TECHNICAL FIELD
[0001] The present invention relates to monitoring systems for air conditioners, and more
particularly to measures for monitoring energy of the air conditioners.
BACKGROUND ART
[0002] A conventional monitoring system for air conditioners includes, as shown by Patent
Document 1, a plurality of air conditioners, local controllers for receiving data
output by the air conditioners, and transmitting predetermined operation data, and
a host controller for receiving the operation data of the plurality of air conditioners
transmitted by the local controllers through communication lines.
[0003] In the monitoring system, the host controller receives the operation data of the
air conditioners, thereby predicting an abnormal event in each of the air conditioners,
and outputting a prediction signal.
CITATION LIST
[0004] PATENT DOCUMENT 1: Japanese Patent Publication No.
H07-71803
SUMMARY OF THE INVENTION
TECHNICAL PROBLEM
[0005] The conventional monitoring system is configured to predict the abnormal event in
each of the air conditioners. However, the status of energy utilization efficiency
of each of the air conditioners is not checked. Thus, monitoring whether or not power
consumption is efficient has not been done.
[0006] In view of this, the present invention has been achieved. The invention is intended
to check the status of energy utilization efficiency of each of the air conditioners.
SOLUTION TO THE PROBLEM
[0007] A first aspect of the invention is directed to an air conditioner monitoring system
including: a plurality of air conditioners (10) each including a refrigerant circuit
(11) for performing a vapor compression refrigeration cycle; a local controller (60)
provided for each of the air conditioners (10) or each of sets of several ones of
the air conditioners (10) for receiving data output by the each of the air conditioners
(10) or the each of sets of several ones of the air conditioners (10), and transmitting
predetermined operation data; a host controller (70) for receiving the operation data
of the plurality of air conditioners (10) transmitted by the local controllers (60)
through communication lines (53); a capability calculator (71) for calculating air
conditioning capability of each of the air conditioners (10) in the each of sets of
several ones of the air conditioners (10); an electric power calculator (72) for calculating
power consumption of each of the air conditioners (10) in the each of sets of several
ones of the air conditioners (10); and an energy calculator (7a) for calculating energy
utilization efficiency of each of the air conditioners (10) based on the air conditioning
capability calculated by the capability calculator (71), and the power consumption
calculated by the electric power calculator (72).
[0008] In a second aspect of the invention related to the first aspect of the invention,
the energy calculator (7a) is provided in a management controller (73) for managing
each of the air conditioners (10) by previously classifying the air conditioners (10)
into a plurality of air conditioning blocks (1B) according to predetermined relationship,
and the energy calculator (7a) is configured to calculate the energy utilization efficiency
of each of the air conditioners (10), and calculate the energy utilization efficiency
of each of the air conditioning blocks (1B).
[0009] In a third aspect of the invention related to the first or second aspect of the invention,
the capability calculator (71) is configured to calculate the air conditioning capability
of each of the air conditioners (10) based on a saturation temperature Tc corresponding
to a condensing pressure in the refrigerant circuit (11), a saturation temperature
Te corresponding to an evaporating pressure in the refrigerant circuit (11), a refrigerant
temperature Ti before pressure decrease in the refrigerant circuit (11), a refrigerant
suction temperature Ts in the compressor (21) in the refrigerant circuit (11), and
characteristics of the compressor (21) in the refrigerant circuit (11).
[0010] In a fourth aspect of the invention related to the first or second aspect of the
invention, the electric power calculator (72) is configured to calculate the power
consumption of each of the air conditioners (10) based on a saturation temperature
Tc corresponding to a condensing pressure in the refrigerant circuit (11), a saturation
temperature Te corresponding to an evaporating pressure in the refrigerant circuit
(11), a refrigerant temperature Ti before pressure decrease in the refrigerant circuit
(11), a refrigerant suction temperature Ts in the compressor (21) in the refrigerant
circuit (11), and characteristics of the compressor (21) in the refrigerant circuit
(11).
[0011] In a fifth aspect of the invention related to the first or second aspect of the invention,
the electric power calculator (72) is configured to calculate the power consumption
of the air conditioner (10) based on a current value sensed by a current sensor (17)
provided in the air conditioner (10), and a power supply voltage.
[0012] In a sixth aspect of the invention related to the first or second aspect of the invention,
the electric power calculator (72) is configured to calculate the power consumption
of each of the air conditioners (10) based on a current value sensed by a current
sensor (17) provided in the air conditioner (10), a power factor of the air conditioner
(10), and a power supply voltage of the air conditioner (10).
[0013] In a seventh aspect of the invention related to the sixth aspect of the invention,
the current sensor (17) is a control sensor for sensing a current fed to each device
in the air conditioner (10).
[0014] In an eighth aspect of the invention related to any one of the first to seventh aspects
of the invention, the capability calculator (71), the electric power calculator (72),
and the energy calculator (7a) are provided in the host controller (70).
[0015] In a ninth aspect of the invention related to the second aspect of the invention,
the management controller (73) includes a display means (7b) for displaying the energy
utilization efficiency of each of the air conditioners (10), and the energy utilization
efficiency of each of the air conditioning blocks (1B) calculated by the energy calculator
(7a).
[0016] Thus, according to the first aspect of the invention, the local controllers (60)
transmit predetermined operation data from the data output from each of the air conditioners
(10) to the host controller (70) through the communication lines (53).
[0017] For example, according to the eighth aspect of the invention, the capability calculator
(71) of the host controller (70) calculates the air conditioning capability of the
air conditioner (10). Specifically, according to the third aspect of the invention,
the capability calculator (71) calculates the air conditioning capability of the air
conditioner (10) based on the saturation temperature Tc corresponding to a condensing
pressure in the refrigerant circuit (11), the saturation temperature Te corresponding
to an evaporating pressure in the refrigerant circuit (11), the refrigerant temperature
Ti before pressure decrease in the refrigerant circuit (11), a refrigerant suction
temperature Ts in the compressor (21), and the characteristics of the compressor (21).
[0018] The electric power calculator (72) of the host controller (70) calculates the power
consumption of the air conditioner (10). Specifically, according to the fourth aspect
of the invention, the electric power calculator (72) calculates the power consumption
of the air conditioner (10) based on the saturation temperature Tc corresponding to
a condensing pressure in the refrigerant circuit (11), the saturation temperature
Te corresponding to an evaporating pressure in the refrigerant circuit (11), the refrigerant
temperature Ti before pressure decrease in the refrigerant circuit (11), the refrigerant
suction temperature Ts in the compressor (21) in the refrigerant circuit (11), and
the characteristics of the compressor (21).
[0019] The energy calculator (7a) calculates the energy utilization efficiency of each of
the air conditioners (10) based on the air conditioning capability calculated by the
capability calculator (71), and the power consumption the electric power calculator
(72). According to the second aspect of the invention, the energy calculator (7a)
calculates the energy utilization efficiency of each of the air conditioning blocks
(1B).
[0020] The energy utilization efficiency of each of the air conditioners (10), and the energy
utilization efficiency of each of the air conditioning blocks (1B) calculated by the
energy calculator (7a) are displayed by, for example, the display means (7b), according
to the ninth aspect of the invention.
[0021] According to the fifth aspect of the invention, the electric power calculator (72)
may calculate the power consumption of the air conditioner (10) based on the current
value sensed by the current sensor (17) provided in the air conditioner (10), and
the power supply voltage.
[0022] According to the sixth aspect of the invention, the electric power calculator (72)
may calculate the power consumption of the air conditioner (10) based on the current
value sensed by the current sensor (17) provided in the air conditioner (10), the
power factor of the air conditioner (10), and the power supply voltage of the air
conditioner (10).
[0023] In this case, according to the seventh aspect of the invention, the current sensor
(17) is a control sensor for sensing the current fed to each device of the air conditioner
(10), and the power consumption of the air conditioner (10) is calculated based on
the current value sensed by the control sensor.
ADVANTAGES OF THE INVENTION
[0024] According to the present invention, the energy utilization efficiency of each of
the air conditioners (10) is calculated based on the air conditioning capability and
the power consumption of each of the air conditioners (10). This allows for easy determination
whether the power consumption is efficient or not.
[0025] In addition, clarification of the energy utilization efficiency of each of the air
conditioners (10) allows for clarification of defects of the operation state of each
of the air conditioners (10).
[0026] The calculation of the energy utilization efficiency of each of the air conditioners
(10) allows for examination of performance of each of the air conditioners (10).
[0027] Further, due to the calculation of the power consumption for calculating the energy
utilization efficiency of each of the air conditioners (10), the amount of CO
2 emission from each of the air conditioners (10) can be monitored.
[0028] According to the second aspect of the invention, the energy utilization efficiency
of each of the air conditioning blocks (1B) is calculated, and is remote-monitored.
Therefore, for example, a full-time keeper is no longer necessary in each building,
thereby reducing cost of the management.
[0029] According to the third and fourth aspects of the invention, the air conditioning
capability and the power consumption of each of the air conditioners (10) are calculated
using the signals from the high pressure sensor (P1), etc., conventionally provided
in the refrigerant circuit (11). This does not involve additional provision of a new
sensor, etc., thereby avoiding complexity of the system.
[0030] According to the fifth aspect of the invention, the power consumption is calculated
from the current consumption and the power supply voltage. This allows for direct
calculation of the power consumption, thereby allowing for accurate determination
whether the power consumption is efficient or not.
[0031] According to the sixth aspect of the invention, the power factor is considered. This
allows for more accurate calculation of the power consumption, thereby allowing for
more accurate determination whether the power consumption is efficient or not.
[0032] In particular, according to the seventh aspect of the invention, the current sensor
(17) is comprised of the control sensor. This allows for accurate calculation of the
power consumption without increasing the parts count.
[0033] According to the eighth aspect of the invention, the electric power calculator (72),
etc., are provided in the host controller (70). Therefore, the determination whether
the power consumption of each of the air conditioners (10) is efficient or not can
be performed by a single controller in a centralized manner. In particular, according
to the ninth aspect of the invention, the energy utilization efficiency is displayed,
thereby allowing for easy management.
BRIEF DESCRIPTION OF THE DRAWINGS
[0034]
[FIG. 1] FIG. 1 is a block diagram illustrating the structure of an air conditioner
monitoring system of a first embodiment.
[FIG. 2] FIG. 2 is a circuit diagram illustrating a refrigerant circuit of the air
conditioner of the first embodiment.
[FIG. 3] FIG. 3 is an enthalpy and pressure (p-h) graph illustrating the operation
state of the air conditioner of the first embodiment.
[FIG. 4] FIG. 4 is a block diagram illustrating an electrical system of an air conditioner
of a second embodiment.
[FIG. 5] FIG. 5 is a block diagram illustrating an electrical system of an air conditioner
of a third embodiment.
[FIG. 6] FIG. 6 is a wiring diagram illustrating how electric power of the air conditioner
of the third embodiment is measured when a three-phase power supply is used.
[FIG. 7] FIG. 7 is a wiring diagram illustrating how electric power of air conditioner
of the third embodiment is measured when a single-phase power supply is used.
DESCRIPTION OF EMBODIMENTS
[0035] Embodiments of the present invention will be described in detail below.
[First Embodiment]
[0036] As shown in FIGS. 1 and 2, a remote monitoring system (1A) of the present embodiment
is a monitoring system capable of remote monitoring of a plurality of air conditioners
(10).
[0037] As shown in FIG. 2, each of the air conditioners (10) includes a refrigerant circuit
(11) for performing a vapor compression refrigeration cycle, and is configured as
a multi-type air conditioner in which a plurality of indoor units (30) are connected
to a single outdoor unit (20).
[0038] In the refrigerant circuit (11), a compressor (21), an oil separator (22), a four
way switching valve (23), an outdoor heat exchanger (24) as a heat source side heat
exchanger, a motor-operated outdoor expansion valve (25) as an expansion mechanism,
a receiver (26), a motor-operated indoor expansion valve (32) as an expansion mechanism,
an indoor heat exchanger (31) as a utilization side heat exchanger, and an accumulator
(27) are sequentially connected through a refrigeration pipe (40), thereby allowing
a refrigerant to flow freely in the circuit.
[0039] The outdoor unit (20) contains the compressor (21), the oil separator (22), the four
way switching valve (23), the outdoor heat exchanger (24), the motor-operated outdoor
expansion valve (25), the receiver (26), and the accumulator (27). The indoor units
(30) are configured in the same manner, and each of them contains the motor-operated
indoor expansion valve (32), and the indoor heat exchanger (31). The outdoor unit
(20) and the indoor units (30) are connected through a connection pipe (41) comprised
of the refrigerant pipe (40).
[0040] An operation capacity of the compressor (21) is adjusted by an inverter (2a). The
four way switching valve (23) is switched to the state indicated by a solid line in
FIG. 2 in cooling operation, and is switched to the state indicated by a broken line
in FIG. 2 in heating operation. The outdoor heat exchanger (24) includes an outdoor
fan (2F), and functions as a condenser in the cooling operation, and as an evaporator
in the heating operation. The indoor heat exchanger (31) includes an indoor fan (3F),
and functions as an evaporator in the cooling operation, and as a condenser in the
heating operation.
[0041] The outdoor unit (20) includes a heating overload controlling bypass path (42), a
liquid injection bypass path (43), an oil return pipe (44), an equalizing hot gas
bypass path (45), an equalizing path (46), and a suction pipe heat exchanger (2b).
[0042] The heating overload controlling bypass path (42) is connected in parallel to the
outdoor heat exchanger (24) to bypass the outdoor heat exchanger (24). An auxiliary
heat exchanger (4a), a capillary tube (4b), and an auxiliary open/close valve (4c)
which opens when the refrigerant pressure is high are sequentially connected in series
to the heating overload controlling bypass path (42). In the heating overload controlling
bypass path (42), the auxiliary open/close valve (4c) is kept opened in the cooling
operation, and is opened when the high pressure of the refrigerant excessively increases
in the heating operation. This allows a portion of a discharged gas to flow into the
heating overload controlling bypass path (42), thereby condensing the portion of the
discharged gas in the auxiliary heat exchanger (4a).
[0043] The liquid injection bypass path (43) adjusts the degree of superheat of a sucked
gas by injecting a liquid refrigerant to a suction side of the compressor (21) in
the cooling and heating operations. The liquid injection bypass path (43) includes
an injection valve (4d) which opens when the temperature of a discharge pipe of the
compressor (21) excessively increases, and a capillary tube (4e).
[0044] The oil return pipe (44) has a capillary tube (4f), and is configured to return a
lubricant from the oil separator (22) to the compressor (21).
[0045] The equalizing hot gas bypass path (45) connects the refrigerant pipe (40) on the
discharge side of the compressor (21) and the refrigerant pipe (40) on the suction
side of the compressor (21), and includes an equalizing valve (4g) which opens for
a predetermined period of time when the compressor (21) stops and before the compressor
(21) restarts, and a capillary tube (4h).
[0046] An end of the equalizing path (46) is connected to an upper end surface of the receiver
(26), and the other end is connected to the equalizing hot gas bypass path (45) upstream
of the equalizing valve (4g). The equalizing path (46) includes a check valve (4i),
and guides a gaseous refrigerant in an upper portion in the receiver (26) to the suction
side of the compressor (21) through the equalizing hot gas bypass path (45), with
the equalizing valve (4g) kept opened.
[0047] The suction pipe heat exchanger (2b) allows for heat exchange between the sucked
refrigerant in the suction side of the compressor (21) and the liquid refrigerant
in the refrigerant pipe (40) to cool the sucked refrigerant, thereby compensating
the increase of the degree of superheat of the refrigerant in the connection pipe
(41).
[0048] The air conditioner (10) is provided with multiple sensors. Specifically, the air
conditioner (10) includes an indoor air temperature sensor (Th1) for sensing an indoor
air temperature T1 which is the temperature of air sucked from the inside of the room,
an indoor liquid temperature sensor (Th2) for sensing a liquid pipe temperature T2
in the liquid refrigerant pipe (40) connected to the indoor heat exchanger (31), an
indoor gas temperature sensor (Th3) for sensing a gas pipe temperature T3 in the gaseous
refrigerant pipe (40) connected to the indoor heat exchanger (31), a discharge pipe
sensor (Th4) for sensing a discharge pipe temperature T4 of the compressor (21), an
outdoor liquid temperature sensor (Th5) for sensing a liquid refrigerant temperature
T5 in the outdoor heat exchanger (24), a suction pipe sensor (Th6) for sensing a suction
pipe temperature T6 of the compressor (21), an outdoor air temperature sensor (Th7)
for sensing an outdoor air temperature T7 which is the temperature of air sucked from
the outside of the room, a high pressure sensor (P1) arranged on the discharge side
of the compressor (21) for sensing a high pressure HP in the refrigerant circuit (11),
a low pressure sensor (P2) arranged on the suction side of the compressor (21) for
sensing a low pressure LP in the refrigerant circuit (11), and a high pressure switch
(HPS) for protecting the compressor (21) arranged on the discharge side of the compressor
(21).
[0049] The motor-operated expansion valves (25, 32) and the sensors (Th1-Th7, P1, P2), etc.,
are connected to a control unit (12) through signal lines. The control unit (12) is
configured to receive sensed signals from the sensors (Th1-Th7, P1, P2), etc., and
to control the opening/closing of the motor-operated expansion valves (25, 32), etc.,
and the capacity of the compressor (21).
[0050] The control unit (12) includes an air conditioning control means (13) for controlling
air conditioning operation. The control unit (12) is configured to detect a plurality
of operation state values, and to output state signals based on the signals from the
sensors (Th1-Th7, P1, P2), etc., and to control the capacity of the compressor (21).
[0051] In the air conditioner (10) during the cooling operation, the four way switching
valve (23) is switched to the state indicated by the solid line in FIG. 2. Then, the
auxiliary open/close valve (4c) of the auxiliary heat exchanger (4a) is kept opened,
and the refrigerant compressed in the compressor (21) is condensed in the outdoor
heat exchanger (24) and the auxiliary heat exchanger (4a), and is sent to the indoor
unit (30) through the connection pipe (41). In this indoor unit (30), the liquid refrigerant
decreases in pressure as it passes through the motor-operated indoor expansion valve
(32), and evaporates in the indoor heat exchanger (31). After that, the refrigerant
in the gaseous state returns to the outdoor unit (20) through the connection pipe
(41), and is sucked into the compressor (21). That is, the liquid refrigerant evaporates
because of heat exchange with the indoor air in the indoor heat exchanger (31), thereby
cooling the indoor air.
[0052] In the heating operation, the four way switching valve (23) is switched to the state
indicated by the broken line in FIG. 2. Then, the refrigerant flows in the reverse
direction of the flow direction in the cooling operation. Specifically, the refrigerant
compressed in the compressor (21) is condensed in the indoor heat exchanger (31),
and the refrigerant in the liquid state flows into the outdoor unit (20). The refrigerant
decreases in pressure as it passes through the motor-operated outdoor expansion valve
(25), evaporates in the outdoor heat exchanger (24), and returns to the compressor
(21). That is, the gaseous refrigerant condenses because of heat exchange with the
indoor air in the indoor heat exchanger (31), thereby heating the indoor air.
[0053] The remote monitoring system (1A) as a feature of the present invention monitors
the plurality of air conditioners (10) in a centralized manner, and includes a monitoring
apparatus (50) as shown in FIG 1.
[0054] The monitoring apparatus (50) includes a plurality of local controllers (60), and
a single host controller (70). Specifically, an interface (51) is connected to each
of the control units (12) of the air conditioners (10). The interfaces (51) are connected
to the corresponding local controller (60) through an exclusive line (52), and each
of the local controllers (60) is connected to the host controller (70) through a communication
line (53) such as a telephone line, the Internet, etc. Thus, the plurality of interfaces
(51) are connected to each of the local controllers (60). For example, when several
air conditioners (10) are provided in one building, the several air conditioners (10)
in the one building are monitored by one of the local controllers (60). The several
air conditioners (60) monitored by the one local controller (60) correspond to one
maintenance client.
[0055] For example, a plurality of local controllers (60) are connected to the host controller
(70), and the host controller (70) performs centralized monitoring of all the air
conditioners (10).
[0056] Each of the local controllers (60) is connected to a personal computer (54), and
receives real time data, which is operation data of each of the air conditioners (10),
from the air conditioners (10) through the interfaces (51) and the exclusive line
(52) every minute. Specifically, the local controller (60) is configured to receive,
for example, data such as the suction pipe temperature T6 sensed from the outdoor
unit (20) by the sensors (Th1-Th7, P1, P2), etc., and data about an operation mode,
i.e., the cooling operation and the heating operation.
[0057] The host controller (70) is configured to receive predetermined operation data from
the local controllers (60) through the communication lines (53).
[0058] The host controller (70) includes a capability calculator (71), an electric power
calculator (72), and a management controller (73). The management controller (73)
includes an energy calculator (7a), and a display means (7b).
[0059] The capability calculator (71) is configured to calculate the air conditioning capability
of each of the air conditioners (10) in each of sets of the several air conditioners.
Specifically, the capability calculator (71) calculates the air conditioning capability
of each of the air conditioners (10) based on a saturation temperature Tc corresponding
to a condensing pressure in the refrigerant circuit (11), a saturation temperature
Te corresponding to an evaporating pressure in the refrigerant circuit (11), a refrigerant
temperature Ti before pressure decrease in the refrigerant circuit (11), a refrigerant
suction temperature Ts of the compressor (21), and characteristics of the compressor
(21).
[0060] Specifically, as shown in FIG. 3, the capability calculator (71) calculates the saturation
temperature Tc corresponding to a condensing pressure based on the high pressure HP
of the refrigerant circuit (11) output by the high pressure sensor (P1), and calculates
the saturation temperature Te corresponding to an evaporating pressure based on the
low pressure LP of the refrigerant circuit (11) output by the low pressure sensor
(P2). The capability calculator (71) calculates the refrigerant temperature Ti before
pressure decrease, which is the temperature of the liquid refrigerant in the supercooled
state, based on the liquid pipe temperature T2 in the indoor heat exchanger (31) in
the cooling operation sensed by the indoor liquid temperature sensor (Th2), or based
on the liquid refrigerant temperature T5 in the outdoor heat exchanger (24) in the
heating operation sensed by the outdoor liquid temperature sensor (Th5). Further,
the capability calculator (71) derives the refrigerant suction temperature Ts in the
compressor (21) based on the suction pipe temperature T6 sensed by the suction pipe
sensor (Th6). The capability calculator (71) calculates the air conditioning capability
of the air conditioner (10) from the characteristics of the compressor (21) based
on the saturation temperature Tc corresponding to a condensing pressure, the saturation
temperature Te corresponding to an evaporating pressure, the refrigerant temperature
Ti before pressure decrease, and the refrigerant suction temperature Ts.
[0061] The electric power calculator (72) is configured to calculate power consumption of
each of the air conditioners (10) in each of sets of several air conditioners (10).
Specifically, like the capability calculator (71), the electric power calculator (72)
is configured to calculate the power consumption of the air conditioner (10) based
on the saturation temperature Tc corresponding to a condensing pressure in the refrigerant
circuit (11), and the saturation temperature Te corresponding to an evaporating pressure
in the refrigerant circuit (11), the refrigerant temperature Ti before pressure decrease
in the refrigerant circuit (11), the refrigerant suction temperature Ts in the compressor
(21), and the characteristics of the compressor (21) in the refrigerant circuit (11).
[0062] Specifically, the electric power calculator (72) calculates the power consumption
of the air conditioner (10) from the characteristics of the compressor (21) based
on the saturation temperature Tc corresponding to a condensing pressure, the saturation
temperature Te corresponding to an evaporating pressure, the refrigerant temperature
Ti before pressure decrease, and the refrigerant suction temperature Ts of the compressor
(21).
[0063] The management controller (73) is configured to manage each of the plurality of air
conditioners (10) by previously classifying the air conditioners (10) into a plurality
of air conditioning blocks (1B) according to predetermined relationship. Specifically,
as described above, the air conditioners (10) monitored by the single local controller
(60) correspond to one maintenance client. Therefore, the air conditioners (10) of
the one maintenance client constitute a single air conditioning block (1B). Thus,
the management controller (73) manages the air conditioners (10) on the basis of the
air conditioning block (1B).
[0064] The energy calculator (7a) is included in the management controller (73), and calculates
an energy utilization efficiency of each of the air conditioners (10) based on the
air conditioning capability calculated by the capability calculator (71), and the
power consumption calculated by the electric power calculator (72). The energy calculator
(7a) calculates the energy utilization efficiency of each of the air conditioning
blocks (1B).
[0065] Specifically, since the air conditioning capability per unit power consumption is
the energy utilization efficiency (air conditioning capability/power consumption),
the energy calculator (7a) calculates the instantaneous energy utilization efficiency
(air conditioning capability/power consumption), and the energy utilization efficiency
for a predetermined period of time (e.g., a year) (Σ air conditioning capability/Σ
power consumption) of each of the air conditioners (10) and each of the air conditioning
blocks (1B).
[0066] The display means (7b) is configured to display the energy utilization efficiency
of each of the air conditioners (10), and the energy utilization efficiency of each
of the air conditioning blocks (1B) calculated by the energy calculator (7a).
-Operation Mechanism-
[0067] A monitoring mechanism of the monitoring system (1A) of the air conditioners (10)
will be described below.
[0068] First, air conditioning operation of each of the air conditioners (10) is controlled
by the control unit (12). Then, data output from the sensors (Th1-Th7, P1, P2), etc.,
is transmitted from the control unit (12) to the local controller (60).
[0069] The local controller (60) transmits predetermined operation data from the received
data to the host controller (70) through the communication line (53).
[0070] Then, the capability calculator (71) of the host controller (70) calculates the air
conditioning capability of the air conditioner (10) based on the high pressure HP
and the low pressure LP of the refrigerant circuit (11), the refrigerant temperature
Ti before pressure decrease and the refrigerant suction temperature Ts in the compressor
(21) from the liquid pipe temperature T2 in the indoor heat exchanger (31) or the
liquid refrigerant temperature T5 in the outdoor heat exchanger (24), and the characteristics
of the compressor (21).
[0071] The electric power calculator (72) of the host controller (70) calculates the power
consumption of the air conditioner (10) based on the high pressure HP and the low
pressure LP of the refrigerant circuit (11), the refrigerant temperature Ti before
the pressure decrease and the refrigerant suction temperature Ts in the compressor
(21) from the liquid pipe temperature T2 in the indoor heat exchanger (31) or the
liquid refrigerant temperature T5 in the outdoor heat exchanger (24), and the characteristics
of the compressor (21).
[0072] Further, the energy calculator (7a) calculates the energy utilization efficiency
of each of air conditioners (10) and each of the air conditioning blocks (1B) based
on the air conditioning capability calculated by the capability calculator (71), and
the power consumption calculated by the electric power calculator (72).
[0073] The energy utilization efficiency of each of the air conditioners (10), and the energy
utilization efficiency of each of the air conditioning blocks (1B) calculated by the
energy calculator (7a) are displayed in the display means energy calculator (7a).
[0074] Monitoring of the energy utilization efficiency calculated by the energy calculator
(7a) allows for monitoring of the power consumption (an amount of CO
2 emission), and allows for management of each of the air conditioners (10) of a plurality
of maintenance clients by the host controller (70) in a centralized manner.
-Advantages of the Embodiment-
[0075] As described above, according to the present embodiment, the energy utilization efficiency
of each of the air conditioners (10) is calculated based on the air conditioning capability
and the power consumption of each of the air conditioners (10). This allows for easy
determination whether the power consumption is efficient or not.
[0076] In addition, clarification of the energy utilization efficiency of each of the air
conditioners (10) allows for clarification of defects of the operation state of each
of the air conditioners (10).
[0077] The calculation of the energy utilization efficiency of each of the air conditioners
(10) allows for examination of performance of each of the air conditioners (10).
[0078] Further, due to the calculation of the power consumption for calculating the energy
utilization efficiency of each of the air conditioners (10), the amount of CO
2 emission from each of the air conditioners (10) can be monitored.
[0079] The energy utilization efficiency of each of the air conditioning blocks (1B) is
calculated, and is remote-monitored. Therefore, for example, a full-time keeper is
no longer necessary in each building, thereby reducing cost of the management.
[0080] The air conditioning capability and the power consumption of each of the air conditioners
(10) are calculated using the signals from the high pressure sensor (P1), etc., conventionally
provided in the refrigerant circuit (11). This does not involve additional provision
of a new sensor, etc., thereby avoiding complexity of the system.
[0081] Since the electric power calculator (72), etc., are included in the host controller
(70), the determination whether the power consumption of each of the air conditioners
(10) is efficient or not can be performed in a centralized manner. In particular,
the management can easily be done because the energy utilization efficiency is displayed.
[Second Embodiment]
[0082] A second embodiment of the present invention will be described in detail below with
reference to the drawings.
[0083] Unlike the electric power calculator (72) of the first embodiment which calculates
the power consumption of the air conditioner (10) based on the characteristics of
the compressor (21), etc., the second embodiment is configured to calculate the power
consumption of the air conditioner (10) based on a current value sensed by a current
sensor (17) provided in the air conditioner (10), a power factor of the air conditioner
(10), and a power supply voltage of the air conditioner (10) as shown in FIG. 4.
[0084] Specifically, in each of the air conditioners (10), electric power is fed from a
power supply (15) to the compressor (21), the fans (2F, 3F), and actuators (25, ...)
including the other devices such as the electronic expansion valve (25), etc., through
an electric power line (16). Current sensors (17) are provided on the electric power
line (16) for the compressor (21), the fans (2F, 3F), and the actuators (25, ...),
respectively. Each of the current sensors (17) is configured to sense a current value
fed to each of the compressor (21), the fans (2F, 3F), and the actuators (25, ...).
[0085] In particular, the current sensor (17) is comprised of a control sensor for sensing
an overcurrent to control the compressor (21), etc. That is, the control sensor also
functions as the current sensor (17) for calculating the electric power. A sensed
signal from the current sensor (17) (a current value) is input to the control unit
(12).
[0086] The electric power calculator (72) of the host controller (70) is configured to calculate
the power consumption of the air conditioner (10) based on the current value of each
device in the air conditioner (10) sensed by the current sensor (17), i.e., the current
values of the compressor (21), the fans (2F, 3F), and the actuators (25, ...), a power
factor of each of the air conditioners (10), and a power supply voltage of each of
the air conditioners (10).
[0087] In more detail, the electric power calculator (72) includes a power supply storage
section for previously storing the power supply voltage of each of the air conditioners
(10), and a power factor storage section for previously storing an inherent power
factor of each of the compressor (21), the fans (2F, 3F), and the actuators (25, ...),
which is the power factor of each of the air conditioners (10). The electric power
calculator (72) is configured to calculate the power consumption (current value ×
power supply voltage × power factor) based on the current value sensed by the current
sensor (17), the power factor, and the power supply voltage.
[0088] Thus, according to the second embodiment, the current sensor (17) senses the current
value of each of the devices in each of the air conditioners (10), i.e., the current
values of the compressor (21), the fans (2F, 3F), and the actuators (25, ...). The
electric power calculator (72) calculates the power consumption of each of the air
conditioners (10) based on the current value of each of the air conditioners (10)
sensed by the current sensor (17), the previously stored power supply voltage, and
the previously stored power factor of each of the actuators (25, ...). Based on the
calculated power consumption, and the air conditioning capability calculated by the
capability calculator (71), the energy calculator (7a) calculates the energy utilization
efficiency of each of the air conditioners (10), and the energy utilization efficiency
of each of the air conditioning blocks (1B).
[0089] As a result, like the first embodiment, the second embodiment allows for easy determination
whether the power consumption is efficient or not because the energy power consumption
of each of the air conditioners (10) is calculated based on the air conditioning capability
and the power consumption of each of the air conditioners (10).
[0090] In particular, the power consumption is accurately calculated by considering the
power factor, thereby allowing for accurate determination whether the power consumption
is efficient or not.
[0091] Further, since the control sensors are used as the current sensors (17), the calculation
of the power consumption is accurately performed without increasing the parts count.
[0092] The structure and advantages of the second embodiment except for the above-described
features are similar to those of the first embodiment.
[Third Embodiment]
[0093] A third embodiment of the present invention will be described in detail with reference
to the drawings.
[0094] As shown in FIG. 5, the third embodiment is configured to sense the current of each
of the air conditioners (10) instead of sensing the current of each of the devices
in the second embodiment.
[0095] Specifically, in each of the air conditioners (10), an electric power extraction
section (16a) is provided on the electric power line (16), and an electric power measuring
device (18) is connected to the electric power extraction section (16a). As shown
in FIG. 6, when a three-phase power supply (15) is used, current sensors (17) are
provided for two phases in the electric power extraction section (16a), and voltage
lines (18a) for extracting a voltage between phases are branched from the electric
power lines (16). The electric power measuring device (18) is connected to the current
sensors (17) through current lines (18b), respectively, and the voltage lines (18a)
are connected to the electric power measuring device (18). Thus, the electric power
measuring device (18) is configured to sense the current value and the power supply
voltage, which is an applied voltage, of each of the air conditioners (10), thereby
measuring the power consumption of each of the air conditioners (10). The electric
power value measured by the electric power measuring device (18) is input from the
control unit (12) of each of the air conditioners (10) to the electric power calculator
(72) of the host controller (70).
[0096] The electric power calculator (72) is configured to calculate actual power consumption
based on the electric power value measured by the electric power measuring device
(18), and the power factor of the devices previously stored in the power factor storage
section.
[0097] Thus, like the second embodiment, the third embodiment allows for accurate calculation
of the power consumption because the power factor is considered. This makes it possible
to accurately determine whether the power consumption is efficient or not.
[0098] The structure and advantages of the third embodiment except for the above-described
features are similar to those of the first and second embodiments.
[0099] When a single-phase power supply (15) is used as shown in FIG. 7, the electric power
extraction section (16a) is provided with a single current sensor (17), and voltage
lines (18a) for extracting a voltage between phases are branched from the electric
power lines (16). The current sensor (17) and the voltage lines (18a) are connected
to the electric power measuring device (18) to sense the current value and the power
supply voltage, which is an applied voltage, of each of the air conditioners (10),
thereby measuring the power consumption of each of the air conditioners (10).
[Other Embodiments]
[0100] The above-described embodiments may be modified in the following manner.
[0101] The electric power calculator (72) of the second and third embodiments is configured
to calculate the power consumption of the air conditioner (10) based on the current
value sensed by the current sensor (17), the power supply voltage, and the power factor.
However, the power consumption of the air conditioner (10) may be calculated merely
based on the current value and the power supply voltage of the air conditioner (10).
[0102] The refrigerant circuit (11) of the air conditioner (10) is not limited to those
described in the embodiments. The air conditioner (10) may be used exclusively for
cooling or heating.
[0103] The capability calculator (71) and the electric power calculator (72) are included
in the host controller (70). However, the capability calculator (71) and the electric
power calculator (72) may be provided in the local controller (60), or in the personal
computer (54).
[0104] The above embodiments are merely preferred embodiments in nature, and are not intended
to limit the scope, applications and use of the disclosed technique.
INDUSTRIAL APPLICABILITY
[0105] As described above, the present invention is useful for a remote monitoring system
for a plurality of air conditioners.
DESCRIPTION OF REFERENCE CHARACTERS
[0106]
- 1A
- Remote monitoring system
- 1B
- Air conditioning block
- 10
- Air conditioner
- 15
- Power supply
- 16
- Electric power line
- 17
- Current sensor
- 18
- Electric power measuring device
- 50
- Remote monitoring apparatus
- 53
- Communication line
- 60
- Local controller
- 70
- Host controller
- 71
- Capability calculator
- 72
- Electric power calculator
- 73
- Management controller
- 7a
- Energy calculator
- 7b
- Display means