scheduling; NSetsusA is taken low during
setsuspended; Act will be high whenever this activity was chosen by the most recent Load_Activity instruction.) The
"Suspended’ latch is reset when NReset is low. (NReset is taken low during clrall or during nextact when this activity is
being returned to the CPU.) Concurrent set and reset of the 'Suspended’ latch cannot occur because NSuspA, NSetsusA
and NReset are taken low, only while executing different instructions.

[0076] Cross-coupled gates 11 and 12 form a srlatch. This 'Waiting’ latch is set via gates 5 and 16 when SetwaitA
and Curract are high. SetwaitA is taken high during setwaiting if this stim-wait channel mask-bit was set in the most
recent Load Mask instrudtion. Curract is high when this was the last activity returned to the CPU for scheduling. The
"Waiting’ latch is reset when NReset is low. (NReset is taken low during clrall or during nextact when this activity is being
returned to the CPU.) Concurrent set and reset of the *'Waiting’ latch cannot occur because SetwaitA is taken high and
NReset is taken low, only while executing different instructions.

[0077] Cross coupled gates 9 and 10 form a srlatch. This 'Stimmed’ latch is set via gate 15 when NStimp is low, or
via gates 14, 15 and 20 when SetstimA and Act are high. (NStimp is an input from a local peripheral; SetstimA is taken
high during setstimmed if this stim-wait channel mask-bit was set in the most recent Load_Mask instruction; Act will be
high whenever this activity was chosen by the most recent Load_Activity instruction.) The 'Stimmed’ latch is reset when
NReset is low. (NReset is taken low during clrall or during nextact when this activity is being returned to the CPU.)
Concurrent set and reset of the 'Stimmed’ latch can occur, when NStimp from an asynchronous peripheral source is
concurrent with NReset. The normally complementary outputs from the 'Stimmed’ srlatch will both be high. This causes
no problem because this activity will be being returned to the CPU as the next activity to be scheduled at this time. If
removal of concurrent set and reset are coincident, the 'Stimmed’ latch will, after the delay needed to resolve the

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

metastability effect, become either set or reset. Time is available between executing instructions for the latch to settle:
if it becomes set, NStitnp is assumed to have occurred after nextact; if it becomes reset, NStimp is assumed to have
occurred before nextact. Either condition provides for correct system operation.

[0078] When Slice is low, gate 3 output will be high and gate 4 output will be the inverse of the "stimmed" latch value.
When Slice is high, gate 3 output will be the inverse of gate 4 output. If gate 4 output is high when Slice switches high,
gate 4 output will be maintained high by the low on gate 3 output until Slice switches low. (Slice is high between a Do_
Wait or a Suspend instruction and a subsequent Nextact instruction, i.e. during a context switch and low while a task/
activity is running.) The inclusion of the gates 3 and 4 effectively defers visibility of a ’Stimmed’ latch value change that
is set following a Do_Wait or a Suspend instruction, until after a subsequent Nextact instruction, (i.e. when the 'Stimmed’
latch is set by an asynchronous local peripheral during a context switch).

[0079] Ready is established high via gates 1 and 2 when the Stimmed’ and 'Waiting’ latches are both set; or via gate
1 when the 'Suspended’ latch is set. (Note;- gate 2 has deferred visibility of a 'Stimmed’ latch value that becomes set
during a context switch.

[0080] The structure of tile type 'U’ is shown in Figure 4. Its function is to hold an activity’s internal "Stimmed" and
"Waiting" Boolean variables, and to indicate whenever both this pair of "Stimmed" and "Waiting" variables are true, or
transmit that a ready condition already exists.

Outputs: ReadyR to Tile_U or Tile_P or Tile_E
SetstimB to Tile_U below
SetwaitB to Tile_U below
Inputs: ReadyL from Tile_S or Tile_U or Tile_P
Curract from Tile_U, Tile_P or Tile_E
NReset from Tile_U, Tile_P or Tile_E
Act from Tile_U, Tile_P or Tile_E
SetstimA from Tile_U above
SetrwaitA from Tile_U above
Routes: Slice from Tile U, Tile_P or Tile E to
Tile_S, Tile_U or Tile_P
Curract from Tile_U, Tile P or Tile E to
Tile_S, Tile_U or Tile_P
NReset from Tile_U, Tile_P or Tile E to
Tile_S, Tile_U or Tile_P
Act from Tile_U, Tile_P or Tile E to
Tile_S, Tile_U or Tile_P

The operation of tile type 'U’ is as follows:

[0081] Cross coupled gates 6 and 7 form a snatch. This 'Waiting latch is set via gates 3 and 10 when SetwaitA and
Curract are high. (SetwaitA is taken high during setwaiting if this stim-wait channel mask-bit was set in the most recent
Load-Mask instruction;Curract is high when this was the last activity returned to the CPU for scheduling.) The 'Waiting’
latch is reset when NReset is low. (NReset is taken low during clrall or during nextact when this activity is being returned
to the CPU).) Concurrent set and reset of the 'Waiting’ latch cannot occur, because SetwaitA is taken high and NReset
is taken low, only while executing different instructions.

[0082] Cross coupled gates 4 and 5 form a srlatch. This 'Stimmed’ latch is set via gates 8 and 9 when SetstimA and
Act are high. (SetstimA is taken high during setstimmed if this stim-wait channel mask-bit was set in the most recent
Load-Mask instruction; Act will be high whenever this activity was chosen by the most recent Load_Activity instruction.)
The *Stimmed’ latch is reset when NReset is low. (NReset is taken low during clrall or during nextact when this activity
is being returned to the processor.) Concurrent set and reset of the 'Stimmed’ latch cannot occur, because SetstimA is
taken high and NReset is taken low only while executing different instructions.

[0083] ReadyR is established high via gates 1 and 2 when the ’Stimmed’ and 'Waiting’ latches are both set; or via
gate 1 when ReadyL is high.

[0084] The structure of the type 'P’ is shown in Figure 5. Its function is to hold one pair of external "Stimmed" and
"Waiting" Boolean variables for an activity and to indicate a ready condition whenever both this pair of "stimmed" and
"waiting" variables are true, or transmit that a ready condition already exists.

10

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

Outputs: ReadyR to Tile_U or Tile P or Tile_E

X5B to Tile P below
X4B to Tile P below
X3B to Tile_P below
X2B to Tile_P below
X1B to Tile P below
XOB to Tile_P below

NStimxB to Tile P below

SetstimB to Tile_P below

SetwaitB to Tile P below

CurractL to Tile_S or Tile_U or Tile_P
NResetL to Tile S or Tile U or Tile P

ActL to Tile S or Tile U or Tile_P
Inputs: X5A from Tile P above

X4A from Tile_P above

X3A from Tile_P above

X2A from Tile_P above

X1A from Tile P above

XOA from Tile P above

NStimxA from Tile_P above

SetstimA from Tile P above

SetwaitA from Tile_P above

ReadyL from Tile S or Tile U or Tile_P
Slice from Tile U or Tile P or Tile_E
CurractR from Tile_U or Tile_P or Tile E
NResetR from Tile_U or Tile_P or Tile_E
ActR from Tile_U or Tile_P or Tile_E

Routes: Slice from Tile_E, Tile U or Tile_P
to Tile_S, Tile_U or Tile_P

[0085] Each Tile_P is customised according to its row number in the array by inverting or transmitting values on lines
X5A, X4A, X3A, X2A and X1A (see Fig. 19). The customising pattern of Fig. 19 ensures that only one row (the activity
being externally addressed) will establish all six lines high. When all six lines are high, the outputs of gates 25 and 27
will both be low.

[0086] In operation, cross-coupled gates 8 and 9 form a srlatch. This 'Waiting’ latch is set via gates 5 and 19 when
SetwaitA and Curract are high. (SetwaitA is taken high during setwaiting if this stim-wait channel mask-bit was set in
the most recent Load_Mask instruction; Curract is high when this was the last activity returned to the CPU for scheduling.)
The 'Waiting’ latch is reset via gate 22 when NResetR is low. (NResetR is taken low during clrall or during nextact when
this activity is being returned to the CPU.) Concurrent set and reset of the 'Waiting’ latch cannot occur, because SetwaitA
is taken high and NResetR is taken low, only while executing different instructions.

[0087] Cross coupled gates 6 and 7 form a srlatch. This "stimmed" latch is set via gates 13, 18 and 26 when NStimxA
and the outputs of gates 25 and 27 are low, or via gates 17, 18, 20 and 24 when SetstimA and ActR are high. (NStimxA
is transmitted from a BUTLER input from an asynchronous external source; the outputs of gates 25 and 27 are low when
this activity is being externally addressed; SetstimA is taken high during setstimmed if this stim-wait channel mask-bit
was set in the most recent Load Mask instruction; Act will be high whenever this activity was chosen by the most recent
Load_Activity instruction). The "Stimmed" latch is reset via gate 22 when NReset is low. (NReset is taken low during
clrall or during nextact when this activity is being returned to the CPU). Concurrent set and reset of the "Stimmed" latch
can occur when NStimxA from an asynchronous external source is Concurrent with NResetR. The normally comple-
mentary outputs from the "Stimmed" srlatch will both be high. This causes no problem because this activity will be being
returned to the CPU as the next activity to be scheduled at this time. If removal of concurrent set and reset are coincident,
the "Stimmed" latch will, after the delay needed to resolve the metastability effect, become either set or reset. Time is
available between executing instructions for the latch to settle: if it becomes set, NStimxA is assumed to have occurred
after nextact; if it becomes reset, NStimxA is assumed to have occurred before nextact. Either condition provides for

11

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

correct system operation.

[0088] When Slice is low, gate 3 output will be high and gate 4 output will be the inverse of the "stimmed" latch value.
When Slice is high, gate 3 output will be the inverse of gate 4 output. If gate 4 output is high when Slice switches high,
gate 4 output will be maintained high by the low on gate 3 output until Slice switches low. (Slice is high between a Do
Wait or a Suspend instruction and a subsequent Nextact instruction i.e. during a context switch.) The inclusion of this
circuitry effectively defers visibility of a "Stimmed" latch that is set, following a Do Wait or a Suspend instruction, until
after a subsequent Nextact instruction (ie when the "Stimmed" latch is set by an asynchronous external stimulus during
a context switch).

[0089] ReadyR is established high via gates 1 and 2 when the "Stiinmed" and "Waiting" latches are both set; or via
gate | when ReadyL is high. (Gate 2 has deferred visibility of a "stimmed" latch value that becomes set during a context
switch).

[0090] Figure 6 shows the structure of tile type 'E’, whose function is to identify whether an activity was chosen by the
most recent "Load_Activity" instruction and to inject a starting point into the distributed activity number encoding logic
when this is the next activity to be returned to the CPU for scheduling.

Outputs: Act to Tile_U and Tile_R
In5B to Tile E below
In4B to Tile E below
In3B to Tile_E below
In2B to Tile_E below
In1B to Tile_E below
InOB to Tile E below
Out5B to Tile E below
Out4B to Tile E below
Out3B to Tile E below
Out2B to Tile_E below
OutiB to Tile E below
OutOB to Tile E below

Inputs: InSA from Tile_E above
In4A from Tile_E above
In3A from Tile E above
In2A from Tile E above
InlA from Tile_E above
InOA from Tile_E above
Me from Tile_R

Out5A from Tile_E above
Out4A from Tile_E above
Out3A from Tile_E above
Out2A from Tile_E above
Out1A from Tile_E above
OutOA from Tile_E above
Routes: Slice from Tile R to Tile_U
Ready fromTile_Rto Tile_U
Curract fromTile_RtoTile_U
NReset fromTile_RtoTile_U

[0091] Each Tile_E is customised according to its row number in the array by inverting or transmitting values on lines
In5A, In4A, In3A, In2A and In1A (see Fig. 19).The customising pattern of Fig. 19 ensures that only one row (the activity
chosen by the most recent Load_Activity instruction) will establish all six lines high. Act is established high via gates 14,
15 and 16 whenever all six lines are high.

[0092] Similarly, each Tile_E is customised according to its row number in the array by inverting or transmitting values
on lines Out5A, Out4A, Out3A, Out2A and Out1A. The customising pattern ensures that the activity that injects a starting
point (i.e. establishes Out5B, Out4B, Out3B, Out2B, Out1B and OutOB high) will establish its encoded activity number
on lines Out5B, Out4B, Out3B, Out2B, Out1B and OutOB at the bottom of the array.

12

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

[0093] Out5B, Out4B, Out3B, Out2B, Out1B and OutOB are established high via gates 4, 5, 6, 7, 8, 9 and 10 whenever
Me is high. (Me will be high when this is the next activity to be returned to the CPU for scheduling.) At the top of the
array Out5A, Out4A, Out3A, Out2A, Out1A and OutOA are hardwired low. This ensures that the encoded number on
the six lines at the bottom of the array will be zero when no schedulable activity is present in the array.

[0094] Figure 7 shows the structure of tile type 'R’ whose functions are to identify when a particular schedulable activity
is the next one to be returned to the CPU and to remember when this is the activity currently running on the CPU ie to
generate "Curract, the last "Me". Further functions are to identify when a context switch is in progress and to
generate "Slice", to generate a reset for the activity’s 'Suspended’ latch and all of its 'Stimmed’ and 'Waiting’ latches,
during nextact when the activity is being returned to the CPU, and to distribute signals to reset all the activity’s srlatches
during clrall.

Outputs: Here to Tile_M
NSlice to Tile_M
Slice to Tile_E

Curract to Tile_E
NReset to Tile_E

Lclrall to Tile_M
Searchou to Tile_M
NAct to Tile_M

NNextact to Tile_M

NSstartB to Tile_R below
NCstartB to Tile_R below
NClrallB to Tile_R below
NNextB to Tile_R below
SuswiB to Tile_R below

Inputs: Ready from Tile E
Act from Tile_E
Searchin from Tile_M
Me from Tile_M

NSstartA from Tile_R above
NCstartA from Tile_R above
NClrallA from Tile_R above
NNextA from Tile_R above
NSuswtA from Tile_R above
Routes: Me from Tile_M to Tile_E

[0095] Cross-coupled gates 21 and 23 form a srlatch. This 'Switching’ latch is set when NSuswtA is low, (i.e. during
a Do Wait or a Suspend instruction.) The 'Switching’ latch is reset via gates 1 and 30 when NNextA is low. (NNextA is
taken low during nextact.) Concurrent set and reset of the 'Switching’ latch cannot occur, because NSuswtA and NNextA
are taken low, only while executing different instructions. Slice will be high and NSlice will be low when the Switching’
latch is set.

[0096] Cross-coupled gates 6 and 7 form a srlatch. This 'Started’ latch is set via gates 3 and 11 when NSstartA is low
and Act is high, (NSstartA is taken low during setstarted; Act will be high whenever this activity was chosen by the most
recent Load_Activity instruction.) The 'Started’ latch is reset via gates 10 and 12 when NClrall is low; or via gates 5, 12,
15 and 27 when NCstartA is low and Act is high. (NClrall is taken low during cirall; NCstartA is taken low during clrstarted,;
Act will be high whenever this activity was chosen by the most recent Load_Activity instruction.) Concurrent set and
reset of the 'Started’ latch cannot occur, because NSstartA, NCstartA and NClrallA are taken low, only while executing
different instructions.

[0097] When the 'Started’ latch is set and Ready is high, the output from gate 2 will be low, indicating that this activity
is a candidate for scheduling.

[0098] Gates 4, 8, 9 and 13 form a tlatch. The tlatch is used to retain the value on the output of gate 2, existing at the
start of nextact for the duration of nextact. At all other times the tlatch output (gate 13 output) tracks the value on the
output of gate 2, (i.e. the output of gate 13 will be maintained low for the whole duration of nextact when this activity is
a candidate for scheduling).

[0099] Here is established high via gates 14 and 16 when the output of gate 13 is low and Searchin is high (i.e. when

13

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

this activity is a candidate for scheduling and no schedulable activity has been found in the search logic chain so far).

[0100] Searchou is established low (indicating that a schedulable activity has been found in the search logic chain)
via gate 17, when either the output from gate 13 or Searchin are low.

[0101] Gates 18, 19, 20 and 22 form a tlatch. This 'Curract’ tlatch is used to retain the value of Me between nextacts.
It is transparent (updated) only during nextact.

[0102] NReset is taken low when either NNextA is taken low and Me is high, via gates 1, 25 and 26, or NClrallA is
taken low, via gates 10, 29 and 26 (i.e. during nextact when this activity is being returned to the CPU, or during clrall).
[0103] Lclrall (a local clear-all signal) is taken high via gate 10, when NClrallA is taken low (i.e. during clrall).

[0104] NNextact is taken low via gates 1 and 30, when NNextA is taken low (i.e. during Nextact).

[0105] NAct is established low via gate 27 when Act is high. (Act will be high whenever this activity was selected by
the most recent Load Activity instruction.)

[0106] The structure of tile type "M’ is shown in Figure 8. Its functions are to configure the next activity search logic
chain, to allow designation of the pollset boundaries and to identify when a higher priority activity than that currently
running on the CPU may be available for scheduling.

Outputs: Pollend to Tile A
NPollend to Tile_A
MaybeA to Tile_M above
SearchuA to Tile_M above
SearchdB to Tile_M below
NFoundB to Tile_M below
NSpollB to Tile_M_below
NCpollB to Tile_M below
Inputs: Searchou from Tile_R
Here from Tile R
NAct from Tile_R
Lclrall from Tile_R
NSlice from Tile_R
Polstart from Tile_A
Poltop from Tile_A
NFoundA from Tile_M above
NSpollA from Tile_M above
NCpollA from Tile_M above
SearchuB from Tile M below
MaybeB from Tile_M below
Routes: Here from Tile_Rto Tile_A
NNextact from Tile R to Tile A
Me from Tile_A to Tile R
NSlice from Tile R to Tile_A

SearchdA/Searchin from Tile_M above to Tile_R

[0107] Cross-coupled gates 12 and 13 form a srlatch. This 'Pollend’ latch is set via gates 8, 15 and 20 when NSpollA
and NAct are low. (NSpollA is taken low during setpollend; NAct will be low whenever this activity was chosen by the
most recent Load_Activity instruction.) The 'Pollend’ latch is reset via gate 16 when Lclrall is high, or via gates 9, 16 and
21 when NCpollA and NAct are low. (Lclrall is taken high during chrall; NCpollA is taken low during cirpollend; NAct will
be low whenever this activity was chosen by the most recent Load_Activity instruction.) Concurrent set and reset of the
"Pollend’ latch cannot occur, because NSpollA, NCpollA and Lclrall are taken low, only while executing different instruc-
tions.

[0108] A round robin search loop is formed for each designated pollset. A single search chain passing through all
activities is configured that runs through each round robin search loop in turn, respecting the priority order of the pollsets.
[0109] When not selected as the lowest activity number in a pollset, Pollend will be low and complementary NPollend
will be high. The value on SearchuB is transmitted to SearchuA via gates 1 and 3. When not the starting point in a round
robin search, Polstart will be low. The value on Searchou will be transmitted to SearchdB via gates 5, 6, 7 and 10 and
the value on NFoundA will be transmitted to NFoundB via gates 18 and 25. (NFoundA will be low when a higher priority
pollset has already found an activity to schedule.) When the starting point in a round robin search, Polstart will be high.

14

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

The value on NFoundA will be transmitted to SearchdB via gates 5, 6, 7 and 11, and the value on Searchou will be
transmitted to NFoundB via gates 19 and 25.

[0110] When selected as the lowest activity number in a pollset (i.e. with Pollend high and complementary Pollend
low) a round robin search loop boundary is formed. The value on SearchuB is transmitted to SearchdB via gates 4 and
6. When not the starting point in a round robin search, Polstart will be low, The value on NFoundA will be transmitted to
NFoundB via gates 18 and 25, and the value on Searchou will be transmitted to SearchuA via gates 1, 2, 7 and 10.
When the starting point in a round robin search, Polstart will be high. The value on NFoundA will be transmitted to
NSearchuA via gates 1, 2, 7 and 11, and the value on Searchou will be transmitted to FoundB via gates 12 and 25.
[0111] Atthe top of the array SearchuA is connected to SearchdA to complete a search loop, and NFoundA hardwired
high to indicate that no higher priority poll set has found a schedulable activity.

[0112] At the bottom of the array SearchdB is connected to SearchuB to complete a search loop. NFoundB is high
when no schedulable activity is present in the array and is connected to D6out, to return activity 64 (the idle activity).
[0113] A logic chain running up the array is used to determine when there is a schedulable activity belonging to a
higher priority pollset. The logic chain is made false when it crosses the top of the pollset of the last activity returned to
the CPU. The chain is made true when a potentially schedulable activity is identified.

[0114] Gates 17, 22, 23 and 28 form a tlatch that is used to retain the value of Poltop between context switches (i.e.
gate 17 output remembers when this activity has the smallest number in the poll set of the activity currently running on
the CPU). The tlatch is made transparent (updated) when NSlice is low. (Nslice will be low during a context switch, i.e.
between a Suspend or a Do_Wait instruction and a subsequent Nextact instruction.)

[0115] MaybeA is established low via gate 14, when the output on gate 17 is high. MaybeA is established high when
the output on gate 17 is low. Either Me or MaybeB are high via gates 14 and 27.

[0116] At the bottom of the array MaybeB is hard-wired low.

[0117] The structure of tile type A’ is shown in Figure 9. Its function is to identify when an activity has the smallest
number in the pollset of the next activity to be returned to the CPU and to indicate within each pollset the starting point
for the round robin search logic.

OQutputs: Poltop to Tile_M
Polstart to Tile_M
Me to Tile_M
LastlopA to Tile_A above
PolsetuA to Tile_A above
LastfndB to Tile_A below
PolsetdB to Tile A below
NPendB to Tile_A below

Inputs: Pollend from Tile_M
NPollend from Tile M
Here from Tile_M

NNextact from Tile_M
PolsetdA from Tile A above
NPendA from Tile_A above
LastfndA from Tile_A above
LastlopB from Tile_A below
PolsetuB from Tile_A below
Routes: NSlice from Tile_Mto Tile N

[0118] To determine which activities are included in the pollset of the next activity to be scheduled, two logic chains
are used, one running down the array and one running up the array. Each time a chain crosses a pollset boundary it is
made false but when it encounters the next activity to be scheduled it is made true. The relevant pollset members are
those activity rows which contain a true logic element in either chain. The activity with the smallest number in this pollset
will have a true value in the logic chain running up the array, together with a pollset boundary having been selected in
the row above.

[0119] When not selected as having the largest activity number in a pollset Pollend will be low and complementary
NPollend will be high. When Here is low the value on PolsetdA is transmitted to PolsetdB via gates 34 and 36, and the
value on PolsetuB is transmitted to PolsetuA via gates 9, 16 and 17. When Here is high, PolsetdB is established high
via gates 34 and 36, and PolsetuA is established high via gates 9 and 16.

15

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

[0120] When selected as having the largest activity number in a pollset (i.e. with Pollend high and complementary
NPollend low), PolsetdB is established low via gates 36. When Here is low, PolsetuA is established low via gates 9, 16
and 17. When Here is high, PolsetuA is established high via gates 9 and 16.

[0121] The output of gate 8 is established low whenever either PolsetdA or PolsetuA are high (indicating that this
activity is in the pollset of the activity about to be returned to the CPU for scheduling). Gates 10, 12, 15 and 18 form a
tlatch. The tlatch is used to retain the value existing at the output of gate 8 at the start of nextact for the duraction of
nextact. At all other times the output of gate 18 tracks the output of gate 8.

[0122] Poltop is established high via gates 2 and 4 when PolsetuA is high and NPendA is low (i.e. when an activity
has the smallest activity number in the pollset of the activity to about to be returned to the CPU for scheduling). Gates
27, 28, 31 and 33 form a tlatch. The tlatch is used to retain the value of Here existing at the start of nextact for the
duraction of nexact. At all other times the value of Me tracks Here.

[0123] Cross-coupled gates 20 and 21 form a srlatch that is used to remember whether this was the last activity
scheduled in this activity’s pollset. This 'Last’ latch is set via gates 25 and 35 when NNextact is low and Me is high.
(NNextact is taken low during nextact; Me will be high when this activity is the next activity to be returned to the CPU
for scheduling.) The ’Last’ latch is reset via gates 26, 32 and 35 when Me is low and the output of gate 18 is high and
NNextact is low. (Me will be low when this is not the next activity to be returned to the CPU; the output of gate 18 will
be high when this activity is in the pollset of the activity about to be returned to the CPU for scheduling; NNextact is
taken low during nextact.) Concurrent set and reset of the "Last’ latch cannot occur, because Me must be high to set the
latch but low to reset the latch.

[0124] Gates 7, 13, 14 and 19 form a tlatch. The tlatch is used to retain the 'Last’ latch value existing at the start of
nextact for the duration of nextact, whilst the ’Last’ latch value may be being updated. At all other times the tlatch output
tracks the value of the 'Last’ latch.

[0125] Under normal operation precisely one 'Last’ latch will be set within the group of activities comprising a pollset,
and this will determine where Polstart should be established high. However it is possible when reprogramming pollset
boundaries or following initial power up that abnormal conditions could occur. Therefore additional logic is included to
ensure correct operation and restore normal operation if ever zero or multiple ‘Last’ latches become set within a pollset.
[0126] The polliset is examined by a loop of logic that accepts the first set 'Last’ latch it finds and ignores others, but
if it finds none then inserts a high Polstart at the pollset boundary. Correct operation is thereby achieved and normal
operation resumes following the next returned activity from the offending pollset.

[0127] When not selected as having the largest activity number in a pollset, Pollend will be low and complementary
NPollend will be high. LastfndB is established high via gates 23 and 30 when either this ’Last’ latch is set or LastfndA
is high. (A high on input LastfndA indicates that a set 'Last’ latch has already been found in this pollset.) The value on
input LastlopB is transmitted via gates 3 and 5 to LastlopA; again a high indicating that a 'Last’ latch has already been
found in this pollset.

[0128] When selected as having the largest activity number in a pollset (i.e. with Pollend high and complementary
NPollend low), a logic loop is formed. LastlopA is established high via gates 3, 6, 23 and 24, when either this 'Last’ latch
is set or LastfndA is high. LastfndB is established low via gate 30 (indicating that no set 'Last’ latch has yet been found;
in this case because it is the first in the next pollset).

[0129] Polstart is established high via gates 11, 22 and 29 when this ’Last’ latch is set and LastfndA is low (i.e. when
no set 'Last’ latch has already been found in this pollset, and this 'Last’ latch is set). Polstart is also established high via
gates 1and 29 when LastlopA and NPend are low (i.e. the abnormal condition where no’Last’ latches are set in this pollset).
[0130] At the top of the array, LastfndA is hardwired low (to indicate that no set 'Last’ latch has yet been found).
NPendA is hardwired low (to indicate the first pollset boundary). PolsetdA is hardwired low (to indicate crossing the first
pollset boundary).

[0131] At the bottom of the array LastfndB is connected to LastlopB to complete a logic loop. This ensures that when
no pollset boundaries are selected, one overall pollset containing activities 0 to 63 will be realised. PolsetuA is hardwired
low (to indicate crossing the final pollset boundary).

[0132] The structure of tile type ‘N’ is shown in Figure 10. This tile’s function is to implement one-bit of the "Butler
chip’s" ripple down-counter.

[0133] The N’ tiles make up a 32-bit register which is used to monitor or to set the duration of a processing slice. The
register is loaded at the start of a processing slice and the counter decrements this initial value during the slice.

Outputs: NTstB to Tile_N below
NTstB * to Tile_N below
NTstB** to Tile_N below
NTstB*** to Tile_N below
CountA to Tile_N above

16

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

(continued)

Dataout to Tile_N BUTLER I/O bidirectional output
Inputs: NSlice from Tile_A (even numbered rows only)

NTstA from Tile N above

NTsrA* from Tile_N above

NTstA** from Tile_N above

NTstA*** from Tile_N above

CountB from Tile_N below

Datain from Tile_N BUTLER I/O bidirectional input

Ldcntr from Tile_Ntop

[0134] NTstA, NTstA*, NTstA** and NTstA*** are functionally the same signal but are physically duplicated to limit
loading.Crossing the four lines over within a tile means that the tile circuitry will only be connected to a particular line
every fourth tile down the Tile_N column.

[0135] Gates 7, 10, 11 and 15 form a tlatch. The tlatch forms one bit of a 32-bit latch whose content is used to initialise
the counter. The tlatch is transparent (updated) when Ldcntr is low, and latched when Ldcntr is high. The value on Datain
is established at the output of gate 7 when Ldcntr is taken low (i.e. during a relevant Load_Counter instruction). This
value is retained when Ldcntr is high (i.e. between relevant Load_Counter instructions).

[0136] Gates 12, 13, 14 and 17, and gates 4, 5, 6 and 8 form a pair of tlatches. When one is transparent the other is
latched; the way round determined by the value on CountB. The output from the first tlatch (gate 13) is connected to the
input of the second (gate 6). The output from the second tlatch (gate 5) is inverted via gate 9 and connected to the input
of the first (gate 12). When the outputs on gates 1 and 3 are high, this arrangement of gates implements one bit of a
binary transition counter. CountA will toggle (invert its value) when CountB changes from a low to a high.

[0137] When NSlice is low, the one-bit transition counter is initialised to the value at the output of gate 7; via gates 1
and 2 when the value is low, via gate 3 when the value is high. (NSlice will be low during a context switch, i.e. between
a Suspend or a Do_Wait instruction and a subsequent Nextact instruction.)

[0138] When NSlice is high, the outputs on gates 1 and 3 will be established high via gate 19, enabling the counter
to count.

[0139] Dataout will be established to the one-bit counter value (the output from gate 7), via gates 9 and 18 when
NTest*** is low. (NTestA*** is taken low during a Control_Interrupts instruction). Dataout is established low when NTes-
tA*** is high.

[0140] The tiles of the top row 12 will now be described with reference to Figures 11-18.

[0141] Figure 11 shows tile type 'S-top’ whose functions are as follows: To remember whether this stim-wait channel’s
mask bit was set in the most recent Load_Mask instruction; to generate a setstimmed array-operation pulse during a
Do_Stim instruction when this stim-wait channel’s mask bit was setin the most recent Load_Mask instruction; to generate
a setwaiting array-operation pulse during a Do_Wait instruction when this stim-wait channel mask bit was set in the most
recent Load_Mask instruction.

Outputs: SetstimB to Tile_S below
SetwaitB to Tile_S below

Inputs: Din from BUTLER 1/O input
Ldmask from Tile_Utop
NDostim from Tile_Utop
NDowait from Tile_Utop

Routes: NSuspend/NSuspB from Tile_Utop to Tile S below
NSetsus/NSetsusB from Tile_Utop to Tile_S below

[0142] Gates 3,4, 5and 6 form atlatch. The tlatch holds one bit of the stim-wait channel mask. The tlatch is transparent
(updated) when Ldmask is high , and latched when Ldmask is low, The inverse of the value on Din is established at the
output of gate 6 when Ldmask is taken high (i.e. during a Load_Mask instruction). This value is retained when Ldmask
is lowh (i.e. between Load_Mask instructions).

[0143] SetstimB is taken high via gate 7 if the output of gate 6 is low when NDostim is taken low (i.e. during a Do-Stim
instruction).

[0144] SetwaitB is taken high via gate 8 if the output of gate 6 is low when NDowait is taken low (i.e. during a Do_
Wait instruction).

17

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

[0145] Figure 12 shows tile type 'U-top’ whose functions are to remember whether this stim-wait channel’s mask bit
was set in the most recent Load_Mask instruction, to generate a setstimmed array-operation pulse during a Do-Stim
instruction when this stim-wait channel mask bit was set in the most recent Load_Mask instruction and to generate a
setwaiting array-operation pulse during a Do_Wait instruction when this stim-wait channel’s mask bit was set in the most
recent Load_Mask instruction.

Outputs: SetstimB to Tile_U below
SetwaitB to Tile_U below
Inputs: Din from BUTLER 1/O input
Ldmask from Tile Utop or Tile_Ptop or Tile_Etop
NDostim from Tile_Utop or Tile_Ptop or Tile_Etop
NDowait from Tile_Utop or Tile_Ptop or Tile_Etop
Routes: Ldmask from Tile_Utop, Ptop or Etop to
Tile STop, Utop or Ptop
Ldmask* from Tile_Utop, Ptop or Etop to
Tile_STop, Utop or Ptop
NDostimx from Tile_Utop, Ptop or Etop to
Tile_STop, Utop or Ptop
NDostim from Tile_Utop, Ptop or Etop to
Tile_STop, Utop or Ptop
NDowait from Tile_Utop, Ptop or Etop to
Tile_STop, Utop or Ptop
NSuspend from Tile_Utop, Ptop or Etop to
Tile_STop, Utop or Ptop
NSetsus from Tile_Utop, Ptop or Etop to
Tile_STop, Utop or Ptop

[0146] Ldmask and Ldmask* are functionally the same signal but are physically duplicated to limit loading. Crossing
the two lines over within a tile means that the tile circuitry is only connected to a particular line, in alternate tile positions
across the array.

[0147] Gates 2,4, 5and 6 form atlatch. The tlatch holds one bit of the stim-wait channel mask. The tlatch is transparent
(updated) when Ldmask is high, and latched when Ldmask is low. The inverse of the value on Din is established at the
output of gate 6 when Ldmask is taken high (i.e. during a Load_Mask instruction). This value is retained when Ldmask
is low (i.e. between Load_Mask instructions).

[0148] SetstimB is taken high via gate 7 if the output of gate 6 is low when NDostimR is taken low (i.e. whilst executing
Do-Stim instruction).

[0149] SetwaitB is taken high via gate 8 if the output of gate 6 is low when NDowaitR is taken low (i.e. whilst executing
Do_Wait instruction).

[0150] The structure of tile type 'P-top’ is shown in Figure 13. The functions of this tile are to remember whether this
stim-wait channel’'s mask bit was set in the most recent Load_Mask instruction, to generate an external stimulus output
during a Do-Stimx instruction when this stim-wait channel’s mask bit was set in the most recent Load_Mask instruction,
to generate a setstimmed array-operation pulse during a Do-Stim instruction when this stim-wait channel’s mask bit was
set in the most recent Load_Mask instruction and to generate a setwaiting array-operation pulse during a Do_Wait
instruction when this stim-wait channel mask bit was set in the most recent Load_Mask instruction.

Outputs: NStimout to BUTLER 1/O output
SetstimB to Tile_P below
SetwaitB to Tile_P below
NDostimL to Tile_Stop or Tile_Utop or Tile_Ptop
NDowaitL to Tile_Stop or Tile_Utop or Tile_Ptop
Inputs: Din from BUTLER 1/O input
Ldmask from Tile_Utop or Tile_Ptop or Tile_Etop
NDostimR from Tile_Utop or Tile_Ptop or Tile_Etop
NDowaitR from Tile_Utop or Tile_Ptop or Tile_Etop

18

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

(continued)

Routes: Ldmask from Tile_Utop, Ptop or Etop to
Tile_STop, Utop or Ptop
Ldmask* from Tile_Utop, Ptop or Etop to
Tile_STop, Utop or Ptop
NSuspend from Tile_Utop, Ptop or Etop to
Tile_STop, Utop or Ptop
NSetsus from Tile_Utop, Ptop or Etop to
Tile_STop, Utop or Ptop
NDostimx from Tile_Utop, Ptop or Etop to
Tile_Utop or Ptop
X5inX5B from BUTLER I/O input to Tile P below
X4in/X4B from BUTLER 1/O input to Tile_P below
X3in/X3B from BUTLER 1/O input to Tile_P below
X2in/X2B from BUTLER 1/O input to Tile P below
Xlin/X1B from BUTLER 1/O input to Tile_P below
XOin/XOB from BUTLER 1/O input to Tile_P below
NStimin/NStimxB from BUTLER I/O input to Tile_P below

[0151] NLdmask and NLdmask* are functionally the same signal but are physically duplicated to limitloading. Crossing
the two lines over within a tile means that the tile circuitry is only connected to a particular line, in alternate tile positions
across the array.

[0152] Gates 2,4, 5and 7 form atlatch. The tlatch holds one bit of the stim-wait channel mask. The tlatch is transparent
(updated) when Ldmask is high, and latched when Ldmask is low. The inverse of the value on Din is established at the
output of gate 7 when Ldmask is taken high (i.e. during a Load_Mask instruction). This value is retained when Ldmask
is low (i.e. between Load_Mask instructions).

[0153] NStimout is taken low via gate 6 if the output of gate 7 is low when NDostimx is taken low (i.e. during a Do_
Stimx instruction).

[0154] SetstimB is taken high via gates 8 and 10 if the output of gate 7 is low when NDostimR is taken low (i.e. during
a Do_Stim instruction).

[0155] Setwaitis taken high via gate 11 if the output of gate 7 is low when NDowait is taken low (i.e. during a Do_Wait
instruction).

[0156] Tile type 'E_top’ of Figure 14 operates to remember the activity number specified in the most recent Load_
Activity instruction and to initialise the distributed activity number encoding logic.

Outputs: In5B/X50ut to Tite_E below and to BUTLER 1/O output
In4B/X4out to Tile_E below and to BUTLER 1/O output
In3B/X30ut to Tile_E below and to BUTLER 1/O output
In2B/X20ut to Tile_E below and to BUTLER 1/O output
In1B/X1outto Tile_E below andto BUTLER I/O outputand to Tile_Atop
InOB/XOout to Tile_E below and to BUTLER 1/O output and to
Tile_Atop
Out5B to Tile_E below
Out4B to Tile_E below
Out3B to Tile_E below
Out2B to Tile_E below
Out1B to Tile_E below
OutOB to Tile E below

Inputs: Din5 from BUTLER 1/O input
Din4 from BUTLER 1/O input
Din3 from BUTLER 1/O input
Din2 from BUTLER 1/O input
Din1 from BUTLER /O input

19

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

(continued)

DinO from BUTLER I/O input
NLdact from Tile-Rtop
NLdact* from Tile_Rtop

Routes: Ldmask from Tile Rtop to Tile_Utop
NLdmask* from Tile_Rtop to Tile Utop
NDostimx from Tile_Rtop to Tile_Utop
NDostim from Tile_Rtop to Tile_Utop
NDowait from Tile Rtop to Tile_Utop
NSuspend from Tile_Rtop to Tile_Utop
NSetsus from Tile_Rtop to Tile_Utop

[0157] NLdmask and NLdmask* are functionally the same signal but are physically duplicated to limit loading. Similarly
for Ldact and Ldact*.

[0158] Gates 1 through 24 form six tlatches. The six tlatches are used to remember the activity number specified (on
Din5, Din4, Din3, Din2, Din1 and DinQ) in the most recent Load Activity instruction. The six tlatches are transparent
(updated) only when NLdact and NLdact* are low (i.e. during a Load_Activity instruction).

[0159] OutSB, Out4B, Out3B, Out2B, Out1B and OutOB are hardwired low.

[0160] The function of tile type 'R-top’ shown in Figure 15 is to generate array-operation pulses when the CPU is
reading from, or writing to the "Butler chip”, and to identify when a context switch is in progress.

Outputs: Ldmask to Tile_Etop Ldmask* to Tile_Etop NLdact to Tile_Etop NLdact* to Tile_Etop NDostimx to Tile_Etop
NDostim to Tile_Etop NDowait to Tile_Etop NSuspend to Tile_Etop Nsetsus to Tile_Etop NSlice to Tile_
Mtop Clrall to Tile_Mtop NSstartB to Tile_R below NCstaitB to Tile_R below NClrallB to Tile_R below NSuswtB
to Tile_R below

Inputs: NRead from BUTLER 1/O input NSelect from BUTLER 1/O input NWrite from BUTLER I/O input AOOO from
Tile_Mtop A001 from Tile_Mtop A010 from Tile_Mtop A011 from Tile_Mtop A100 from Tile_Mtop NNext
from Tile_Mtop

Routes: NNext/NNextB from Tile_Mtop to Tile_R below

[0161] The output from gate 1 is taken high when NRead and NSelect are taken low (i.e. when the CPU is reading
from the "Butler chip".

[0162] The output from gate 2 is taken high when NWrite and NSelect are taken low (i.e. when the CPU is writing to
the "Butler chip").

[0163] Ldmask is taken high via gate 5 if AOOO is high when the output from gate 2 is taken high (i.e. when the CPU
is writing to address 000).

[0164] Ldmask* is taken high via gate 6 if AOOO is high when the output from gate 2 is taken high (i.e. when the CPU
is writing to address 000). (NLdmask and NLdmask* are functionally the same signal but are physically duplicated to
limit loading.)

[0165] NLdact is taken low via gate 3 if AOO1 is high when the output from gate 2 is taken high (i.e, when the CPU is
writing to address 001).

[0166] NLdact* is taken low via gate 4 if AOO1 is high when the output from gate 2 is taken high (i.e. when the CPU
is writing to the address 001). (NLdact and NLdact* are functionally the same signal but are physically duplicated to limit
loading.)

[0167] NDostimx is taken low via gate 7 if AO10 is high when the output from gate 2 is taken high (i.e. when the CPU
is writing to address 010).

[0168] NDostim is taken low via gate 8 if AOOO is high when the output from gate 1 is taken high (i.e. when the CPU
is reading from address 000).

[0169] NDowait is taken low via gate 9 if A0O01 is high when the output from gate 1 is taken high (i.e. when the CPU
is reading from address 001).

[0170] NSuspend is taken low via gate 10 if AO10 is high when the output from gate 1 is taken high (i.e. when the
CPU is reading from address 010).

[0171] NSetsus is taken low via gate 11 if AO11 is high when the output from gate 1 is taken high (i.e. when the CPU
is reading from address 011).

[0172] NSstartB is taken low via gate 13 if A100 is high when the output from gate lis taken high (i.e. when the CPU
is writing to address 100).

20

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

[0173] NCstartB is taken low via gate 14 if A100 is high when the output from gate 2 is taken high (i.e. when the CPU
is reading from address 100).

[0174] NClrallB is taken low via gate 12 if AO11 is high when the output from gate 2 is taken high (i.e. when the CPU
is writing to address 011).

[0175] SuswaitB is taken high via gate 15 if either NDowait or NSuspend are low (i.e. during a Do_Wait or a Suspend
instruction).

[0176] Cross-coupled gates 16 and 17 form a srlatch. This 'Switching’ latch is set via gate 15 when either NDowait or
NSuspend is low (i.e. during a Dowait or Suspend instruction). The 'Switching’ latch is reset when NNext is low. (NNext
is taken low during nextact).

[0177] Concurrent set and reset of the 'Switching’ latch cannot occur, because NDowait, NSuspend and NNext are
taken low only while executing different instructions. NSlice will be low when the 'Switching’ latch is set.

[0178] Clirall is taken high via gate 18 whenever NClrallB is taken low (i.e. when the CPU is writing to address 011).
[0179] Tile type 'M-top’ is shown in Figure 16. Its functions are to decode the three input address lines A2, A1 and
A0, to generate a setpollend array-operation pulse during a Set_Pollend instruction, to generate a cirpollend array-
operation pulse during a Clear_Pollend instruction and to initialise the next activity search logic chain.

Output: A000 to Tile_Rtop A001 to Tile_Rtop A010 to Tile_Rtop A011 to Tile_Rtop A100 to Tile_Rtop A110 to Tile_
Atop A111 to Tile_Atop NNext to Tile_Rtop NSpollB to Tile_M below NCpollB to Tile_M below NFoundB to
Tile_M below

Inputs: A2 from BUTLER 1/O input A1 from BUTLER I/O input AO from BUTLER 1/O input Read from Tile_Atop Write
from Tile_Atop

Routes: NSlice from Tile_Rtop to Tile_Atop Clrall from Tile_Rtop to Tile_Atop SearchuB/SearchdBfrom Tile_M below
to Tile_M below MaybeB/Maybe from Tile_M below to Tile_Atop

Operation:

[0180] AO0O00 is established high when A2 is low, A1 is low and AQ is low, via gate 4.

[0181] AO001 is established high when A2 is low, A1 is low and AQ is high, via gates 3 and 6.
[0182] AO010 is established high when A2 is low, A1 is high and AOQ is low, via gates 2 and 7.
[0183] AO011 is established high when A2 is low, A1 is high and AOQ is high, via gates 2, 3 and 9.
[0184] A100 is established high when A2 is high, A1 is low and AQ is low, via gates 1 and 10.
[0185] A101 is established high when A2 is high, A1 is low and AQ is high, via gates 1, 3 and 11.
[0186] A110 is established high when A2 is high, A1 is high and AQ is low, via gates 1, 2 and 8.

A111 is established high when A2 is high, A1 is high and AOQ is high, via gates 1, 2, 3 and

[0187] NNext is taken low via gate 12 if A110 is high when Read is taken high (i.e. when the CPU is reading from
address 110).

[0188] NSpollB is taken low via gate 13 if A101 is high when Read is taken high (i.e. when the CPU is reading from
address 101).

[0189] NCpollBistaken low via gate 14 if A101 is high when Write is taken high (i.e. when the CPU is writing to address
101).

[0190] NFoundB is hardwired low.

[0191] Figure 17 shows tile type 'A-top’. This tile has the following functions: To control the interrupt line to the CPU;
to generate output-enable signals for the bidirectional I/O’s (that form the data bus interface to the CPU) when the CPU
is reading from the "Butler chip"; to initialise the pollset boundary and ’Last’ latch search logic chains.

Outputs: Ldcthhi to Tile_Ntop Ldctlhi to Tile_Ntop Ldcthlo to Tile_Ntop Ldctllo to Tile_Ntop NTest to Tile_Ntop Read
to Tile_Mtop Write to Tile_Mtop Outenhi to BUTLER 1/O bidirectional output-enables Outenlo to BUTLER
I/O bidirectional output-enables Nintrupt to BUTLER I/O output NPendB to Tile_A below PolsetdB to Tile_
A below LastfndB to Tile A below

Inputs: NRead from BUTLER I/O input NSelect from BUTLER 1/O input NWrite from BUTLER I/O input ActbitO from
Tile_Etop and BUTLER /O output Actbit1 from Tile_Etop and BUTLER 1/O output A111 from Tile_Mtop
A110 from Tile_Mtop NSlice from Tile Mtop Clrall from Tile_Mtop Maybe from Tile_Mtop Expired from Tile_
Ntop

Routes: NSlice from Tile_Mtop to Tile_Ntop

21

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2
Operation:

[0192] Read is taken high via gate 1 when NRead and NSelect are taken low (i.e. when the CPU is reading from the
"Butler chip".

[0193] Write is taken high via gate 2 when NWrite and NSeleet are taken low (i.e, when the CPU is writing to the
"Butler chip".

[0194] Outenhi and Outenlo are established high via gates 3, 4 and 5 when Read is high. (Read is taken high when
the CPU is reading from the "Butler chip").

[0195] Ldcthhiistaken highviagate 6if A111is highwhen Write is taken high (ie whenthe CPU is writingto address 111).
[0196] Ldctlhiis taken high via gate 7 if Alilis high when Write is taken high (ie when the CPU is writing from address 111).
[0197] NTestis taken low via gate 8 if A111 is high when Read is taken high (ie when the CPU is reading from address
111).

[0198] Ldcthloistakenlow viagate 9if A110is high when Write is taken high (ie when the CPU is writing to address 110).
[0199] Ldctllois takenlow via gate 10if AllO is high when Write is taken high (ie when the CPU is writing to address 110).
[0200] Cross-coupled gates 21 and 24 form a srlatch. This 'Enable counter interrupt’ latch is set via gates 11 and 15
when NTest is low and ActbitO is high. (NTest is taken low during a Control Interrupts instruction; ActbitO is bitO of the
activity number specified in the most recent Load Activity instruction.) The 'Enable counter interrupt’ latch is reset when
Clrall is high via gate 25, or when NTest and ActbitO are low via gates 16 and 25. (Clrall is taken high during clrall).
Concurrent set and reset of the 'Enable counter interrupt’ latch cannot occur, because NTest is taken low and Clrall is
taken high, only while executing different instructions.

[0201] Cross-coupled gates 20 and 22 form a srlatch. This 'Enable pre-emption interrupt’ latch is set via gates 11 and
14 when NTest is low and Actbitl is high. (NTest is taken low during a Control_Interrupts instruction; Actbitl is bitl of the
activity number specified in the most recent Load_Activity instruction.) The 'Enable pre-emption interrupt’ latch is reset
when Clrall is high via gate 23, or when NTest and Actbitl are low via gates 18 and 23. (Clrall is taken high during clrall.)
Concurrent set and reset of the ’Enable counter interrupt’ latch cannot occur, because NTest is taken low and Clrall is
taken high, only while executing different instructions.

[0202] Nintrupt will be established low via gates 12, 13 and 17 when the 'Enable counter interrupt’ latch is set and
Expired and NSlice are high. (Expired will be high when the counter has reached its limit. NSlice will be high between
context switches, i.e. between a Nextact instruction and a subsequent Suspend or a Do_Wait instruction.)

[0203] Nintrupt will be established low via gates 12, 13 and 19 when the 'Enable pre-emption interrupt’ latch is set
and Maybe and NSlice are high. (Maybe will be high when there is a candidate for scheduling that has a higher priority
than the activity currently running on the CPU. NSlice will be high between context switches, i.e. between a Nextact
instruction and a subsequent Suspend or a Do_Wait instruction.)

[0204] Nintrupt will be established high via gate 12 when NSlice is low. (NSlice will be low during a context switch, i.e
between a Suspend or a Do_Wait instruction and a subsequent Nextact instruction.)

[0205] NPendB, PolsetdB and LastfndB are hardwired low.

[0206] Figure 18 shows tile type 'N-top’ whose function is to indicate when the counter has received a specified number
(plus one) of its transitions on its counter input line.

Outputs: Expired to Tile_Atop Dataout to BUTLER 1/O bidirectional output NTstB to Tile_N below NTstB* to Tile_N
below NTstB** to Tile N below NTstB*** to Tile_N below

Inputs: NTest from Tile_Atop NSlice from Tile_Atop CountB from Tile_N below

Routes: Ldcthhi from Tile_Atop to Array right_Ntop Ldctlhi from Tile_Atop to Array_right_Ntop Ldcthlo from Tile_
Atop to Array_right_Ntop Ldctllo from Tile_Atop to Array_right_Ntop

[0207] Ldcthhi, Ldctlhi, Ldcthlo and Ldctllo from array_right_Ntop each drive eight of the thirty-two N_tile’s Ldctr inputs.
[0208] The value on NTest is transmitted to NTstB, NTstB*, NTstB** and NTstB*** are functionally the same signal
but are physically duplicated to limit loading.

[0209] Gates 1, 2, 5 and 10, and gates 7, 8, 9 and 10 form a pair of tlatches. When one is transparent the other is
latched, the way round determined by the value on CountB. The output from the first tlatch (gate 8) is connected to the
input of the second (gate 5). When NSlice is high this arrangement of gates implements a transition latch. Expired, if
already low, will be established high when CountB changes from a low to a high.

[0210] When NSlice is low the transition latch is initialised and Expired is established low. (NSlice will be low during
a context switch i.e. between a Suspend or a Do_Wait instruction and a subsequent Nextact instruction.) Dataout will
be established to the transition latch value (Expired) via gates 3 and 4 when NTest is low. (NTest is taken low during
an Control_Interrupts instruction.)

[0211] Dataout is established low via gate 4 when NTest is high.

[0212] The asynchronous "Butler chip" circuitry is inherently testable and so no additional internal test logicis necessary.

22

10

15

20

25

30

35

40

45

50

55

EP 2 151 758 A2

(Internal scan paths would be inappropriate because there are no clocked latches.)

[0213] Boundary scan I/O cells can be incorporated in a "Butler chip" that are to be used on boards that rely on
boundary scan techniques for in-circuit testing.

[0214] During a "Butler chip" component test, all 1/O’s can be driven or monitored by a single tester, therefore no
effects from asynchronous inputs can occur. The tester can be arranged to use a specific sequential set of test vectors,
with each test vector defining a test cycle. In this case, an input test pattern is applied to all inputs at the beginning of
each cycle and any outputs are monitored at the end of the cycle. Each test vector has one entry for each 1/0, plus one
entry to indicate to the tester whether the bidirectional data lines are to be driven or monitored for this cycle. An entry
comprises either a 1 or O to represent a high or low value, or an X when monitoring an undefined don’t-care output state.
[0215] Test vectors that execute a read instruction (i.e. with I/O inputs NSelect and NRead low) invoke a "Butler chip"
operation and monitor the result from the next activity selection logic in the same cycle. Thus both the setting of, and
the effect of setting any of the "Stimmed", "Waiting", "Suspended", "Started" and "Pollend" variables can be observed
at the outputs in one cycle (on data lines D6-DO).

[0216] Intermediate stages of the ripple down-counter are put onto the most significant nine bits (D15-D7) of the data
bus during a Control_Interrupts read instruction. Valid data is returned during test because the tester can only provide
counter input transitions at the start of a test cycle, and sufficient time is available for the ripple counter logic to stabilise
by the end of the cycle. (During normal operation valid data is not guaranteed because the counter input may be derived
from an asynchronous source.) The test vectors can be applied at any rate up to a maximum determined by the time
for the next activity selection logic to stabilise. They will confirm that the manufactured device conforms logically to the
design. Formal mathematical analysis can be used to verify a correct design.

Claims

1. An integrated circuit, for use as a scheduler of activities to be run on an associated processor, the circuit being
configured to support a "control node" mechanism by incorporating:

a "stim-wait" channel for holding statuses for at least one pair of control variables corresponding to each of said
activities, to control the scheduling of said activities, each of the activities being associated with at least one
stim-wait channel, a control variable of each of the stim-wait channels being settable to waiting status in relation
to its associated activity, and

a plurality of inputs each operable to set a control variable of a respective

stim-wait channel to stimmed status,

wherein each stim-wait channel associated with an activity has a ready output when the statuses of a pair of control
variables of the channel are both stimmed and waiting, the ready output identifying the associated activity as ready
for running on the processor.

2. Anintegrated circuit according to Claim 1 comprising a two-dimensional array of said stim-wait channels.

3. The integrated circuit, as claimed in either one of Claims 1 or 2, in which each of the activities is associated with
multiple stim-wait channels.

4. The integrated circuit according to Claims 2 and 3, in which the two-dimensional array has a plurality of rows of
stim-wait channels, each activity being associated with a row of stim-wait channels.

5. The integrated circuit, as claimed in either one of the preceding claims, configured for asynchronous operation in
which control variables of the stim-wait channels can be set at any time.

6. The integrated circuit, as claimed in any one of the preceding claims, in which at least one stim-wait channel is
arranged to hold internal control variables, settable to stimmed and waiting, associated with an activity.

7. The integrated circuit, as claimed in any one of Claims 4 to 6, in which a plurality of the stim-wait channels are also
arranged to transmit ready outputs produced by another stim-wait channel in the same row.

8. The integrated circuit, as claimed in any one of the preceding claims, in which each stim-wait channel includes

boolean latches for holding the statuses of said pairs of control variables, the latches having independent make-
true and make-false inputs that may be applied at any time.

23

10

15

20

25

30

35

40

45

50

55

10.

1.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

EP 2 151 758 A2

The integrated circuit, as claimed in any one of Claims 4 to 8, in which at least one stim-wait channel of each row
further holds a status for a suspended variable, the at least one stim-wait channel having a ready output when that
status is suspended.

The integrated circuit, as claimed in any one of Claims 4 to 9, in which at least one stim-wait channel of each row
is operable to hold statuses for a pair of waiting and externally stimmed control variables associated with an activity,
the at least one stim-wait channel having a ready output when said statuses are both stimmed and waiting.

The integrated circuit of any one of Claims 4 to 10 in which the rows of stim-wait channels have row numbers in the
array.

The integrated circuit, as claimed in Claim 11, in which at least one stim-wait channel of each row is customised
according to its row number such that an activity can be associated with a row.

The integrated circuit, as claimed in either one of Claims 11 or 12, in which at least one stim-wait channel of each
row is customised according to its row number such that an activity associated with a row can be externally addressed.

The integrated circuit of either one of Claims 12 or 13, in which said at least one stim-wait channel has a plurality
of input lines and is customised by inverting or transmitting values on said input lines,

The integrated circuit, as claimed in any one of the preceding claims, including next-activity selection logic for
identifying those activities which are ready for running on the associated processor, depending on the status of the
control variables.

The integrated circuit, as claimed in Claim 15, in which the next activity selection logic is further for remembering
when the particular activity is the activity currently running on the processor.

The integrated circuit, as claimed in Claim 4 together with Claims 15 or 16, in which each row of stim-wait channels
includes logic operable:

to identify when a particular activity is the next one to be returned to the processor,

to remember when the particular activity is the activity currently running on the processor,

to identify when a context switch is in progress,

to generate a reset for suspended, stimmed and waiting statuses of control variables for the particular activity
when the particular activity is being returned to the processor, and

to distribute signals to reset the statuses of all of the particular activity’s control variables comprising boolean
latches with independent make-true and make-false inputs that may be applied at any time.

The integrated circuit, as claimed in any one of Claims 4 to 17, in which each row of stim-wait channels includes
logic operable to identify whether an activity has been chosen by a load activity instruction.

The integrated circuit, as claimed in any one of Claims 4 to 18, in which each row of stim-wait channels includes
logic operable to inject a starting point into a distributed activity number encoding logic when the next activity is
returned to the processor for scheduling.

The integrated circuit, as claimed in any one of Claims 4 to 19, in which a priority level is allocated to each activity
and activities are grouped into one or more pollsets, a pollset comprising a contiguous group of activities associated
with rows of the array and having equal priorities, and in which each row of stim-wait channels is connected to
activity selection logic operable:

to configure a next activity search logic chain,
to allow designation of pollset boundaries, and
to identify when a higher priority activity than that currently running on the processor is available for scheduling.

The integrated circuit, as claimed in Claim 20, in which the activity selection circuit defines a round robin search

loop for each designated pollset, and a single search chain passing through all activities is configured to run through
the round robin search loop whilst respecting the priority order of the pollsets.

24

10

15

20

25

30

35

40

45

50

55

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

EP 2 151 758 A2

The integrated circuit, as claimed in Claim 20 or 21, including logic operable to identify when an activity has the
smallest number in the pollset of the next activity to be returned to the processor, and to indicate within each of the
pollsets the starting point for the round robin search loop.

The integrated circuit, as claimed in any one of Claims 20 to 22, including logic circuitry having two logic chains,
one of the logic chains running down an array of activities, and the other of the logic chains running up the array of
activities, the logic chains being arranged to be made false when crossing a boundary of the pollset but to be made
true when encountering the next activity to be scheduled.

The integrated circuit, as claimed in any one of the preceding claims, comprising level-driven, clock-free ripple logic
arranged, following an event, to establish a final stable condition of the integrated circuit.

An activity scheduler comprising an integrated circuit, as claimed in any one of the preceding claims, connected to
support the scheduling of activities in the processor.

A processing network comprising at least one processor arranged to be supported by an activity scheduler as
claimed in Claim 25.

A multiprocessor network comprising a plurality of processors each responsive to an activity scheduler as claimed
in Claim 25, wherein the activity schedulers are operatively linked together.

An integrated circuit according to any one of Claims 1 to 24, a control variable of each of the stim-wait channels
being settable to waiting status in relation to the activity for which it provides control logic.

An integrated circuit as claimed in any one of Claims 1 to 24, or in Claim 28, the circuit including means for setting
statuses for those control variables in response to a signal received from an associated processor.

An integrated circuit as claimed in any of Claims 1 to 24, or Claims 28 or 29, the circuit including means for setting
statuses for those control variables in response to a signal received from an associated peripheral device.

An integrated circuit as claimed in any of Claims 1 to 24, or in any of Claims 28 to 30, the circuit including means
for setting statuses for those control variables in response to a signal received from a second integrated circuit as
claimed in any of Claims 1 to 24, or in any of Claims 28 to 30.

An integrated circuit, as claimed in any of Claims 1 to 24, or in any of Claims 28 to 31, in which each stim-wait
channel has a ready output when the statuses of a pair of control variables of the channel are both stimmed and

waiting.

An integrated circuit as claimed in any of Claims 1 to 24, or in any of Claims 28 to 32 including means for temporarily
inhibiting any changes to control variables from entering the next- activity-selection logic.

An integrated circuit as claimed in any of claims 28 to 33 and incorporating decoding and encoding logic for routing
signals, identifying one or more of said n activities, between the associated processor and the appropriate row of tiles.

An integrated circuit as claimed in any of Claims 15 to 24, or in any of Claims 28 to 34 in which the next-activity-
selection logic includes means for selecting the next activity to be run on a round robin basis.

An integrated circuit as claimed in any of Claims 15 to 24, or in any of Claims 28 to 35 in which the next activity
selection logic includes means for allocating differing priority levels to groups of activities, and for selecting the next
activity to run within a group on a round robin basis within that group.

An integrated circuit as claimed in any of Claims 1 to 24, or in any of Claims 28 to 36, and including means for
detecting when a schedulable activity has a higher priority than that activity currently running on an associated
processor and thereby generating an interrupt signal.

Anintegrated circuit as claimed in any of Claims 1 to 24, orin any of Claims 28 to 37, and incorporating a counter circuit.

An integrated circuit as claimed in any of Claims 1 to 24, or in any of Claims 28 to 38, configured for asynchronous

25

10

15

20

25

30

35

40

45

50

55

40.

41.

42,

43.

44,

45.

EP 2 151 758 A2
operation, by incorporating level-driven, clock-free ripple logic.

An integrated circuit as claimed in any of Claims 1 to 24, or in any of Claims 28 to 39, and being fabricated using
CMOS techniques.

A processing network comprising a processing unit for running a plurality of activities and a scheduler of activities
linked to the processing unit via a data bus in which said scheduler comprises an integrating circuit in accordance
with any of Claims 1 to 24, or in any of Claims 28 to 40.

A processing network comprising a processing unit for running a plurality of activities, a scheduler of activities and
a peripheral device, in which said scheduler comprises an integrating circuit in accordance with any of Claims 1 to
24, or in any of Claims 28 to 40 and in which the scheduler further includes means for setting those control variables
comprising a "stim-wait" channel in response to a signal received from said peripheral device.

A multiprocessor network comprising a plurality of processing units, each being linked to an associated scheduler
and each scheduler being linked to adjacent schedulers in which each of said schedulers comprises an integrating
circuit in accordance with any of Claims 1 to 24, or in any of Claims 28 to 40.

A multiprocessor network as claimed in Claim 43 in which at least one of said schedulers includes means for setting
those control variables comprising a "stim-wait" channel in response to a signal received from an adjacent scheduler.

A multiprocessor network as claimed in either of Claims 43 or 44 and further including a peripheral device linked to

a scheduler, in which the scheduler includes means for setting those control variables comprising a "stim-wait"
channel in response to a signal received from said peripheral device.

26

EP 2 151 758 A2

| —-d. Vi~
dIHD dIHD
H311Ng H3ling
i t f
CLITETg [adnaQg
\‘1\.
g9 SNOURIYIUAS Jowir| SNOUOIYOUAG
v9
5/
— aone(] =l] aonag
a5 SNOUOIYOUASY a8 V8 e SNOUCIYDUASY
Wday Vs
Aowsy 7 \— Aoway
-~ arenud 1% <m\ _ ajeau
ge ve
Nndo
g1 Vi

1614

27

EP 2 151 758 A2

dOIN =, = = —— = = ==,
doly < << —> < << <<

NS sSsSsSss—ssS=s5s

dON MMy > MMM
AOIH [y fy fod o fxd [—— o frd) o))

donppbbpp——>DDDDPD

doiNoopobhh—hHhobhoD
doldppp Ap A — A A A A Ay

doNpopbpp — DoppDP

doNspoopo—ooppoD
dold A A A A AL A —— A A A B A A

doinpoobpobh —5oDDbb
doNoooohbD —HDHoDDoDD

doiNooooop—bopbob
dO3d Ay Ay A A A By ——> O B A A P A

donNpppoph— DpDpPD

donpoobpo —pobobo
dold A, A A A A Ay ——> A A e A AL P

donpobppp—bbhoppD

donoppoboh—ooopbb
dolSvwnnrnnm —> nrnnnnnnnw

BUTLER Array Structure

Ql

S 00N v NN

= O (N 0N < 1 A A O O OO
BREBRERE > BRE2ERRBRR
2eegeees ceLeLel

28

EP 2 151 758 A2

W

Aray Tie s 9"

SetstimA
SetwaitA
NSuspA
NSetsusA

Slice

Ready

1 4_‘
NStimp L
20
Curract
¢ | NHeset
& Act

SetstimB
SetwaitB
NSuspB
NSetsusB

29

EP 2 151 758 A2

Fig.4.
Array Tile_U

SetstimA
SetwaitA

Slice Slice

ReadyL ReadyR

Curract Curract
NResot NReset
Act Act

SetstimB
SetwaitB

30

EP 2 151 758 A2

Fig.5.
Array Tile_P

)) <] <) <] €| | < <
it =12 x| E i
> xixX| x| x| E| .= e
3| 3 2
Zl & 8
Slice -— Siice
ReadylL ReadyR
Row
Customised
11
10 ;!;
Y
Curractl, CurraciR
NResetL NResolR
Actl e
! = 2
& 27
S}ZZB
om| o i
» E =
Els ol
mi || mlmjmi =] 2 2
W=l —joln o =
Xl xlxl<l<ixiZ2ln 2

31

EP 2 151 758 A2

Fig.6.

Array Tile_E

<] < | <] <] <
[ToI I3 Hapl NaVll ol Hew' W < o5 i = et
Llelstelel s =5 g 8 5 E
O] ©f O o O] ©O
Slice Slice
Ready Ready
Row .
Customised Row Custornised
I—ﬁ &
2 3
- fs 9] 6 Z 8 9 J\10
VIV, |
1 13
12
Me
Curract Curract
NResset NRosat
Act ot
P = J
g
8 15
m fas} m m 28] fas)
o| o) of o|mjm ol 2| o o = S
IR IGe] K| R K= 5 =t = AR =

32

EP 2 151 758 A2

Fig.7.

Array Tile_R

NSstartA
NCstartA

NCirallA

NSuswiA

Searchin

Searchou

il & N
22
Me 3 23 5
Curract l 24
NReset 6 25 Here
Act — kc 4 NAct
ﬁ' o7 — NiNextact
; ? 30

28 29 Lclrall
L NSlice
Me

NSstanB

NCstartB
NCirallB

33

NNextB

NSuswiB

EP 2 151 758 A2

Fig.8.
Array Tile_M

SearchdA
NFoundA
NSpollA
NCpollA
MaybeA

Pollend
NPollend

Searchin |

Searchou

Poltop
Here Here
NAct o [—
NNextact NNextact
o Paolstart
|elrail
NSlice d NSlice
Me Me
as] 28] m
2 g Y e z| g
O o) 0 el =2
(5} « o jo) o =
h D L 99 O o]
0] w0 zZ = zl =

34

EP 2 151 758 A2

Fig.9.
Array Tile_A

PolsetuA
NPendA
PolsetdA
LastlopA
LastindA

Pollend
NPollend

@

Poltop |
Here 3 f_ as
NNaxtact >c !
Polstart] |
35 _/'{’
NSlice NG NSlice
Me \

PolsetuB
NPendB

PolsetdB
LastiopB

LastfndB

35

EP 2 151 758 A2

Fig.10.

/
1 VISIN \ «JISLN
S VISIN V4 N, ~-8ISIN
SEN NN
VISIN GISIN
—t | o

N_

[AN

—

>

m viuney qunoy

<

NSlice

36

EP 2 151 758 A2

Fig.11.
Array Tile_Stop

D

SetstimB

Ldmask

NDostim

NDowait

NSuspend

NSetsus
=y %
v v
B D
i 2] o)
w2 pd

37

EP 2 151 758 A2

Fig.12.
Array Tile_Utop

-

]

Ldmask Ldmask
Ldmask” Ldmask”*
NDostimx NDostimx
NDostim . NDostim
NDowait NDowait
NSuspend NSuspend
NSetsus NSstsus

-
8

SetstimB
SetwaitB

38

Array T

EP 2 151 758 A2

Fig.13.
le_Ptop

Slelelelelglel 5 £
AMAYNRE g ©
2 5
=
Ldmask Ldmask
L dmask* T Ldmask”™
NDostimx NDostlimx
NDostimL NDostimR
NDowaitL NDowalRB
NSuspend NSuspend
NSetsus NSetsus
11
2T =
Elg =
it ol oy~ QWD [}
> x| < <l Ziw N

EP 2 151 758 A2

HEIEE 2l g 2l el 2
Q § Q)c\<1 ol o|alalolo
r NLdact
NLdact*
Ldmask L.dmask
Ldmask* Ldmask”
NDostimx NDostimx
NDostim NDostim
NDowait NDowait
NSuspend NSuspend
NSatsus NSetsus
low low low Ilow Jow low
of ol] o @ w
mimo|almim ol % g8 o I:' 9.'
MmN~ O o s > 3 3 o]
ElelElElElE @) O Q @] O C

40

EP 2 151 758 A2

Fig.15.
Array Tile_Rtop

NRead

(3]
o(4] !
(5]
2
6
NLdact p—
NLdact* 7 A0Q0
as
AQO1
’—_.....———-
Ldmask @_‘ 010
. A
Ldmask
T £
A011
]
] A100
12]
13 ®
14 NNext
NDostimx ¢ N
NDostim ¢ .1._§/ Y &‘“
NDowait : .
NSuspend i 17 NSlice
NSetsus '_DC ' Clrall
18
' o0
18| @ o %
81 8w = 7]
381G -
pd A 2 2

41

EP 2 151 758 A2

Fig.16.
Array Tile_Mtop

AQ

af <

3
A0QO q ¢ ;>§ : A111
ADO1 5 1
A010 Z ¢ T 9 . A110
A0 9 T
A100 10t + 4~ 111
Write

NNext 12 Read

@ U?) Maybe
NSlice NSlice
Clralt Clrall

SearchdB
SearchuB
NFoundB
NSpoliB
NCpoliB
MaybeB

42

EP 2 151 758 A2

Fig.17.
Array Tile_Atop

al = =
21 =2 Q
= o i3
z| < <
Ldcthhi
Ldcetlhl
At11 SPNEPR N NTest
9 Ldcthlo
A110 10 Ldetlio
Expired
16
Write
Read

Maybe M] 22
N 25 -
NSlice . 23 NSlice

Clrall 1

low low low
o o
% o o]
& 3 £
o > @
pid o “

43

EP 2 151 758 A2

Fig.18.
Array Tile_Nfop

Ldcthhi Ldcthhi
Ldctihi Ldctihi
NTest

Ldcthio Ldcthio
Ldctlio Ldctile

Expired 1
2 Dataout

5

7

10 ? — o 8

NSlice

A

CountB
NTstB
NTstB*
NTstB**
NTstB™~

44

EP 2 151 758 A2

Fig.19.
Customising Tile_P and Tile_E

Rows 0,32

Rows 16,48

Rows 8,24,40,56

|]
Y Y Y Rows 4,12,20,28,36.44,52.60
N
Rows 2.6.,10,14,18,22,26,30,
34,38.42.46,50,54,58.62

Rows 1,3, 5,7, 911,138,185

I
17,19.21,23,25,27,29,31,
33,35,37.39,41,43,45 47,
49,51,53,55,57,59,61,63

45

EP 2 151 758 A2
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

* WO 9116681 A [0004] [0006] [0008]

46

	bibliography
	description
	claims
	drawings

