TECHNICAL FIELD
[0001] The present disclosure relates to mobile wireless networks and in particular to radio
               link timing synchronization of long term evolution based wireless networks.
 
            BACKGROUND
[0002] Timing and frequency synchronization is a crucial part of wireless communication
               such as Orthogonal Frequency Division Multiplexing (OFDM) technology based 3GPP Long
               Term Evolution (LTE) system. In fact, it is widely recognized that an OFDM based communication
               system is very sensitive to frequency and timing error and existing techniques do
               not meet the performance requirement for LTE uplink (UL) synchronization. The challenge
               for LTE UL timing synchronization is that, to keep the synchronization overhead as
               low as possible to preserve LTE system overall capacity, the radio resources are limited
               for timing estimation. That means only very narrow radio bandwidth, limited time duration
               and limited signal to noise ratio (SNR) for the reference signal are available, especially
               at cell edge. Accordingly, improved methods of radio link timing synchronization in
               LTE systems remain highly desirable.
 
            SUMMARY
[0003] In accordance with an embodiment of the present disclosure there is provided a method
               for performing a radio link timing estimation for synchronization to a wireless communications
               channel. The method comprises obtaining a channel frequency response estimate from
               a received reference signal comprising multiple non-coherent sounding reference signal
               (SRS) Orthogonal Frequency Division Multiplexing (OFDM) symbols, generating a frequency
               response covariance matrix from the channel frequency response estimate and estimating
               timing offsets of the received reference signal using covariance matrix and timing
               offset estimation algorithms.
 
            [0004] In accordance with another embodiment the present disclosure there is provided a
               mobile wireless device operating on wireless network. The mobile wireless device comprises
               a receiver and a processor coupled to the receiver. The processor performs a radio
               link timing estimation for synchronization to a wireless communications channel. The
               timing estimation comprises obtaining a channel frequency response estimate from a
               received reference signal comprising multiple non-coherent sounding reference signal
               (SRS) Orthogonal Frequency Division Multiplexing (OFDM) symbols, generating a frequency
               response covariance matrix from the channel frequency response estimate and estimating
               timing offsets of the received reference signal using covariance matrix and timing
               offset estimation algorithms.
 
            [0005] In accordance with another embodiment of the present disclosure there is provided
               a base station transceiver in a wireless network. The base station transceiver comprises
               a receiver and a processor coupled to the receiver. The processor performing a radio
               link timing estimation for synchronization to a wireless communications channel. The
               timing estimation comprises obtaining a channel frequency response estimate from a
               received reference signal comprising multiple non-coherent sounding reference signal
               (SRS) Orthogonal Frequency Division Multiplexing (OFDM) symbols, generating a frequency
               response covariance matrix from the channel frequency response estimate and estimating
               timing offsets of the received reference signal using covariance matrix and timing
               offset estimation algorithms.
 
            BRIEF DESCRIPTION OF THE DRAWINGS
[0006] Further features and advantages will become apparent from the following detailed
               description, taken in combination with the appended drawings, in which:
               
               
Figure 1 is a block diagram of wireless mobile device;
               Figure 2 is a block diagram of a wireless base station;
               Figure 3 is a schematic representation of a simplified OFDM transmitter;
               Figure 4 is a schematic representation of a simplified OFDM receiver;
               Figure 5 is graph of a typical urban channel delay profile;
               Figure 6 is a method of performing timing synchronization;
               Figures 7A-D are estimated time delay profiles for simulation Case 1;
               Figures 8A-D are estimated time delay profiles for simulation Case 2;
               Figures 9A-D are estimated time delay profiles for simulation Case 3;
               Figures 10A-D are time estimation errors for simulation Case 1;
               Figures 11A-D are time estimation errors for simulation Case 2; and
               Figures 12 A-D are time estimation errors for simulation Case 3.
 
            [0007] It will be noted that throughout the appended drawings, like features are identified
               by like reference numerals.
 
            DETAILED DESCRIPTION
[0008] In Orthogonal Frequency Division Multiplexing (OFDM) technology based 3GPP Long Term
               Evolution (LTE) system, two types of timing estimation techniques: time-domain based
               techniques and frequency-domain based techniques can be used in the receivers during
               synchronization. When there is little or no frequency error, a very straightforward
               and very efficient timing estimation technique is the correlation technique. With
               this technique, the receiver in the time domain correlates a known sequence with the
               received sounding reference signal (SRS) or demodulation reference signal (DRS) that
               has been modulated by a known sequence. The result of the correlation produces a peak
               that indicates signal arriving time offset. This timing estimation technique relies
               on the good circular correlation properties of the reference sequence. Ideally, the
               sequence should have zero circular autocorrelation when the time shift is not zero.
               When there is no time shift, the circular autocorrelation should produce a very high
               peak. Sequences generated with Zadoff-Chu codes have this property.
 
            [0009] The correlation technique can directly be applied in a wireless multi-path environment.
               When the signal bandwidth is sufficiently wide, resolution of the different peaks
               (correspond to different paths) improves and this correlation technique can detect
               the time of arrival of the different paths by searching for the multiple correlation
               peaks. When a frequency offset (due to local oscillator drifting or Doppler shift)
               exists as well as the timing offset, the performance of this time domain correlation
               technique degrades to some degree.
 
            [0010] This time-domain correlation timing estimation technique is based on a known sequence
               with good circular correlation property. Another type of time-domain timing estimation
               is based on exploring the periodic pattern of the reference signal. In general, when
               there is no significant frequency offset, the timing estimation techniques based on
               simple correlation with known reference sequence has better performance than these
               techniques based on exploring the periodic pattern of the reference signal.
 
            [0011] For single-path radio propagation channels with ideal reflector, the channel impulse
               response would be a delta function with unknown time shift. This time shift is what
               the timing synchronization task needs to estimate and to correct later. In multi-path
               channel environment, the ideal channel impulse response would be multiple delta functions
               with different time shifts that correspond to the different paths' travel distances.
               The timing synchronization task should adjust the transmitter time to align the time
               of arrival of the first path with the receiver time.
 
            [0012] Figure 1 is a block diagram of a wireless mobile device 100 incorporating a communication
               subsystem having both a receiver 112 and a transmitter 114, as well as associated
               components such as one or more embedded or internal antenna elements 116 and 118,
               local oscillators (L0s) 113, and a processing module such as a digital signal processor
               (DSP) 120. The particular design of the communication subsystem will be dependent
               upon the communication network in which the device is intended to operate such as
               in a 3GPP LTE network.
 
            [0013] The wireless mobile device 100 performs synchronization, registration or activation
               procedures by sending and receiving communication signals over the network 102. UL
               signals received by antenna 116 through communication network 100 are input to receiver
               112, which may perform such common receiver functions as signal amplification, frequency
               down conversion, filtering, channel selection and the like, and in the example system
               shown in FIG. 1, analog to digital (A/D) conversion. A/D conversion of a received
               signal allows more complex communication functions such as demodulation, decoding
               and synchronization to be performed in the DSP 120.
 
            [0014] In a similar manner, signals to be transmitted are processed, including modulation
               and encoding for example, by DSP 120 and input to transmitter 114 for digital to analog
               conversion, frequency up conversion, filtering, amplification and transmission over
               the communication network 102 via antenna 118. DSP 120 not only processes communication
               signals, but also provides for receiver and transmitter control. For example, the
               gains applied to communication signals in receiver 112 and transmitter 114 may be
               adaptively controlled through automatic gain control algorithms implemented in DSP
               120.
 
            [0015] Wireless device 100 preferably includes a radio processor 111 and a control processor
               138 which together control the overall operation of the device. DSP 120 is located
               on radio processor 111. Communication functions are performed through radio processor
               111.
 
            [0016] Radio processor 111 interacts with receiver 112 and transmitter 114, and further
               with flash memory 162, random access memory (RAM) 160, the subscriber identity module
               164, a headset 168, a speaker 170, and a microphone 172.
 
            [0017] Microprocessor 138 interacts with further device subsystems such as the display 122,
               flash memory 140, random access memory (RAM) 136, auxiliary input/output (I/O) subsystems
               128, serial port 130, keyboard 132, other communications 142 and other device subsystems
               generally designated as 144.
 
            [0018] Some of the subsystems shown in Figure 1 perform communication-related functions,
               whereas other subsystems may provide "resident" or on-device functions. Notably, some
               subsystems, such as keyboard 132 and display 122, for example, may be used for both
               communication-related functions, such as entering a text message for transmission
               over a communication network, and device-resident functions such as a calculator or
               task list.
 
            [0019] Software used by radio processor 111 and microprocessor 138 is preferably stored
               in a persistent store such as flash memory 140 and 162, which may instead be a read-only
               memory (ROM) or similar storage element (not shown). Those skilled in the art will
               appreciate that the operating system, specific device applications, or parts thereof,
               may be temporarily loaded into a volatile memory such as RAM 136 and RAM 260. Received
               communication signals may also be stored in RAM 136.
 
            [0020] As shown, flash memory 140 can be segregated into different areas for computer programs
               146, device state 148, address book 150, other personal information management (PIM)
               152 and other functionality generally designated as 154. These different storage types
               indicate that each program can allocate a portion of flash memory 140 for their own
               data storage requirements. Control processor 138, in addition to its operating system
               functions, preferably enables execution of software applications on the mobile station.
 
            [0021] For voice communications, overall operation of wireless mobile device 100 is similar,
               except that received signals would preferably be output to the speaker 170 or headset
               168 and signals for transmission would be generated by the microphone 172. Alternative
               voice or audio I/O subsystems, such as a voice message recording subsystem, may also
               be implemented on mobile station 102.
 
            [0022] Serial port 130 in Figure 1 would normally be implemented in a wireless mobile device
               that have PDA functionality for which synchronization with a user's desktop computer
               (not shown) may be desirable, but is an optional device component. Such a port 130
               would enable a user to set preferences through an external device or software application
               and would extend the capabilities of wireless mobile device 100 by providing for information
               or software downloads to wireless mobile device 100 other than through a wireless
               communication network. The alternate download path may for example be used to load
               an encryption key onto the device through a direct and thus reliable and trusted connection
               to thereby enable secure device communication.
 
            [0023] Other device subsystems 144, such as a short-range communications subsystem, is a
               further optional component which may provide for communication between wireless mobile
               device 100 and different systems or devices, which need not necessarily be similar
               devices. For example, the subsystem 144 may include an infrared device and associated
               circuits and components or a Bluetooth™ communication module to provide for communication
               with similarly enabled systems and devices.
 
            [0024] Figure 2 is a block diagram of wireless base station 103 connected to wireless network
               102. The wireless base station 103 communicates with a plurality of wireless mobile
               devices located in the service region. A receiver 212 is coupled to one or more receive
               antennas 202 for processing signals from the wireless mobile devices. Downlink (DL)
               signals from wireless mobile devices are received by antenna 202 are input to receiver
               212, which may perform common receiver functions as signal amplification, frequency
               down conversion, filtering, channel selection and analog to digital (A/D) conversion.
               A/D conversion of a received signal allows more complex communication functions such
               as demodulation, decoding and synchronization to be performed in the receive processor
               214. In the transmission path, one or more transmit antennas 204 are coupled to a
               transmitter 216. The transmitter 216 provides frequency up-conversion including modulation,
               amplification and transmission over the communication to wireless mobile device 100.
               Digital to analog conversion and encoding can be performed by transmit processor 218.
               The processor 220 provides additional processing of the received and transmitted signals
               and interfaces with backhaul interfaces 230 and OA&M 232 interfaces with the rest
               of the wireless network 102 for operation of the BTS 103. The receive processor 214
               may additional perform timing synchronization on signals received from wireless mobile
               devices 100 on the wireless network 102.
 
            [0025] In OFDM systems, it is much easer to estimate the channel frequency response than
               to estimate channel impulse response directly. Under the assumption that the transmitter
               and receiver are roughly synchronized, the receiver can correctly sample the wireless
               mobile device's UL SRS OFDM symbol without inter symbol interference (ISI). Figure
               3 shows a simplified OFDM transmitter 300 as would be implemented in transmitter 114
               and DSP 120 in the wireless mobile device 100 and transmitter 216 and transmit processor
               218 in the BTS 103. The input is a sequence of reference symbols which is provided
               to serial to parallel converter 302. The parallel symbol stream is processed by an
               inverse-Fourier transform (IFFT) 304 and converted by a parallel to serial converter
               306. A cyclic prefix can then be inserted at 308 prior to digital to analog converter
               310. The signal can the be amplified and modulated before transmission via channel
               312.
 
            [0026] Figure 4 shows a simplified receiver 400. Upon receiving the signal through channel
               312, the signal is down-converted and demodulated. The analog to digital converter
               402 then provides a digital stream for cyclic prefix removal 404. The data stream
               is then converted from a serial to parallel stream at 406. Taking an FFT 408 of this
               time-domain sampled sequence to transform it into the frequency domain, the channel
               frequency response can be derived by dividing the received frequency-domain sequence
               by the reference sequence that is modulated on the sub-carriers. The simplest way
               to get the channel impulse response is to do an IDFT on the frequency response, either
               use a windowed IDFT or a non-windowed IDFT.
 
            [0027] Figure 5 illustrates a typical urban radio channel (TU 30) delay profile which has
               been used for GSM system performance evaluation providing similar characteristics
               to an LTE system as would be defined by channel 312. Table 1 shows the similarity
               of the channel impulse response estimation, signal spectrum estimation and the direction
               of arrival (DOA) estimation in array signal processing. Note that equally-spaced sampling
               on the observing domains is assumed for comparison purposes in the following table.
               
               
 
            [0028] In the table above, Δ
f denotes the frequency spacing between each sample in frequency domain; Δ
T denotes the time spacing between each sample in time domain; and 
l, λ and θ denote the distance between each sensor of the array, carrier wavelength
               and signal arrival angle respectively.
 
            [0029] From the comparison in table 1, it can be seen that the timing estimation, spectrum
               estimation and DOA estimation are all same from a mathematical point of view.
 
            [0030] They differ only in that they have a different constant factor in the transformation
               vector. That means all the algorithms for spectrum estimation and DOA estimation can
               be used for timing estimation, if the frequency domain observations can be easily
               obtained.
 
            [0031] In an OFDM system like LTE, the channel frequency response can be easily obtained
               when the timing is roughly synchronized between the transmitter and the receiver.
               The UL frequency can also be assumed to be synchronized. The radio propagation channel
               is generally modeled as multi-path channel. This channel model is similar with multiple,
               different frequency sinusoid wave signal model in spectrum estimation. It is also
               similar with the signal model in array signal processing that has multiple signals
               arrive from different directions. This similarity opens an opportunity to apply the
               DOA estimation algorithms and spectrum estimation algorithms to timing estimation,
               for example, linear Fourier Analyzing (FA) algorithm, sub-space decomposition based
               Multiple Signal Classification (MUSIC) algorithm, or sub-space fitting based Maximum
               Likelihood (ML) algorithm.
 
            [0032] Current LTE UL timing estimation algorithms use just one OFDM symbol to estimate
               the signal timing offset; therefore, relatively high signal to noise ratio (SNR) is
               required for these algorithms to be effective. At the cell edge, the SNR is normally
               very low and these algorithms may not meet the LTE system performance requirement.
 
            [0033] It is assumed that the wireless mobile device uplink is already roughly synchronized.
               That means the wireless mobile device UL timing offset is within a certain range.
               In this range, with the cyclic prefix (CP) in place, the enhanced Node B (eNB) can
               correctly sample the SRS OFDM symbol's baseband signal in time domain without any
               ISI, but the timing offset information is contained in the samples. It is also assumed
               that the wireless mobile device's frequency error is small and can be ignored. (Frequency
               offset estimation and correction will not be discussed in this disclosure). After
               the FFT operation on these time domain samples, a frequency domain sample of the SRS
               OFDM symbol can be obtained. Note 

 as the sampled vector of the 
k-th SRS OFDM symbol in frequency domain at the sub-carriers that the wireless mobile
               device is assigned to transmit the SRS. Where, 
N is number of total sub-carriers the SRS is transmitted on, and 
K is the total number of SRS OFDM symbols sampled. Let 

 denote the indexes of the sub-carriers assigned to the wireless mobile device.
 
            [0034] The SRS reference sequence (the input in Figure 3) is noted as: 

 
            [0035] Generally, a constant amplitude complex sequence 
s1,s2,...,
sN is used in LTE.
 
            [0036] Assume that there are 
M multi-paths in the radio propagation channel with different time delays 
tm and complex attenuation factor 

 and 
m = 1,2,...,
Mat the instance of the 
k-th SRS symbol. It is assumed that the multi-paths complex attenuation factors are
               stochastic processes and are not coherent with each other. Within one timing estimation
               period, it is assumed the time offset 
t1, 
t2, ..., 
tM for the 
M multi-paths are constants. Denote the following vectors: 
 
 
 
            [0037] Where Δ
f is the sub-carrier spacing in the OFDM system. It is further assumed that the signal
               is a narrow bandwidth signal. With the above assumptions and notations, the frequency
               domain sample of the received baseband signal for the 
k-th SRS OFDM symbol can be expressed as: 

 
            [0038] In the equation above, the "o" denotes the Hadamard product (matrix element product)
               operator, and 
nk denotes the additive noise in the frequency domain. We assume that the sampled noise
               in time domain is additive white Gaussian noise. It is obvious that the frequency
               domain noise 
nk is still additive white Gaussian noise with independent identical distribution (i.i.d.).
 
            [0039] The estimate of the channel frequency response based on the 
k-th SRS OFDM symbol is denoted as: 

 
            [0040] From the discussion above, the channel frequency response can be estimated as: 

 
            [0041] Where "./" denotes the matrix element dividing operator. With the assumption that
               the SRS reference sequence in frequency domain has constant amplitude across the sub-carriers,
               it is easy to see that 
nk·/
s is still white Gaussian noise with independent identical distribution. We still make
               the following note for simplicity: 

 
            [0042] The above equation is the system signal model. In the equation, the vector 
xk can be simply obtained from the frequency domain observed vector 
rk. Unknown time offset parameters 
t1, 
t2, ..., 
tM within the matrix 
A are the parameters that need to be estimated. The unknown channel complex parameters
               
hk are not of interest for the LTE UL timing synchronization.
 
            [0043] A large number of algorithms for spectrum estimation and array signal DOA estimation
               can be applied in LTE UL timing estimation. Three well-known DOA estimation algorithms,
               linear Fourier Analyzing algorithm, sub-space decomposition based MUSIC algorithm
               and sub-space fitting based Maximum Likelihood (ML) algorithm, are presented for the
               LTE UL timing estimation without mathematic derivation.
 
            [0044] It should be pointed out that the current timing offset estimation algorithms are
               based on single OFDM symbol samples. In the present disclosure samples of multiple
               non-coherent OFDM symbols are used to combat low SNR at the cell edge of LTE system.
 
            [0045] First, the covariance matrix of the channel frequency response is estimated as: 

 
            [0046] The (·)
H in above equation denotes Hermitian operation. The covariance matrix collects the
               information from all samples. Be aware that the covariance operation does not increase
               the SNR. It is not a coherent accumulation. The benefit of the covariance matrix is
               that it decreases the variance of the estimated noise power and signal power with
               increasing numbers of samples, but does not decrease the average noise power or increase
               the signal power.
 
            [0047] If the frequency response is sampled with equal spacing in frequency domain, the
               exact covariance matrix (mathematically expectation) should not only be a Hermitian
               matrix (conjugate symmetric matrix), but also should a Teoplitz matrix, in which the
               value of the elements along each descending diagonal is a constant. With a limited
               number of symbols (small value of K), the estimated covariance matrix 
X will lose the properties of Hermitian and Teoplitz matrix in some degree. To improve
               the covariance matrix estimate accuracy, the value of the matrix elements along each
               descending diagonal can be replaced with their average value. Mathematically, the
               averaged covariance matrix can be expressed as: 

               where the elements 
x̂i of the averaged matrix 
X̂ is calculated from the elements 
xl,m of the matrix 
X as: 

 
            [0048] Notation (5) is rewritten as: 

 
            [0049] The linear Fourier Analyzing (FA) algorithm is given as searching for the position
               in time axis where the following metric reaches its peaks: 

 
            [0050] The sub-space decomposition based MUSIC algorithm's searching metric is given by:
               

 
            [0051] Where, in above equation, 
EN denotes the noise sub-space matrix of the covariance matrix 
X. 
EN is composed of (
N-
M) eigenvectors corresponding to the 
(N-M) smallest eigenvalues of the matrix 
X and can be expressed as: 
EN = [
e1;,e2,...,eN-M], where ∥·∥ denotes vector norm operation.
 
            [0052] The subspace-fitting based Maximum Likelihood (ML) algorithm has more computational
               complexity, it involves a joint multiple dimension optimization. The ML algorithm
               can be formulated as: 
 
 
            [0053] Where, 
PA(
t1,
t2,...,
tM)
=A·(
AH·A)
-1·AH is a projection matrix of 
A and it is a function of the multiple time offset of the propagation paths.
 
            [0054] It is well known that the ML performs better than the FA and MUSIC timing offset
               estimation algorithms, especially with a limited number of samples and limited SNR.
 
            [0055] However, the additional computational complexity is very costly to implement with
               present hardware technology.
 
            [0056] Figure 6 presents a method of performing Long Term Evolution (LTE) Radio Link Timing
               Synchronization utilizing the techniques discussed above. At 602 a channel frequency
               response estimate 
xk is obtained from a received UL signal. The channel frequency response covariance
               matrix 
X is then generated at 604. For MUSIC and ML algorithms a known number of multi-paths
               is required. There are some techniques that can be used to estimation the number of
               multi-paths, however it is assumed as a known parameter. When the averaged covariance
               matrix 

 is to be utilized, YES at 606, they are generated at 608, and Fourier Analyzing and
               MUSIC timing offset estimation algorithms are identified as modified Fourier Analyzing
               (FAmod) algorithm and modified MUSIC (MUSICmod) algorithm respectively. Otherwise,
               NO at 606, original covariance matrix will be used.
 
            [0057] For one-dimensional metrics timing offset estimation algorithms, for example, FA
               algorithm and MUSIC algorithm, YES at 612, the position of the first peak offers a
               more meaningful time delay estimate. The first-peak searching can then be performed
               through 618 to 630. The metric 
m(
t) is calculated according to FA or MUSIC algorithm in the defined searching window.
               The maximum and minimum value of the metric: 
mmax and 
mmin in the searching window is found at 620. The threshold as 
mth = 
mmin +α · (
mmax - 
mmin) is calculated at 622 where α takes value from 0 to 1. The metric is limited by 
m(
t)=max(
m(
t),
mth) to reduce the chance of finding false peak at 624. A search is performed for first
               ascending point where the metric goes up at 626. From the point found at 626, a search
               is performed for the first descending point where the metric goes down at 628. This
               is the position of the first peak. From the first peak a timing estimate can be determined
               at 630. The estimate of the first peak is then used to synchronize the device to the
               UL and processing of overhead information can then proceed. For multi-dimensional
               algorithms like ML algorithm, NO at 612, a multi-dimensional metric peak search is
               performed at 614 and a timing estimate is determined to enable synchronization to
               the UL.
 
            [0058] Simulations are presented for the Fourier Analyzing (FA) algorithm and MUSIC algorithm
               in three cases for LTE UL timing synchronization in Figures 7 to 12.
 
            [0059] Simulation Case 1 represents the cell edge situation in which low SNR, low SRS signal
               bandwidth and limited number of SRS OFDM symbols are available for timing estimation.
               The simulation parameters are set as: TU30 channel, (Figure 5 illustrates the TU channel
               profile), 20 SRS symbols in rate of 40 Hz for one estimation; 6 resource blocks (RBs
               - each RB has 12 sub-carriers with 15 kHz spacing; all the sub-carriers are allocated
               continuously with each other); and -13.8 dB SNR.
 
            [0060] Simulation Case 2 increases the SNR to 0 dB and the number of SRS OFDM symbols to
               50 in rate of 100 Hz to simulation better radio link situation. Simulation Case 3
               further increases SRS signal bandwidth to 12 RBs to examine the performance potential
               of the algorithms. These three cases are summarized in Table 2.
               
               
Table 2. Parameters used in the simulation cases.
                  
                     
                        
                           
                           
                           
                           
                           
                        
                        
                           
                              |   | 
                              Channel Model | 
                              SRS symbols/Rate (Hz) | 
                              Number of RBs | 
                              SNR (dB) | 
                           
                        
                        
                           
                              | Case 1 | 
                              TU30 | 
                              20/40 | 
                              6 | 
                              -13.8 | 
                           
                           
                              | Case 2 | 
                              TU30 | 
                              50/100 | 
                              6 | 
                              0 | 
                           
                           
                              | Case 3 | 
                              TU30 | 
                              50/100 | 
                              12 | 
                              0 | 
                           
                        
                     
                   
                
            [0061] Figures 7A-D show an example timing estimation metrics of the proposed algorithms
               in simulation Case 1. With figures 7A-D and the following figures, figures A to D
               correspond to FA, FAmod, MUSIC and MUSICmod timing offset estimation algorithms respectively.
               It can be seen from this figure that the all proposed algorithms cannot resolve the
               first three peaks (see Figure 5 for the channel profile). While, the MUSIC and the
               modified MUSIC algorithms can show only one peak clearly.
 
            [0062] Figures. 8A-D shows, as an example, the algorithms' metrics in simulation Case 2.
               It can be seen from this figure that the modified MUSIC algorithm's resolution shows
               some improvement. It shows a total 5 peaks. The closely located first three peaks
               still can not be resolved. The FA and FAmod algorithms resolution don't have significant
               difference compared with that in case 1.
 
            [0063] Figures. 9A-D shows the algorithm metric examples in simulation Case 3. With increased
               signal bandwidth, all four algorithms' resolution gets improved. From this figure,
               it can be seen that the FA and FAmod algorithms can resolve the two peaks located
               around the 2 µsec positions, the MUSIC algorithm shows two peaks in the first 0.5
               µsec period, which should be three peaks. The modified MUSIC (MUSICmod) algorithm
               clearly resolves all peaks.
 
            [0064] Figures 10A-D to 12A-D show the algorithms' performance (histogram) in the three
               simulation cases. In simulation Case 1, value of parameter α in the First-Peak Searching
               algorithm is set to 0.4 for all FA, FAmod, MUSIC, MUSICmod metrics. In Case 2 and
               Case 3, value of α is set as 0.4 for FA and FAmod metrics, but 0.01 for MUSIC and
               MUSICmod metrics. The simulation results were taken from 2000 Monte-Carlo tests. The
               timing drift and Doppler frequency drift that cause by the wireless mobile device
               movement in one timing estimation have been taken into account in the simulation.
               The results of the algorithms' performance simulation are summarized in the following
               table.
               
               
Table 3. Simulation results summary
                  
                     
                        
                           
                           
                           
                           
                           
                           
                        
                        
                           
                              |   | 
                                | 
                              FA 
                                 (µsec) | 
                              FAmod 
                                 (µsec) | 
                              MUSIC 
                                 (µsec) | 
                              MUSICmod 
                                 (µsec) | 
                           
                        
                        
                           
                              | Case 1 | 
                              Mean | 
                              0.23 | 
                              0.23 | 
                              0.23 | 
                              0.23 | 
                           
                           
                              | Std | 
                              0.15 | 
                              0.13 | 
                              0.16 | 
                              0.14 | 
                           
                           
                              | 95th Percentile | 
                              0.23 | 
                              0.22 us | 
                              0.25 | 
                              0.23 | 
                           
                           
                              | Case 2 | 
                              Mean | 
                              0.24 | 
                              0.24 | 
                              0.23 | 
                              0.08 | 
                           
                           
                              | Std | 
                              0.03 | 
                              0.03 | 
                              0.04 | 
                              0.04 | 
                           
                           
                              | 95th Percentile | 
                              0.06 | 
                              0.06 | 
                              0.09 | 
                              0.08 | 
                           
                           
                              | Case 3 | 
                              Mean | 
                              0.18 | 
                              0.18 | 
                              0.13 | 
                              0.02 | 
                           
                           
                              | Std | 
                              0.04 | 
                              0.05 | 
                              0.02 | 
                              0.06 | 
                           
                           
                              | 95th Percentile | 
                              0.08 | 
                              0.09 | 
                              0.04 | 
                              0.13 | 
                           
                        
                     
                   
                
            [0065] From the simulation results, it can be seen that all these algorithms meet the 0.5
               µsec 95
th percentile performance requirement for LTE UL timing synchronization even in worst
               case of the three simulation scenarios. In simulation Case 1 with low SNR, narrow
               bandwidth, and low number of SRS OFDM symbols, the FA, FAmod, MUSIC and MUSICmod algorithms
               have similar performance. In simulation Case 2, which has high SNR, more SRS OFDM
               symbols, but same bandwidth comparing with Case 1, the MUSICmod algorithm has significantly
               improved the performance of the mean error of the time estimate. However, the performance
               of the standard deviation (STD) and 95
th percentile of the timing estimation of MUSIC and MUSICmod algorithms have decreased
               slightly comparing to the FA and FAmod algorithms. In simulation Case 3, where the
               signal bandwidth is doubled comparing with in case 2, the MUSIC algorithm has slightly
               better mean error, STD and 95
th percentile performance than FA and FAmod algorithms. While, the MUSICmod algorithm
               has the greatest mean error performance, although has slightly worse STD and 95
th percentile performance, comparing with other algorithms. This very low mean error
               performance of the MUSICmod algorithm has benefited from the high resolution of the
               algorithm.
 
            [0066] Though the proposed timing estimate algorithms are for LTE UL timing synchronization,
               they can be applied to DL link timing synchronization as well due to similar reference
               signal structure in both LTE uplink and downlink.
 
            [0067] While a particular embodiment of the present method for Long Term Evolution (LTE)
               Radio Link timing synchronization has been described herein, it will be appreciated
               by those skilled in the art that changes and modifications may be made thereto without
               departing from the disclosure in its broadest aspects and as set forth in the following
               claims.
 
          
         
            
            1. A method for performing a radio link timing estimation for synchronization to a wireless
               communications channel, the method comprising:
               
               
obtaining a channel frequency response estimate from a received reference signal comprising
                  multiple non-coherent sounding reference signal (SRS) Orthogonal Frequency Division
                  Multiplexing (OFDM) symbols;
               
               generating a frequency response covariance matrix from the channel frequency response
                  estimate; and
               
               estimating timing offsets of the received reference signal using covariance matrix
                  and timing offset estimation algorithms.
  
            2. The method of claim 1 wherein the wireless communications channel is based on a 3GPP
               Long Term Evolution Uplink (UL) channel.
 
            3. The method of claim 2 wherein the timing offset estimation algorithm is performed
               using a Fourier Analyzing algorithm.
 
            4. The method of claim 2 wherein the timing offset estimation algorithm is performed
               using a Multiple Signal Classification (MUSIC) algorithm.
 
            5. The method of claim 2 wherein estimating timing offsets further comprising:
               
               
calculating a one dimensional metric in a defined search window;
               
               determining a maximum value and a minimum value within the search window;
               
               determining a threshold value using the determine maximum value and minimum value;
               
               limiting the metric to the determined threshold;
               
               searching for a first ascending point of the metric;
               
               searching for a first descending point of the metric; and
               
               determining a timing estimate based upon the peak identified by the first ascending
                  and descending points.
  
            6. The method of claim 2 wherein estimating timing offsets further comprising:
               
               
generating an averaged covariance matrix where the value of the matrix elements along
                  each descending diagonal are replaced with their average value.
  
            7. The method of claim 6 further comprising:
               
               
calculating a one dimensional metric in a defined search window;
               
               determining a maximum value and a minimum value within the search window;
               
               determining a threshold value using the determine maximum value and minimum value;
               
               limiting the metric to the determined threshold;
               
               searching for a first ascending point of the metric;
               
               searching for a first descending point of the metric; and
               
               determining a timing estimate based upon the peak identified by the first ascending
                  and descending points.
  
            8. The method of claim 2 wherein estimating timing offsets further comprising:
               
               
performing a multi-dimensional metric peak search using sub-space fitting maximum
                  likelihood estimation; and
               
               determining a timing estimate from the peak search.
  
            9. A mobile wireless device operating on wireless network, the mobile wireless device
               comprising:
               
               
a receiver; and
               
               a processor coupled to the receiver, the processor performing a radio link timing
                  estimation for synchronization to a wireless communications channel comprising:
                  
                  
obtaining a channel frequency response estimate from a received reference signal comprising
                     multiple non-coherent sounding reference signal (SRS) Orthogonal Frequency Division
                     Multiplexing (OFDM) symbols;
                  
                  generating a frequency response covariance matrix from the channel frequency response
                     estimate; and
                  
                  estimating timing offsets of the received reference signal using covariance matrix
                     and timing offset estimation algorithms.
                 
            10. The mobile wireless device of claim 9 wherein the mobile wireless device is a 3GPP
               Long Term Evolution (LTE) compatible device.
 
            11. The mobile wireless device of claim 10 wherein the timing offset estimation algorithm
               is performed using a Fourier Analyzing algorithm.
 
            12. The mobile wireless device of claim 10 wherein the timing offset estimation algorithm
               is performed using a Multiple Signal Classification (MUSIC) algorithm.
 
            13. The mobile wireless device of claim 10 wherein estimating timing offsets further comprising:
               
               
calculating a one dimensional metric in a defined search window;
               
               determining a maximum value and a minimum value within the search window;
               
               determining a threshold value using the determine maximum value and minimum value;
               
               limiting the metric to the determined threshold;
               
               searching for a first ascending point of the metric;
               
               searching for a first descending point of the metric; and
               
               determining a timing estimate based upon the peak identified by the first ascending
                  and descending points.
  
            14. The mobile wireless device of claim 10 wherein estimating timing offsets further comprising:
               
               
generating an averaged covariance matrix where the value of the matrix elements along
                  each descending diagonal are replaced with their average value.
  
            15. The mobile wireless device of claim 14 further comprising:
               
               
calculating a one dimensional metric in a defined search window;
               
               determining a maximum value and a minimum value within the search window;
               
               determining a threshold value using the determine maximum value and minimum value
               
               limiting the metric to the determined threshold;
               
               searching for a first ascending point of the metric;
               
               searching for a first descending point of the metric; and
               
               determining a timing estimate based upon the peak identified by the first ascending
                  and descending points.
  
            16. The mobile wireless device of claim 10 wherein estimating timing offsets further comprising:
               
               
performing a multi-dimensional metric peak search using sub-space fitting maximum
                  likelihood estimation; and
               
               determining a timing estimate from the peak search.
  
            17. A base station transceiver in a wireless network, the base station transceiver comprising:
               
               
a receiver; and
               
               a processor coupled to the receiver, the processor performing a radio link timing
                  estimation for synchronization to a wireless communications channel comprising:
                  
                  
obtaining a channel frequency response estimate from a received reference signal comprising
                     multiple non-coherent sounding reference signal (SRS) Orthogonal Frequency Division
                     Multiplexing (OFDM) symbols;
                  
                  generating a frequency response covariance matrix from the channel frequency response
                     estimate; and
                  
                  estimating timing offsets of the received reference signal using covariance matrix
                     and timing offset estimation algorithms.
                 
            18. The base station transceiver of claim 17 wherein the wireless network is a 3GPP Long
               Term Evolution (LTE) network.