EP 2154 612 A2

Européisches
Patentamt

European

Patent Office

Office européen
des brevets

(12)

(43) Date of publication:
17.02.2010 Bulletin 2010/07

(21) Application number: 09162335.5

(22) Date of filing: 09.06.2009

(11) EP 2154 612 A2

EUROPEAN PATENT APPLICATION

(51) IntCl:
GO6F 11/36 (200601

(84) Designated Contracting States:
ATBEBG CHCY CZDE DKEE ES FIFR GB GR
HRHUIEISITLILT LULV MC MK MT NL NO PL
PT RO SE SI SKTR
Designated Extension States:
AL BA RS

(30) Priority: 13.08.2008 US 190838

(71) Applicant: Honeywell International Inc.
Morristown, NJ 07962 (US)

(72) Inventors:
¢ Schneider, Eric R.
Morristown NJ 07962-2245 (US)
* Kikta, Timothy J.
Morristown NJ 07962-2245 (US)

(74) Representative: Buckley, Guy Julian
Patent Outsourcing Limited
1 King Street
Bakewell
Derbyshire DE45 1DZ (GB)

(54)

(57) A computer system comprises a storage medi-
um configured to store software instructions; a process-
ing unit configured to execute the software instructions;
a bus; and an acknowledge device coupled to the
processing unit via the bus. The processing unitis further

Message logging for software applications

configured to periodically write debug messages to the
acknowledge device during execution of the software in-
structions and the acknowledge device is configured to
acknowledge the debug messages prior to processing
the debug messages.

Target 100
Debug function 133 1oL
Executable Code 132
Device
Storage Medium 130 103
112
D-Cache | Pracessing \\ e ?“f fer
124 ; 2Dlg 161
ies Unit Buffer
T-Cache 102 165
122
'''' Debug
Information
164
. Null
Logic medium
Host Analyzer 163
208 104 Acknowledge
Deyice 162_
Bridge device
106

Printed by Jouve, 75001 PARIS (FR)

(Cont. next page)

EP 2 154 612 A2

220

Target
Debug function 133 oL
Executable Code 132
Device
Storage Medium 130 103 113
112
D-Cache | Processing \ BoF ?f{ fer
9 . [AlE]
124 Unit Buffegr S
I-Cache 102 163
122
""""" Debug
Information
164
. T
Logic medium
Host Anglyzer 163
208 104 Acknowledge
Bridge device
106
Source Tocessed
ode String extract -
216 and I% Code 217 ID to string
program 215 5o formatting
Storage 2;’8 erence program 219
Medium o
214
i
Processing
Unit 212 Host
202 205
Input Device . : Logic
P Output Device Analyzer

100

104

Target

0

10

15

20

25

30

35

40

45

50

55

EP 2154 612 A2
Description
GOVERNMENT LICENSE RIGHTS

[0001] The U.S. Government may have certain rights in the present invention as provided for by the terms of contracts
N00030-05-C-0007 (Prime) and SC001-0000000145 (sub-contract) awarded by the United States Navy.

BACKGROUND

[0002] Debugging complex software in real-time on real hardware is often not possible without tools that operate in
real-time. Typical software and In-Circuit-Emulator (ICE) debuggers halt execution. Feedback control, communications
and other applications fail due to loss of control, time-outs or other time related issues when execution is halted.
[0003] Some tools operate in real-time but are difficult to use. Logic analyzers are used to capture data; however,
reconstructing a clear picture of CPU execution is often difficult. One reason for this is that logic analyzers typically
monitor main memory access yet CPU instruction and data cache avoid main memory access to improve performance.
Additionally, the low level bus cycles, even when translated to high level source code, are often difficult to navigate when
hunting for software bugs.

[0004] Many high end internet equipment applications such as core and edge routers as well as more mundane
applications perform message logging to various devices. This is done to output high level debug information that is
typically categorized into FATAL, ERROR, WARNING, and INFORMATION. Although the category names change their
intuitive meaning is the same from application to application. This allows developers and operators to check the status
of the system and troubleshoot operation. An example of this is the Windows XP ™ Administrative Tool "Event Viewer".
[0005] There is a significant performance cost of message logging when processing large amounts of information in
high performance or low cost applications. The cost is associated with: the invocation of the logging function itself, the
overhead of message data formatting and data transfer, the output device driver and operating system overhead, and
the reduction in CPU cache use for the actual application. One means of reducing driver and operating system overhead
in a conventional system is to store data into main memory (RAM), however this limits the amount of data logging. One
means of reducing formatting overhead in a conventional system is to perform the formatting in a low priority task which
runs when the application is waiting for data to process.

SUMMARY

[0006] The above mentioned problems and other problems are resolved by the presentinvention and will be understood
by reading and studying the following specification.

[0007] In one embodiment, a computer system is provided. The computer system comprises a storage medium con-
figured to store software instructions; a processing unit configured to execute the software instructions; a bus; and an
acknowledge device coupled to the processing unit via the bus. The processing unit is further configured to periodically
write debug messages to the acknowledge device during execution of the software instructions and the acknowledge
device is configured to acknowledge the debug messages prior to processing the debug messages.

DRAWINGS

[0008] Features of the present invention will become apparent to those skilled in the art from the following description
with reference to the drawings. Understanding that the drawings depict only typical embodiments of the invention and
are not therefore to be considered limiting in scope, the invention will be described with additional specificity and detail
through the use of the accompanying drawings, in which:

[0009] Figures 1A-1C are block diagrams of a system used for message logging according to one embodiment of the
present invention.

[0010] Figure 2 is a timing diagram for the transmission of debug messages according to one embodiment of the
present invention.

[0011] Figure 3 is a flow chart depicting a method of message logging according to one embodiment of the present
invention.

[0012] Figure 4 is a flow chart depicting a method of generating message logs in human readable format according
to one embodiment of the present invention.

[0013] In accordance with common practice, the various described features are not drawn to scale but are drawn to
emphasize specific features relevant to the present invention. Like reference numbers and designations in the various
drawings indicate like elements.

10

15

20

25

30

35

40

45

50

55

EP 2 154 612 A2
DETAILED DESCRIPTION

[0014] In the following detailed description, embodiments are described in sufficient detail to enable those skilled in
the art to practice the present invention. It is to be understood that other embodiments may be utilized without departing
from the scope of the present invention. For example, the following description describes embodiments of the present
invention with relation to PowerPC architecture. However, it is to be understood that embodiments of the presentinvention
are not to be limited to PowerPC architectures. The following detailed description is, therefore, not to be taken in a
limiting sense.

[0015] Embodiments of the present invention provide a low overhead message logging mechanism to assist in de-
bugging real-time systems. In particular, embodiments of the present invention enable faster transmission and logging
of debug messages by reducing the wait time for a processing unit to receive acknowledgment of receipt of debugging
messages. Embodiments of the present invention also enable output of error messages in a human readable format.
[0016] Figure 1 is a block diagram of a system 100 used for logging debug messages according to one embodiment
of the present invention. System 100 includes a target computer system 101, a host computer system 205 and a logic
analyzer 104. Target computer 101 is a computer system which is being tested or debugged. Logic analyzer 104 is used
in capturing debug data from target computer 101 and host computer 205 is a computer system which processes the
debug data captured by logic analyzer. Target computer 101 includes a processing unit 102 which is configured to
process executable code 132 on storage medium 130. Storage medium 130 is implemented as any appropriate computer
readable medium used for storage of computer readable instructions or data structures. Such computer media can be
any available media that can be accessed by a general purpose or special purpose computer or processor, or any
programmable logic device. Suitable computer readable media may comprise, for example, non-volatile memory devices
including semiconductor memory devices such as EPROM, EEPROM, or flash memory devices; magnetic disks such
as internal hard disks or removable disks (e.g., floppy disks); magneto-optical disks; CDs, DVDs, or other optical storage
disks; nonvolatile ROM, RAM, and other like media.

[0017] Processing unit 102 accesses device 103 through processor interface 112. Suitable devices include, but are
not limited to, communications devices, input and output devices, digital-to-analog or analog-to-digital converters, and
storage medium 130. Each time an access occurs, processing unit 102 receives an indication it can perform another
transfer. Waiting for the ability to perform another transfer slows processing. This wait time varies depending on the
speed of device 103 accessed. In general, for the same kind of device 103, faster devices with shorter wait times cost
more than relatively slower devices with longer wait times.

[0018] Processing unit 102 includes fast access instruction cache (lI-cache) 122 and data cache (D-cache) 124.
Processing unit 102 can access processor interface 112 by way of these caches to improve the overall speed of accesses.
For example, information accessed on storage medium 130 is copied to I-cache 122 and D-cache 124 using techniques
known to one of ordinary skill in the art. In particular, I-cache 122 is responsible for caching instructions and D-cache
124 is responsible for caching data. Future accesses to the same information can use the cache copies rather than go
out on processor interface 112. Each of I-cache 122 and D-cache 124 use a plurality of cache lines of fixed size. For
example, in the PowerPC 603E architecture, each of I-cache 122 and D-cache 124 are 16 KB in size with each of 512
cache lines being a fixed 32 bytes. Using a separate cache for instructions and data enables concurrent access of
instructions and data. However, embodiments of the present invention are not to be limited to separate caches for
instruction and data. In addition, processing unit 102 may include other components known to one of skill in the art, such
as a Memory Management Unit which is responsible for address translation between virtual and physical addresses.
[0019] Target computer 101 includes bridge device 106 to bridge different interface protocols between processing
unit 102 and a plurality of devices 103 such as storage medium 130. Processing unit 102 accesses device 103 in one
of three ways depending on the protocol requirements of processing unit 102 and device 103. In the exemplary embod-
iment shown in Fig. 1A, processing unit 102 accesses device 103 across processor interface 112 directly. However, in
the exemplary embodiment shown in Fig. 1B, processing unit 102 accesses device 103 across bridge device interface
113. In other embodiments, processing unit 102 accesses device 103 across processor interface 112 with the assistance
of bridge device 106. Bridge device 106 is used to connect to a plurality of different kinds of devices 103 including a
plurality of different kinds of storage medium 130 in target computer 101. In addition, bridge device 106 is used to, in
some embodiments, to bridge a plurality of different devices 103 across a plurality of different bridge interfaces 113
(shown in Fig. 1B).

[0020] Bridge device 106 may include a plurality of buffers 161 to buffer access to various instances of device 103
similar to D-cache 124. For example, in some embodiments, bridge device 106 supports a DRAM buffer which allows
processing unit 102 to post a write to DRAM and receive a faster acknowledge while bridge device 106 proxies the write
to DRAM at a slower rate.

[0021] The present invention also includes null medium 163 to provide a fast acknowledge to processing unit 102
without acting as proxy to any device 103. Null medium 163 uses debug information 164 to identify requests from
processing unit 102 to the null medium 163. Null medium 163 and debug information 164 are implemented as any

10

15

20

25

30

35

40

45

50

55

EP 2 154 612 A2

appropriate high-speed memory device. For example, null medium 163 and debug information 164 can be implemented
as an application specific integrated circuit (ASIC) or a field-programmable gate array (FPGA). In this embodiment, null
medium 163 and debug information 164 are coupled to processing unit 102 via bus 112 such as a processor local bus
(PLB). In addition, in this embodiment, null medium 163 and debug information 164 are part of bridge device 106.
However, in other embodiments, null medium 163 and debug information 164 can be part of processing unit 102, separate
device 103 or part of any component which allows processing unit 102 to perform a write access across a bus accessible
to logic analyzer 104.

[0022] In this exemplary embodiment of the present invention, acknowledge device 162 also includes debug buffer
165 to provide a fast acknowledge to processing unit 102 while acting as proxy to device 103. Debug buffer 165 performs
a similar function as a buffer in a conventional system. However, debug buffer 165 uses debug information 164 to identify
requests from processing unit 102 on bus 112 to debug buffer 165 and to identify device 103 transactions required for
bus 113. Debug buffer 165 is used for processing unit 102 writes to storage medium 130 to allow a simpler design than
conventional DRAM buffers. One example of this simpler design is the lack of cache coherency logic as used in con-
ventional systems. Specifically, cache coherency logic is not required in this exemplary embodiment because processing
unit 102 on bus 112 does not need to know about any other processing unit's debug data. Embodiments of the present
invention are not to be limited to buffering for DRAM, but may buffer for any device to which a processing unit may write,
such as storage devices, communications devices, or other output devices such as displays.

[0023] Although acknowledge device 162 in this exemplary embodiment includes null medium 163, debug information
164, and debug buffer 165, in other embodiments, acknowledge device 162 can consist of any combination of any
number of null medium 163 and/or debug buffer 165 along with debug information 164 needed for such combination.
[0024] Invocations of debug function 133 are interspersed throughout executable code 132 and called as processing
unit 102 executes code 132. During execution of debug function 133 processing unit 102 writes debug data to acknowledge
device 162. In some embodiments, debug data (including debug function 133 argument values) contains information
typically used in conventional systems, such as information which is categorized into FATAL, ERROR, WARNING, and
INFORMATION. In other embodiments, the debug data also contains additional information which is not typically included
in conventional systems such as subroutine entry and exit, subroutine arguments, intermediate calculation results, and
processing deadline margins.

[0025] Processing unit 102 must wait for an acknowledgment from bridge device 106 prior to sending more data. In
conventional systems, a bridge device holds off acknowledgement of the write until the bridge device can accept and
acknowledge receipt of the data. However, in embodiments of the present invention, acknowledge device 162 acknowl-
edges writes immediately. In particular, in some embodiments, such as those which implement null medium 163, the
data is simply acknowledged and dropped. This quick acknowledgment enables processing unit 102 to process debug
data faster than normal data. As shown in the exemplary timing diagram in Fig. 2, the acknowledge line (TA) is essentially
held low, in this embodiment, for the duration of the burst of debug message data on the data line allowing processing
unit 102 to send one bus-width of data after another.

[0026] In some embodiments, logic analyzer 104 is coupled to interface 112. Thus, even if debug data is dropped by
acknowledge device 162 in some embodiments, logic analyzer 104 is able to sample and store the debug data. Hence,
when debug data is written to acknowledge device 162, logic analyzer 104 records and processes the data. In particular,
logic analyzer 104 adds a timestamp to each debug message. Since processing unit 102 is able to burst data to ac-
knowledge device 162, logic analyzer 104 is able to log the debug message data at high speed compared to conventional
systems. Therefore, embodiments of the present invention are able to provide real-time logging of debug data without
the time delays and associated costs to the performance of processing unit 102 found in conventional systems.
[0027] Alternatively, logic analyzer 104 is coupled to interface 113, as shownin Fig. 1B, to capture debug data forwarded
from debug buffer 165. In some embodiments, device 103 does not exist on interface 113 coupled by logic analyzer
104. For example, if device 103 is a serial port chip, logic analyzer 104, in some embodiments, observes the same data
on interface 113 even when device 103 is removed. In other embodiments, interface 113 is only used to provide a debug
interface for logic analyzer 104. Furthermore, in some embodiments, it is not desirable to drop the debug data. In one
such embodiment, debug buffer 165 is coupled to device 103. Thus, in addition to acknowledging debug data immediately,
acknowledge device 162 forwards the debug data to device 103 over bus 113. Logic analyzer 104 is be coupled to bus
113 to capture debug data as it is forwarded to device 103. In some such embodiments, device 103 acts as the only
capture device for debug data. For example, if device 103 is a disk drive controller, it can capture and record the data
directly to disk, in some embodiments.

[0028] One exemplary function used to write the debug data to acknowledge device 162 is: writeDebugMsgl (addr,
ID, x, y, z). In one embodiment this debug function uses only one cache line of I-cache 122 to write one cache line of
data from D-cache 124 to acknowledge device 162. Inside the parentheses are the arguments used by the debug
function. In particular, "addr" is the address of acknowledge device 162 to which the data is written. The arguments "ID,
X, y and z" represent the values or arguments used by the function from code 132 and are the primary components of
the debug data. The meaning and values of ID,x,y,z vary based on the particular application orimplementation. Nominally,

10

15

20

25

30

35

40

45

50

55

EP 2 154 612 A2

ID is a unique number which identifies a specific parameterization of a writeDebugMsgl() invocation.

[0029] Debug function arguments, like x, y, and z, can be implemented as different data types. For example, in some
embodiments, X, y and z are float variables. In other embodiments, x, y, and z are integer variables. Notably, although
arguments, x, y, and z, are used in this example, embodiments of the present invention are not to be so limited. In
addition, the debug function may include fewer or additional arguments in other embodiments. For example, in some
embodiments, the debug function also includes an argument "flags". This additional argument indicates the importance
or severity of the current debug message. Examples of conventional flags already mentioned are FATAL, ERROR,
WARNING, etc.

[0030] In other embodiments, the debug function does not use the address argument. One such exemplary debug
functionis: writeDebugMsg2 (1D, x, y, z). This debug function always writes to a predefined cache address. Consequently,
this second exemplary debug function places less burden on the function caller. However, the cache footprint for the
second debug function may be greater than the cache footprint for the first exemplary debug function. In one embodiment
for the PowerPC architecture the second debug function uses one or more I-cache 122 cache lines due to the additional
need to identify the address to which to write.

[0031] Since the debug function is executed frequently when executing code 132, it is typically located in I-cache 122.
This is because I-cache 122 replaces cache lines using a least-recently used (LRU) replacement policy. Therefore,
executing the debug function frequently typically maintains the debug function in I-cache 122. Running the debug function
from I-cache 122 significantly improves performance. For example, in one embodiment, the average time for a write to
acknowledge device 162, across a 4 byte bus using the debug function from I-cache 122, is roughly 175 bus clocks
compared to roughly 250-500 bus clocks when not running the debug function from I-cache 122. For example, in another
embodiment, with an 800MHz x 64-bit front side bus (i.e. 112), 87 clocks equate to less than 110 ns per debug function
invocation. Executable code 132 repeating a task at a 100 Hz rate could have 250 debug function invocations per task
cycle and still only use 0.25% of processing time for executable code 132.

[0032] Embodiments of the present invention also enable formatting the raw data written to logic analyzer 104 into a
human readable message. In this exemplary embodiment, the formatting is performed by host 205. This offloads process-
ing from processing unit 102 in target 101 to processing unit 202 in host 205 for the formatting and display of print
functions. In particular, the unique number (ID) passed to debug function 133 is used to correlate format strings with the
data captured by logic analyzer 104. For example, format strings include the text of messages associated with a print()
function or other similar output to a user.

[0033] Processing unit 202 executes program 215 which locates and extracts human readable format strings from
print functions from source code 216. Source code 216 is the source code for executable code 132 executed by processing
unit 102. Processing unit 202 saves each extracted format string and a unique correlating index number in a reference
file 218. Nominally processing unit 202 ensures that each index number is unique as the format strings and index numbers
are extracted. If the index number is not unique, processing unit 202 generates a unique number in some embodiments.
Alternatively, processing unit 202 generates a unique number for each function rather than using the index numbers
from source code 232 to ensure that each number is unique. Although reference file 218 is shown as being stored on
storage medium 214, it is to be understood that reference file 218 can be stored on a separate appropriate storage
medium such as flash memory devices; magnetic disks such as internal hard disks or removable disks (e.g., floppy
disks); magneto-optical disks; CDs, DVDs, or other optical storage disks; RAM, and other like media.

[0034] Source code 216 is updated with the unique ID inserted into the print function to generate processed source
code 217. For example, in the print statement below, the ID argument, 0 in this example, which is the first argument to
the print statement, is replaced by the unique ID.

[0035] Print(0,"%d] meaningless error message on interface %d with data %d\n,interface,data);

[0036] In the present invention, processing unit 202 additionally saves processed source code 217 where calls to the
print function are replaced by calls to debug function 133 (e.g. writeDebugMsgl) with the ID argument corresponding to
the print function’s string as saved in reference file 218. Although processed source code 217 is shown as a separate
file it may alternatively be a temporary generated file as part of a conversion process from source code 216 to executable
code 132 similar to how a C compiler may pre-process source code while generating executable images.

[0037] In some embodiments of the present invention, the index number associated with each extracted format string
is used solely as the identification number for the format string. When processing unit 102 executes debug function 133
it passes the unique ID number of the format string and the arguments to be formatted to acknowledge device 162. Logic
analyzer 104 captures the ID and argument values and, in some embodiments, logs the captured ID and argument
values with a time stamp. Alternatively, device 103 is configured, in some embodiments, to capture the ID and argument
values.

[0038] Processing unit 202 executes ID to string formatting program 219 to reconstruct a human readable message
using the format string from reference file 218 and trace data stored by logic analyzer 104. From logic analyzer 104
trace data, processing unit 202 obtains a timestamp and sequence number added by logic analyzer 104 as well as the
values captured by logic analyzer 104 such as the ID and arguments X, y, and z. Processing unit 202 obtains the format

10

15

20

25

30

35

40

45

50

55

EP 2 154 612 A2

string from reference file 218. Processing unit 202 formats the logic analyzer data using the format string and outputs
the result to output device 208. Output device 208 can be implemented as a display element, printer, removable disk
drive, etc. The following example illustrates the transformation of a format string to a set of numbers and its reconstruction
to human readable format. It is to be understood that the example provided below is merely illustrative and embodiments
of the presentinvention are not to be limited by this example. In this example, the human readable format string in source
code 216 is:

[0039] printf("The gimbals’ angles are: (%g, %g, %g)\n", f1, 2, {3);

[0040] In the above print statement, the variables f1, f2, and f3 are float type variables. Processing unit 202 finds this
statementin source code 216 and saves itin reference file 218 with the index number from source code 216. An exemplary
segment of reference file 218 is shown below:

[0041]

1 "Currenttranspose ofthe matrixis: %g, %g, %g"
2 "void dispatcher (void)"

135 "The gimbals’ angles are: %g, %g, %g"

[0042] The segment of reference file 218 above shows an array of human readable format strings. Each string has a
unique identification number in the array. Processing unit 102 then executes code 132 and a debug function, such as
writeDebugMsgl(addr, ID, X, y, z) described above, to debug source code 132. In this example, the value of addr is
0x50C00020, the value of ID is 135, and the values of x, y and z are 1.0, 2.0 and 3.0 respectively. In this embodiment,
the address 0x50C00020 corresponds to the address range of acknowledge device 162. The logic analyzer trace of this
debug message appears as follows:

[0043]

0x50C00020: 05000135 00000000 11111111 11111111
22222222 22222222 33333333 33333333

[0044] As can be seen, the example print statement has been reduced to just four float numbers in the logic analyzer
trace above (which are notated as 11111111 11111111 for 1.0 etc). In addition, the logic analyzer trace includes the
argument values of the print statement. Processing unit 202 then executes ID to string formatting program 219 to
reconstruct the example string in a human readable format based on logic analyzer 104 captured data. In some embod-
iments, processing unit 202 reconstructs the format string when indicated by user input via user input device 220. User
input device 220 can be implemented as a mouse, touch screen, keyboard, etc. In other embodiments, processing unit
202 automatically reconstructs the format string from the logic analyzer trace. Alternatively, processing unit 202 outputs
the logic analyzer trace along with the reconstructed format string upon occurrence of a particular event, such as detection
of an error or completion of execution of executable code 132.

[0045] A segmentofanexemplary output ofthe logic analyzer trace with the reconstructed format string is shown below:
[0046]

5402) 3.20:111.40 135 The gimbals’ angles are: (1.0, 2.0, 3.0)
5403) 3.20:111.42 573 The ...

[0047] Ascanbe seen, the outputincludes a sequence number (e.g. 5402) and time stamp (e.g. 3.20:111.40) obtained
from logic analyzer 104. The output also includes the message ID and the human readable format string obtained from
reference file 118. The values of f1, f2, and f3 are also included. Notably, the logic analyzer trace may include additional
information. For example, in some embodiments, the logic analyzer trace also includes a user category ID obtained from
logic analyzer 104 based on the address to which it is written (e.g. 0xX50C00020). The category is displayed in a human
readable format based on user categories used for filtering obtained from reference file 118. The logic analyzer trace
output provides a more user friendly description of the functions and the attribute values used at that time. Hence, a
user is able to more quickly interpret the logic analyzer trace and debug problems in source code 132.

[0048] Figure 3 is a flow chart showing a method 300 of message logging according to one embodiment of the present
invention. Method 300 can be implemented in a system such as system 100 described above. At 302, a processing unit
(e.g. processing unit 102) transmits a first data signal (e.g., a debug message) to an acknowledge device (e.g., acknowl-
edge device 162) via a bus (e.g., bus 112). When the acknowledge device receives the first data signal, it acknowledges

10

15

20

25

30

35

40

45

50

55

EP 2 154 612 A2

receipt of the first data signal prior to other processing of the first data signal at 304. In particular, in some embodiments,
the acknowledge device drops the first data signal after acknowledging receipt. In other embodiments, the acknowledge
device forwards the data signal to a separate memory (e.g., storage medium 130) after acknowledging receipt of the
first data signal. At 306, a logic analyzer (e.g, logic analyzer 104) captures the first data signal on the bus. Method 300
then returns to 302 where a second data signal is transmitted to the acknowledge device. In particular, the processing
unit bursts the second and subsequent data signals to the acknowledge device as described above.

[0049] Figure 4 is a flow chart showing a method 400 of reconstructing human readable format strings in a logic
analyzer trace according to one embodiment of the present invention. Method 400 can be implemented in software
instructions tangibly embodied on a computer readable medium and executed by a processing unit such as processing
unit 102. Such computer readable media can be any available media that can be accessed by a general purpose or
special purpose computer or processor, or any programmable logic device. Suitable computer readable media may
include storage or memory media such as magnetic or optical media, e.g., disk or CD-ROM, volatile or non-volatile
media such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM, SRAM, etc.), ROM, EEPROM, flash memory, etc. as well
as transmission media such as electrical, electromagnetic, or digital signals, conveyed via a communication medium
such as a network and/or a wireless link.

[0050] At 402, the processing unit extracts human readable format strings from source code (e.g. source code 132).
In some embodiments, the processing unit also extracts an index number from the source code associated with each
human readable format string. At 404, the processing unit stores the human readable format strings in a reference file
(e.g. reference file 118). The human readable format strings are stored in an array with a unique identification number
(also referred to as a message ID). In some embodiments, the unique identification number is the index number from
the source code. The processing unit ensures that the identification number is unique and generates a unique number
if the index number from source code is not unique.

[0051] At 406, the processing unit correlates the extracted human readable format strings with logic analyzer traces
obtained from a debug function during execution of the source code. The extracted human readable format strings are
correlated with the logic analyzer traces based on the unique identification number as described above. At 408, the
processing unit outputs the logic analyzer trace values in human readable format using the human readable format
strings from the reference file. In some embodiments, the processing unit outputs the human readable format when
indicated by user input. In other embodiments, the processing unit outputs the human readable format upon occurrence
of a specified event such as completion of execution of the source code or detection of an error.

[0052] Although specific embodiments have been illustrated and described herein, it will be appreciated by those of
ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for
the specific embodiment shown. This application is intended to cover any adaptations or variations of the present
invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.

Claims
1. A system (100) comprising:

a storage medium (130) configured to store software instructions;

a processing unit (102) configured to execute the software instructions;

a bus (112);

an acknowledge device (162) coupled to the processing unit (102) via the bus (112); and

a logic analyzer (104) coupled to the bus (112) to sample debug messages written to the acknowledge device
(162) by the processing unit (102) during execution of the software instructions;

wherein the acknowledge device (162) is configured to acknowledge the debug messages prior to processing the
debug messages.

2. The system (100) of claim 1, wherein the acknowledge device (162) is configured to forward the debug messages
to the storage medium (130) after acknowledging the debug messages.

3. The system (100) of claim 1, wherein the acknowledge device (162) is configured to not store the debug messages
in the acknowledge device (162).

4. The system (100) of claim 1, further comprising a second processing unit (202) configured to extract a plurality of
format strings from a source code file (216) and save the plurality of extracted format strings in a reference file (218),
the processing unit (202) further configured to correlate at least one of the plurality of extracted format strings with

10

15

20

25

30

35

40

45

50

55

10.

EP 2 154 612 A2
the debug messages sampled by the logic analyzer (104).

The system (100) of claim 4, wherein the second processing unit (202) is configured to extract an index number
from the source code file (216) for each of the plurality of format strings, wherein the processing unit (202) correlates
the at least one of the plurality of format strings with the sampled debug messages based on the extracted index
number.

A method (300) of logging debug messages, the method comprising:
transmitting a first debug message to an acknowledge device (302);
acknowledging receipt of the first debug message prior to other processing of the first debug message by the
acknowledge device (304); and

transmitting a second debug message once receipt of the first debug message is acknowledged (302).

The method (300) of claim 6, wherein transmitting the second debug message comprises bursting the second debug
message to the acknowledge device (302).

The method (300) of claim 6, further comprising capturing the first debug message with a logic analyzer (306).

The method (300) of claim 6, further comprising dropping the first debug message after acknowledging receipt of
the first debug message (304).

The method (300) of claim 6, further comprising forwarding the first debug message to a memory device after
acknowledging receipt of the first debug message (304).

EP 2 154 612 A2

0 S S S 0 Y P A8 R R

o

Q5 0 S O D N 6 O R Y O

90
2in2p 26p1lg

15
J334ng

2bpa|mouy >y

£97
WnipaL

i

797
MOLLDUIO JUT
bngaq

&5l
J43)4ng
bngag

106 906 000

V1 914

107

yabany

Z2CT BP0 2{guiniexy

§E7 voiaung Bngag |

w $OU g0
SRz ALY +50H
a1bo
2e1
T 2UTDYT y
iy yel
r/ Buisse00d | auopa-q
c1i
T | 8T unipay abvuis
01A2(

EP 2 154 612 A2

907
221A3p 3bplig

291 931As]
BB 3| MOuA D

£91
wnipau

HLN

797
LOLDUMO JUT
bngaq

6oy

o J24ihg
191 brgac]
Lm.%uﬁm

gl 914

f/mx

€01
22142

101
126D

OS] wnipsw sbniolg

wem;w BPOD BGN0AKT

£E7 uoipound bngag

FOL 40¢
&&N%“dm,ﬂ 150H
b0
:
271
..M....M; W01
UM ¥er
Busssanodd | auaeo-q

T

11

EP 2 154 612 A2

107

yabup]

001

o1 914

0T T
Jaz Ao 022
umw maﬂ 3012 nding 221G 4nduT
e e M
&z -
150H ¢ld LN 1
buissao0.g
¥z
575 wnipeyw g
&T¢ wdboud FIU2U3 J23 _ abniolg
BUiLLDuI0) £17 wibaboud :
b I puv Gi7
ULILS o) Q7 Nwwuwmwm I o mmww
P3s5Ea20UY 304N0% :

B oo 00

12

EP 2 154 612 A2

R R A K XX

TA

FIG. 2

13

300

EP 2 154 612 A2

302

kA

Transmit debug message to acknowledge device

¥

Acknowledge receipt of debug message
prior to other processing of debug message

kA

Copture debug message with logic analyzer

FIG. 3

14

304

306

400

EP 2 154 612 A2

402

Extract human readable format strings from source code

v

404

Store extracted format strings ina reference file

k4

Correlate the extracted format strings with debug messages

captured by a logic analyzer

406

¥

408

Output the extracted format strings with the correlated format strings ,/I

FIG. 4

15

	bibliography
	description
	claims
	drawings

