BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] The present invention relates to a dimmer for a discharging lamp and more particularly,
to a dimming circuit, which may automatically turn off the discharging lamp in a low
power condition.
2. Description of the Related Art
[0002] Typically, a conventional dimming circuit for a discharging lamp includes a control
IC or a complex circuit for variable frequency function to control different power
outputs that may change the brightness level of the lamp. However, the control IC
and the circuit for variable frequency function are expensive that such dimmers are
not popular in the market.
[0003] Besides, the conventional dimming circuit has a problem of an unstable potential
in a low power condition that will cause the discharging lamp flashing. The dimming
range of the dimming circuit will be affected by parameters of different models of
discharging lamps that the dimming circuit may have an error dimming work in a low
power condition and cause a greater flashing.
SUMMARY OF THE INVENTION
[0004] The primary objective of the present invention is to provide a dimming circuit of
a discharging lamp, which may turn off the power in a low power condition to avoid
flash problem.
[0005] The secondary objective of the present invention is to provide a dimming circuit
of a discharging lamp, which has a simple structure and a lower cost.
[0006] To achieve the objectives of the present invention, a dimming circuit for a discharging
lamp includes a resonant unit, a rectification unit, a half-bridge output unit, a
first switch device and a second switch device, and a selection unit. The rectification
unit is connected to the resonant unit to transfer an AC power to a DC power. The
half-bridge output unit, which is connected to a discharging lamp, includes a first
electric-controlled switch and a second electric-controlled switch in series. The
first electric-controlled switch and the second electric-controlled switch are in
series with the rectification unit, and have a control terminal respectively. The
first and second switch devices are connected to the control terminals of the first
and second electric-controlled switches respectively. The selection unit includes
a start sub-unit and a maintain/turn-off sub-unit. The start sub-unit is connected
to the rectification unit and the first switch device to turn on the first switch
device and the second electric-controlled switch when a potential is rising that turns
on the discharging lamp. The maintain/turn-off sub-unit is connected to the rectification
unit and the second switch device to turn off the second switch device and keep turning
on the second switch device when the discharging lamp is lighting. The maintain/turn-off
sub-unit further turns on the second switch device to turn off the second electric-controlled
switch for turning off the discharging lamp when the potential is lower than a predetermined
value.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007]
FIG. 1 is a circuit diagram of a preferred embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0008] FIG. 1 show a dimming circuit 10 for a discharging lamp, which includes a resonant
unit 11, a rectification unit 21, a half-bridge output unit 31, a first switch device
DD1, a second switch device DD2, and a selection unit 41.
[0009] The resonant unit 11 includes a first capacitance C1 and a second capacitance C2
in series, and a first inductance L1 in parallel with the first and second capacitances
C1, C2.
[0010] The rectification unit 21 is a full-wave rectification circuit which is connected
to the resonant unit 11 to transfer the AC power to a DC power.
[0011] The half-bridge output unit 31 includes a first electric-controlled switch Q1 and
a second electric-controlled switch Q2 in series. The first and second electric-controlled
switches Q1, Q2 are in series with the rectification unit 21. Each of the first and
second electric-controlled switches Q1, Q2 has a control terminal G connected to an
oscillation unit 33 respectively. The oscillation units 33 are RL oscillators, each
of which has a resistor R and an inductance L in series. The half-bridge output unit
31 is connected to the discharging lamp 99.
[0012] The first switch device DD1 and the second switch device DD2 are diode AC switches,
each of which has an end connected to the control terminal G of the second electric-controlled
switch Q2.
[0013] The selection unit 41 includes a start sub-unit 42 and a maintain/turn-off sub-unit
46.
[0014] The start sub-unit 42 is connected to the rectification unit 21 and the first switch
device DD1. In the present invention, the start sub-unit 42 includes a first resistor
R1, a second resistor R2, and a third capacitance C3. A connection of the start unit
42 with the other elements is shown in FIG. 1. The third capacitance C3 has an end
connected to ground and the other end connected to a contact point between the first
resistor R1 and second resistor R2 and connected to the other end of the first switch
device DD1. The start unit 42 starts up the first switch device DD1 when the potential
is rising to turn on the second electric-controlled switch Q2 that may turn on the
discharging lamp 99.
[0015] The maintain/turn-off sub-unit 46 is connected to the rectification unit 21 and the
second switch device DD2. In the present invention, the maintain/turn-off sub-unit
46 includes a fourth capacitance C4, a first diode D1, a first zener diode a fifth
capacitance C5, a third resistor R3, a second diode D2, a second zener diode ZD2,
a fourth resistor R4, a fifth resistor R5, and a sixth capacitance C6. The connection
of the maintain/turn-off sub-unit 46 with the other elements is shown in FIG 1. There
are acontact A is defined between the first diode D1 and the fifth capacitance C5,
a contact D between the fourth resistor R4 and the fifth resistor R5, and a contact
C between the second diode D2 and the second zener diode ZD2. The sixth capacitance
C6 has an end connected to ground and the other end connected to the contact D. The
contact D is connected to the other end of the second switch device DD2 through the
sixth resistor R6. A contact F is defined between the first electric-controlled switch
Q1 and the second electric-controlled switch Q2. The maintain/turn-off sub-unit 46
may maintain the second electric-controlled switch's Q2 working when the discharging
lamp 99 is turned on, and the second switch device DD2 is activated unexpectedly.
The maintain/turn-off sub-unit 46 also turns off the second electric-controlled switch
Q2 when the potential is lower than a predetermined value and the second switch device
DD2 is activated unexpectedly that may turn off the discharging lamp 99.
[0016] The dimming circuit 10 of the present invention is incorporated in a conventional
standard dimmer (not shown) and connected to an AC power. The standard dimmer is connected
to the resonant unit 11 to supply power. User may operate the dimmer to dimming the
discharging lamp 99.
[0017] In starting procedure, the power is turned on, and the potential id rising, the current
is rectified by the rectification unit 21 to charge the third capacitance C3 through
the contact B, and the first resistor R1 and second resistor R2 of the starting sub-unit
42. When the potential of the third capacitance C3 is rising and higher than a threshold
potential of the first switch device DD1, it would activate the second electric-controlled
switch Q2 and turn on the discharging lamp 99.
[0018] In maintaining procedure, a potential of the maintain/turn-off sub-unit 46 at contact
F is acted by the fourth capacitance C4 and the first diode D1, and is multiplied
and rectified by the first zener ZD 1 and the rectification unit 21, and is filtered
by the fifth capacitance C5 that it generates a standard level potential at contact
A. In the present invention, it is -43 voltages. After the current is rectified by
the rectification unit 21, it will flow to the contact C through the third resistor
C3 and the second diode C2. When the potential at contact C is greater than 43 voltages,
the second zener diode ZD 2 is activated. The potentials at the contact D and the
contact A are divided by the fourth and fifth resistors R4 and R5 that the potential
at the contact D is less than the threshold potential of the second switch device
DD2. As a result, the second switch device DD2 is unactivated and the second electric-controlled
switch Q2 will keep its current working.
[0019] In turn-off procedure, when user operates the standard dimmer to gradually lower
the potential, the current, after being rectified by the rectification unit 21, flows
through the contact B, the third resistor R3 and the second diode D2 of the maintain/turn-off
sub-unit 46 in sequence. When the potential at the contact C is lower than 43 voltages,
the potential at the contact A divided by the fourth resistor R4 and the fifth resistor
R5 will charge the sixth capacitance C6 at contact D. When the potential of the sixth
capacitance C6 is greater than a threshold potential of the second switch device DD2,
the second switch device DD2 activated, and a negative potential will turn off the
second electric-controlled switch Q2 that will turn off the discharging lamp 99.
[0020] The present invention further includes a load selection unit 51 having a third electric-controlled
switch Q3, a seventh resistor R7, a load resistor Rload, and an eighth resistor R8.
The load selection unit 51 is connected to the maintain/turn-off sub-unit 46 to turn
off the third electric-controlled switch Q3 and cut off the current through the load
resistor Rload when the discharging lamp 99 is turned on. The third electric-controlled
switch Q3 will be turned on to have a current flowing through the load resistor Rload
when the discharging lamp 99 is turned off and still has a low current flowing therethrough.
[0021] That is, when the discharging lamp 99 is turned on, the standard potential of the
contact A is -43 voltages that it will turn off the third electric-controlled switch
Q3 through the eighth resistor R8, and on current flows through the load resistor
Rload.
[0022] When the discharging lamp 99 is turned off and still has a low current flowing therethrough,
such as user operates the standard dimmer to a very low potential, the current flows
through the seventh resistor R7 via the contact B to turn on the third electric-controlled
switch Q3 that the current at contact B will flow through the load resistor Rload
and the third electric-controlled switch Q3 to the ground.
[0023] With that, the load selection unit 51 lets no current flowing through the load resistor
Rload when the discharging lamp 99 is lighting and let the current flowing through
the load resistor Rload when the discharging lamp 99 is turned off and still has a
low current flowing therethrough. It will have no power waste problem.
[0024] In conclusion, the functions and advantages of the present invention are:
- 1. The present invention may turn off the discharging lamp in a low power condition
to avoid flash problem.
The present invention provides the same work as the conventional device in the starting
and maintaining procedures. As long as the power is dimmed very lower, or even off,
the present invention will cut off the current flowing to the discharging lamp to
avoid the problem of discharging lamp flashing in a low power condition.
- 2. The present invention has a simple structure and lower cost.
No IC or microprocessor is involved in the present invention. The present invention
only has a few conventional electronic devices that are very cheap. Furthermore, the
circuit of the present invention is not complex also.
- 3. The present invention needs less power than the conventional device.
[0025] The load selection unit of the present invention lets no current flowing through
the load resistor when the discharging lamp is lighting. In the condition of the discharging
lamp not lighting and a very low current flowing therethrough, the load selection
unit lets current flowing through the load resistor. It will not waste the power when
the discharging lamp is lighting.
[0026] Although a particular embodiment of the invention has been described in detail for
purposes of illustration, various modifications and enhancements may be made without
departing from the spirit and scope of the invention. Accordingly, the invention is
not to be limited except as by the appended claims.
1. A dimming circuit (10) for a discharging lamp, comprising:
a resonant unit (11) including a first capacitance (C1) and a second capacitance (C2)
in series, and a first inductance (L1) in parallel with said first capacitance (C1)
and second capacitance (C2);
a rectification unit (21) connected to said resonant unit (11) to transfer an AC power
to a DC power;
a half-bridge output unit (31), which is connected to a discharging lamp (99), including
a first electric-controlled switch (Q1) and a second electric-controlled switch (Q2)
in series, wherein said first electric-controlled switch (Q1) and said second electric-controlled
switch (Q2) are in series with said rectification unit (21), and have a control terminal
(G) respectively;
a first switch device (DD1) and a second switch device (DD2) connected to said control
terminals (G) of said first electric-controlled switch (Q1) and said second electric-controlled
switch (Q2) respectively; and
a selection unit (41) including a start sub-unit (42) and a maintain/turn-off sub-unit
(46), wherein said start sub-unit (42) is connected to said rectification unit (21)
and said first switch device (DD1) to turn on said first switch device (DD1) and said
second electric-controlled switch (Q2) when a potential is rising that turns on said
discharging lamp (99), and said maintain/turn-off sub-unit (46) is connected to said
rectification unit (21) and said second switch device (DD2) to turn off said second
switch device (DD2) and keep turning on said second switch device (DD2) when said
discharging lamp (99) is lighting, and said maintain/turn-off sub-unit (46) further
turns on said second switch device (DD2) to turn off said second electric-controlled
switch (Q2) for turning off said discharging lamp (99) when said potential is lower
than a predetermined value.
2. The dimming circuit as claimed in claim 1, wherein said start sub-unit (42) includes
a first resistor (R1), a second resistor (R2), and a third capacitance (C3), and said
maintain/turn-off sub-unit (46) includes a fourth capacitance (C4), a first diode
(D1), a first zener diode a fifth capacitance (C5), a third resistor (R3), a second
diode (D2), a second zener diode (ZD2), a fourth resistor (R4), a fifth resistor (R5),
and a sixth capacitance (C6).
3. The dimming circuit as claimed in claim 2, wherein said rectification unit (21) is
a full-wave rectification circuit.
4. The dimming circuit as claimed in claim 2, wherein each of said control terminals
of said first electric-controlled switch (Q1) and said second electric-controlled
switch (Q2) is connected to an oscillation unit (33) respectively, and each of said
oscillation unit (33) is a RL oscillator including a resistor (R) and an inductance
in series.
5. The dimming circuit as claimed in claim 2, wherein said first switch device (DD1)
and said second switch device (DD2) are diode AC switches.
6. The dimming circuit as claimed in claim 2, further comprising a load selection unit
(51) including a third electric-controlled switch (Q3), a seventh resistor (R7), a
load resistor (Rload), and an eighth resistor (R8), wherein said load selection unit
(51) is connected to said maintain/turn-off sub-unit (46) to turn off said third electric-controlled
switch (Q3) and cut off a current through said load resistor (Rload) when said discharging
lamp (99) is turned on, and let a current flowing through said load resistor (Rload)
when said discharging lamp (99) is turned off and still has a low current flowing
therethrough..