(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: **05.05.2010 Patentblatt 2010/18**

(21) Anmeldenummer: 09012848.9

(22) Anmeldetag: 10.10.2009

(51) Int CI.:

A63C 17/06 (2006.01) A63C 17/26 (2006.01) A61G 5/10 (2006.01) A63C 17/22^(2006.01) A61B 5/22^(2006.01) B62M 25/04^(2006.01)

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Benannte Erstreckungsstaaten:

AL BA RS

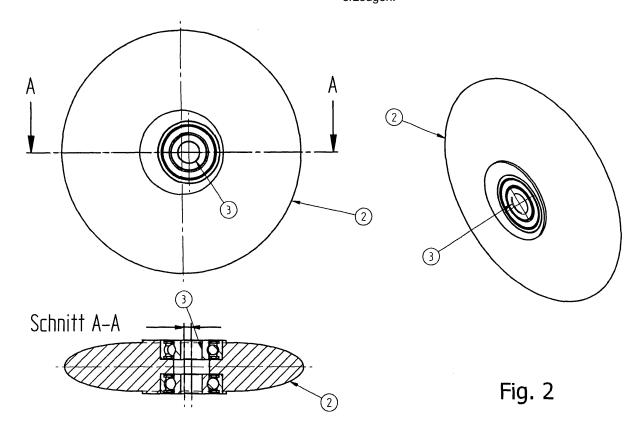
(30) Priorität: 03.11.2008 DE 102008055702

(71) Anmelder: Teschner, Christian, Dr. med. 42859 Remscheid (DE)

(72) Erfinder:

 Teschner, Christian, Dr. med. 42859 Remscheid (DE)

 Becker, Norbert L., Dr. med. 72074 Tübingen (DE)


(74) Vertreter: Dziewior, Joachim

Patentanwälte
Dr. Hermann Fay
Dr. Joachim Dziewior
Postfach 1767
89007 Ulm (DE)

(54) Trainings- oder Sportgerät

(57) Das Trainings- oder Sportgerät dient insbesondere zur Durchführung auch eines Vibrationstrainings. Es kann eingesetzt werden u.a. zum Aufbau von Muskelund Knochengewebe und gegen bestehenden oder zur Prophylaxe bei zu erwartendem Knochen- und/oder

Muskelschwund am menschlichen Körper. Hierfür sind ein oder mehrere kinematische Wandler vorgesehen, die aus dem Bewegungsablauf während des Trainings,bevorzugt durch Muskelkraft des Trainierenden aufgebrachte Bewegungsenergie eine Vibrationsbewegung erzeugen.

20

40

Beschreibung

[0001] Die Erfindung betrifft ein Trainings- oder Sportgerät, insbesondere zur Durchführung auch eines Vibrationstrainings u. a. zum Aufbau von Muskel- und Knochengewebe und gegen bestehenden oder zur Prophylaxe bei zu erwartendem Knochen- und/oder Muskelschwund am menschlichen Körper.

1

[0002] Zur Wirkungsweise und den Effekten von Vibrationstraining gibt es zahlreiche wissenschaftliche Studien mit derzeit teilweise jedoch noch widersprüchlichen Ergebnissen. Gleichwohl hat sich hierbei herausgestellt, dass bei Vibrationen in einem Frequenzbereich von bevorzugt 5 Hz bis 30 Hz, für bestimmte Anwendungen von mehreren hundert Hertz Reflexe bzw. direkte Reaktion des Gewebes ausgelöst werden, die Muskelkontraktionen hervorrufen. Diese reflexbedingten Muskelkontraktionen trainieren die Leistungsfähigkeit der Muskulatur und können darüber hinaus bei geeigneter Anwendung durch Aufbau der Muskulatur indirekt einem Knochenabbau entgegenwirken; bei anderen Vibrationsfrequenzen wird direkt eine Zunahme der Knochendichte angeregt. Eine Vielzahl weiterer Wirkungen des Vibrationstrainings ist bekannt: Erhöhung der Gewebedurchblutung, Verbesserung der Balance bzw. der Körperkontrolle, Mobilisierung von Gelenken, Reduktion der Streßinkontinenz durch Tonisierung der Beckenbodenmuskulatur, Besserung von chronischen Rückenschmerzen.

[0003] Bei den bisher bekannten Trainingsgeräten steht die zu behandelnde Person bevorzugt auf einer vibrierenden Platte, die dann zu Schwingungen in dem gewünschten Frequenzbereich angeregt wird. Dies bedeutet im Ergebnis, dass Personen, die sich einem Vibrationstraining unterziehen wollen, eine derartige Vorrichtung benötigen, bei deren Anwendung der Körper im Übrigen in einer passiven Rolle bleibt.

[0004] Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Trainings- oder Sportgerät der eingangs genannten Art zu schaffen, das einerseits die Ausübung einer üblichen sportlichen Betätigung erlaubt und darüber hinaus ergänzend die Möglichkeit eines Vibrationstrainings ermöglicht.

[0005] Diese Aufgabe wird nach der Erfindung dadurch gelöst, dass ein oder mehrere kinematische Wandler vorgesehen sind, die aus dem Bewegungsablauf während des Trainings, bevorzugt durch Muskelkraft des Trainierenden aufgebrachte Bewegungsenergie eine Vibrationsbewegung erzeugen.

[0006] Der durch die Erfindung erreichte Vorteil besteht zunächst darin, dass der durch Anwendung des konventionellen Trainings- oder Sportgerätes angestrebte Effekt einer - allgemein gesprochen - körperlichen Ertüchtigung überlagert wird durch die Wirkungen des Vibrationstrainings, was einen synergistischen Effekt insbesondere im Hinblick auf eine Lockerung des Muskelgewebes, eine bessere Durchblutung desselben sowie einen Muskelaufbau erwarten lässt. Im Ergebnis wird hierbei eine aerobe Sportart mit einem eher anaeroben

Vibrationstraining verbunden, also ein simultanes kardiopulmonales Training und ein Vibrationstraining möglich.

[0007] Die positiven Effekte des Vibrationstrainings können darüber hinaus jedenfalls bei unfallträchtigen Trainings- oder Sportgeräten zu einer Verminderung des Unfallrisikos beitragen, da die Effekte des Vibrationstrainings - wie zum Beispiel eine bessere Durchblutung der Muskulatur - jedenfalls körperbedingte Unfallrisiken minimieren können.

[0008] Schließlich ist in der Regel auch der apparative Aufwand für das Vibrationstraining geringer, da die hierfür erforderliche Energie unmittelbar vom Trainierenden selbst aufgebracht wird, also zusätzliche motorische Antriebe oder ähnliches nicht benötigt werden.

[0009] In bevorzugter Ausführungsform der Erfindung ist es von Vorteil, wenn für den Bewegungsablauf eine oder mehrere Rollen vorgesehen sind und der kinematische Wandler in Wirkverbindung mit der/den Rollen steht.

[0010] Eine derartige Ausgestaltung kann bevorzugt Anwendung finden bei Trainings- oder Sportgeräten in Form von Rollschuhen, Inline-Skatern, einem Fahrrad oder Fahrradergometer, einem Rollator oder Rollstuhl, einem Rollsitz in einem Ruderboot oder einem Hometrainer, bei Umlenkrollen von mit Gewichten arbeitenden Trainingsgeräten, bei Laufbändern oder einem vergleichbaren, eine Rollbewegung beinhaltenden Gerät.

[0011] Für die Ausgestaltung der kinematischen Wandler gibt es vielfältige, dem jeweiligen Anwendungszweck entsprechend unterschiedliche Ausgestaltungsmöglichkeiten; nach einer ersten vorteilhaften Weiterbildung der Erfindung kann der kinematische Wandler von dem Achslagerelement der Rolle gebildet sein, wobei das Achslagerelement exzentrisch zur Rolle angeordnet ist. Hierdurch wird eine Vibrationsbewegung entsprechend der Umlaufgeschwindigkeit der Rolle erreicht.

[0012] Um Einfluss auf den Vibrationshub nehmen zu können, sieht die Erfinung vor, dass die Exzentrizität des Achslagerelements einstellbar ist.

[0013] Neben dieser starren Kopplung der Vibrationsbewegung mit dem Umlauf der Rolle kann nach einer weiteren Ausführungsform der Erfindung der kinematische Wandler in der Weise von dem Achslagerelement der Rolle gebildet sein, dass das Achslagerelement gegen wenigstens ein Federelement aus seiner zur Rolle zentrischen Lage auslenkbar ist. Hierdurch wird im Übrigen eine gewisse Dämpfung der Vibrationsbewegung erreicht. Empfehlenswert ist hierbei weiter, wenn die Kraft des Federelements einstellbar ist.

[0014] Hierbei besteht weiter die Möglichkeit, dass das Achslagerelement in einer oder mehreren radialen Richtungen der Rolle auslenkbar ist. Hierdurch kann eine erhöhte Vibrationsfrequenz bei gleicher Drehgeschwindigkeit der Rolle erreicht werden.

[0015] Das Federelement kann in üblicher Weise ausgebildet sein; im Rahmen der Erfindung hat es sich als vorteilhaft erwiesen, wenn das Federelement als Schraubenfeder oder als elastisches Pufferelment ausgebildet ist. Auch hierbei ist es von Vorteil, wenn der Vibrationshub des Achslagerelements ein- und feststellbar ist.

[0016] Nach einer weiteren Ausführungsform der Erfindung kann auch vorgesehen sein, dass der kinematische Wandler von dem Achslagerelement der Rolle gebildet ist, wobei das Achslagerelement mit einem Aussenzahnkranz versehen und exzentrisch gelagert ist, während die Rolle mit einem Innenzahnkranz an dem Aussenzahnkranz des Achslagerelements abläuft. Um hier eine Variation der Vibrationsfrequenz erreichen zu können, kann das Übersetzungverhältnis der beiden Zahnkränze veränderbar ausgebildet sein. Grundsätzlich können die Vibrationen auch über ein Planetengetriebe erzeugt werden, wodurch auch komplexere Wellenformen erzielt werden können. Hierdurch ließen sich zum Beispiel alternierenden Frequenzen oder Amplituden erzeugen.

[0017] Eine weitere Möglichkeit, eine Vibrationsfrequenz dem Trainings- oder Sportgerät zu überlagern, kann dadurch realisiert werden, dass der kinematische Wandler von einer inhomogenen Massenverteilung in der Rolle gebildet ist. Dies kann nach einer ersten Ausbildung dadurch erfolgen, dass die inhomogene Massenverteilung von einem in der Rolle fest eingebetteten Unwuchtkörper mit gegenüber der Rolle deutlich höherem spezifischem Gewicht gebildet ist.

[0018] Um diesen Effekt noch zu erhöhen, können dem Unwuchtkörper radial gegenüber stehende Bereiche von verringertem spezifischem Gewicht bevorzugt in Form von Ausnehmungen in der Rolle vorgesehen sein

[0019] Statt einer statischen Anordnung eines solchen Unwuchtkörpers besteht jedoch auch die Möglichkeit, dass die inhomogene Massenverteilung von den in der Rolle beweglich angeordneten Unwuchtkörpern gebildet ist. Dazu können die Unwuchtkörper beispielsweise in rohrförmigen Kanälen der Rolle angeordnet sein.

[0020] Je nach angestrebtem Vibrationseffekt können diese rohrförmigen Kanäle wellenförmig, elliptisch oder in ähnlicher Gestaltung um die Drehachse der Rolle angeordnet sein, so dass eine Beeinflussung des Bewegungsablaufes der Unwuchtkörper und damit im Ergebnis der Vibrationsschwingungen erreicht werden kann. Hierzu kann auch vorgesehen sein, dass die rohrförmigen Kanäle mit profilierten Wänden versehen sind, über die eine weitere Beeinflussung der Vibrationsbewegungen erreicht werden kann.

[0021] Die Unwuchtkörper können im Rahmen der Erfindung beispielsweise von Kugeln gleicher oder unterschiedlicher Dichte, von Granulat, von Flüssigkeit, Gel oder ähnlichem gebildet sein.

[0022] Eine weitere Ausgestaltungsform der Erfindung ist dadurch gekennzeichnet, dass die Rolle mehrere gleichmäßig oder ungleichmäßig über den Umfang verteilt angeordnete, elastisch verformbare Lamellen aufweist, die die Rollenachse mit der Rollenlauffläche verbinden. Soweit die Rollenlauffläche hierbei eine entspre-

chende Elastizität besitzt, führt dies in Abhängigkeit von der Ausbildung der Lamellen zu einer Verformung der Rollenlauffläche und damit wiederum zu einer Vibrationsbewegung.

[0023] Die Lamellen können hierbei entlang des Umfangs einen unterschiedlichen Elastizitätsgrad und/oder unterschiedlichen Krümmungsgrad aufweisen.

[0024] Zusätzlich besteht hierbei die Möglichkeit, dass der Zwischenraum zwischen den Lamellen hohl oder mit Kunststoff oder Gel gefüllt ist, was wiederum zu einer weiteren Beeinflussung des erzielbaren Vibrationshubs führt. Des weiteren können die Lamellen untereinander auch über Federelemente miteinander verbunden sein. [0025] Eine weitere vorteilhafte Ausgestaltung der Er-

findung sieht vor, dass die Achse der Rolle schwenkbar federnd aufgehängt ist und die Rolle mit randseitigen Aussparungen im Bereich ihrer Lauffläche versehen ist. [0026] Dies ergibt die Möglichkeit, die Ausrichtung der Rolle zu ihrer Ablauffläche zu variieren und über die dadurch unterschiedlichen, mit dem Untergrund in Kontakt kommenden Bereiche der Lauffläche eine Variation der Vibrationsbewegung zu erreichen sowie beim Fahren über einen unregelmäßig gestalteten Untergrund erzeugte Vibrationen mit nachteiligem Effekt zumindest teilweise abzuschwächen bzw. herauszufiltern.

[0027] Unabhängig hiervon besteht jedoch schließlich auch die Möglichkeit, die Rolle an Ihrer Lauffläche mit einer Profilierung zu versehen, über die unmittelbar die Vibrationsbewegung erreicht wird. Um auch hierbei Variatonsmöglichkeiten zu haben, kann die Profilierung in Längsrichtung ihrer Lauffläche eine unterschiedliche Dichte und/oder quer zur Laufrichtung eine unterschiedliche Profilierungstiefe aufweisen. Hierdurch können Vibrationswellen in unterschiedlichen Ebenen erreicht werden (vlg. Zeichnungen). Weitere Variationsmöglichkeiten können durch die Integration von aufpumpbaren Elementen erreicht werden, die ggf. durch die Bewegung des Anwenders selbst beeinflussbar sein könnten: Beispielsweise könnte sich der Härtegrad der Rolle oder auch die Profiltiefe in Abhängigkeit von der Rotationsgeschwindigkeit (oder auch der Rollenneigung) ändern.

[0028] Schließlich besteht noch die Möglichkeit einer Integration von Piezoelementen, durch die zusätzlich zu den durch Muskelkraft des Anwenders erzeugten Vibrationen für bestimmte Zielgruppen zusätzliche Effekte in der Art einer Superimposition erzielt werden könnten.

[0029] Ergänzend ist noch darauf hinzuweisen, dass die mögliche simultane Anwendung einzelner der hier beschriebenen Techniken zur Erzeugung von Vibrationen dazu herangezogen werden kann, um mehrere, sich überlagernde Vibrationswellen mit unterschiedlicher Frequenz und Amplitude zu erzeugen, wodurch mehrere Organsysteme simultan angeregt werden könnten (für Knochen- und Muskelgewebe sind beispielsweise jeweils unterschiedliche Vibrationsfrequenzen erforderlich, um das Wachstum anzuregen).

[0030] Je nach Wahl der superimponierten Vibrationswellen kann auch ein Schwebungseffekt erzeugt werden

50

wobei im Sinne eines positiven therapeutischen Effekts Schwebungen mit einer eindeutig definierten Schwerbungsfrequenz der Vorzug zu geben sein dürfte.

[0031] Um mit relativ wenig energetischen Aufwand Schwingungen bzw. Vibrationen erzeugen zu können, kann schließlich noch in Betracht gezogen werden, Maßnahmen zu ergreifen, die zu einem "Aufschaukeln" einer Vibrationswelle führen. Dies könnte durch eine geeignete Kopplung mit Federelementen und/oder Stoßdämpfern bzw. durch das Ausnutzen der Eigenfrequenz des Gesamtsystems erreicht werden.

[0032] Im folgenden wird die Erfindung an in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert; es zeigen:

- Fig. 1 eine schematische Darstellung eines konventionellen Trainings- oder Sportgeräts in Form eines Inline-Skaters,
- Fig. 2 in den Teilfiguren a c drei unterschiedliche Ansichten einer Rolle für ein Trainingsoder Sportgerät nach der Erfindung mit radialer Achslagerverschiebung,
- Fig. 3 in den Teilfiguren a c eine der Fig. 2 entsprechenden Darstellung mit radial gefederter Achsenlagerverschiebung,
- Fig. 4 eine zur Fig. 3 alternative Ausgestaltung, Fig. 5 eine weitere Ausgestaltungsform in der Fig. 2 entsprechender Darstellung,
- Fig. 6 eine weitere Ausgestaltungsvariante,
- Fig. 7- 10 in jeweils schematischer Darstellung jeweils eine Rolle in Draufsicht mit Ausgestaltungsvariationen zur Erzeugung von Vibrationen.

[0033] Das in der Zeichnung in Fig. 1 beispielhaft dargestellte Trainings- oder Sportgerät, hier in Form eines Inline-Skaters mit einem Stiefel 1 und Rollen 2, dient in der hier dargestellten Weise als ein Gerät zur Freizeitbeschäftigung mit dem Nebeneffekt einer allgemeinen körperlichen Ertüchtigung.

[0034] Um bei der Anwendung eines derartigen Trainings- oder Sportgerätes zusätzlich ein Vibrationstraining vornehmen zu können, das sich insbesondere gegen bestehende oder zur Prophylaxe bei zu erwartendem Knochen- und/oder Muskelschwund am menschlichen Körper empfiehlt, sieht die Erfindung vor, dass das Trainings- oder Sportgerät mit einem oder mehreren kinematischen Wandlern versehen ist, die aus der bevorzugt durch Muskelkraft des Trainierenden aufgebrachten Bewegungsenergie eine Vibrationsbewegung erzeugen. Hierzu dienen insbesondere die im Einzelnen in den Fig. 2 - 10 dargestellten Rollen 2, mit denen der kinematische Wandler in Wirkverbindung steht. Damit ist der erfin-

dungsgemäße Einsatz keineswegs auf Inline-Skater gemäß Fig. 1 beschränkt; vielmehr ist eine Anwendung ganz allgemein auch bei Rollschuhen, bei Fahrrädern oder Fahrradergometern sowie bei Rollatoren oder Rollstühlen möglich. Grundsätzlich sind alle Geräte geeignet, die einen Bewegungsablauf über Rollen 2 vollziehen, wie dies beispielsweise auch beim Rollsitz eines Ruderbootes oder eines Hometrainers der Fall ist.

[0035] In einer ersten Ausgestaltung gemäß Figur 2 kann der kinematische Wandler von dem Achslagerelement 3 der Rolle 2 gebildet sein, wobei das Achslagerelement 3 exzentrisch zur Rolle 2 angeordnet ist. In der Darstellung nach Fig. 2 ist die Exzentrizität festgelegt; ebenso besteht jedoch die Möglichkeit, diese Exzentrizität einstellbar zu machen.

[0036] Eine Verstellbarkeit der Exzentrizität ist beispielsweise in dem Ausführungsbeispiel nach den Fig. 3 und 4 gegeben, wobei hier der kinematische Wandler von dem Achslagerelement 3 der Rolle 2 gebildet ist und das Achslagerelement 3 gegen ein Federelement 4 aus seiner zur Rolle 2 zentrischen Lage auslenkbar ist. Je nach Drehstellung der Rolle 2 erfolgt hierbei eine Auslenkung aus der zentrischen Lage, wodurch sich bei der Drehbewegung des Rades 2 eine Vibrationsbewegung ergibt. Die Kraft des Federelementes 4 kann dabei in nicht näher dargestellter Weise auch einstellbar sein. In ebenfalls nicht näher dargestellter Weise kann das Achslagerelement 3 auch in einer oder mehreren radialen Richtungen der Rolle 2 auslenkbar sein.

[0037] In dem Ausführungsbeispiel nach Fig. 3 ist das Federelement 4 von einer Schraubenfeder gebildet; in Fig. 4 ist hierfür ein elastisches Pufferelement vorgesehen.

[0038] Auch besteht hierbei die ebenfalls nicht näher dargestellte Möglichkeit, dass der Vibrationshub des Achslagerelements 3 ein- und feststellbar ist.

[0039] Bei einer weiteren, in der Zeichnung ebenfalls nicht dargestellten Ausführungsvariante kann der kinematische Wandler von dem Achslagerelement 3 der Rolle 2 gebildet sein, wobei das Achslagerelement 3 mit einem Aussenzahnkranz versehen und exzentrisch gelagert ist. Die Rolle 2 läuft dann an diesem Aussenzahnkranz mit einem entsprechenden Innenzahnkranz ab, wodurch sich aufgrund der exzentrischen Anordnung des Achslagerelementes 3 ebenfalls ein Vibrationshub ergibt. Die Vibrationsfrequenz kann hierbei über das Übersetzungsverhältnis der beiden Zahnkränze verändert werden.

[0040] Eine weitere Ausführungsvariante ist in Fig. 5 dargestellt: Hier ist der kinematische Wandler von einer inhomogenen Massenverteilung 5,6 in der Rolle 2 gebildet. Wie sich aus der Fig. 5 weiter ergibt, ist die inhomogene Massenverteilung 5,6 von einem in der Rolle fest eingebetteten Unwuchtkörper 5 mit gegenüber der Rolle 2 deutlich höherem spezifischem Gewicht gebildet. Um diesen Effekt noch zu erhöhen, kann dem Unwuchtkörper 5 radial gegenüberstehend ein Bereich 6 vorgesehen sein, der ein verringertes spezifisches Gewicht aufweist,

10

15

20

40

wofür sich in einfachster Weise eine Ausnehmung in der Rolle 2 anbietet.

[0041] Es besteht jedoch auch die Möglichkeit, die inhomogene Massenverteilung durch in der Rolle beweglich angeordnete Unwuchtkörper 5 zu schaffen, wodurch sich zusätzliche dynamische Effekte ergeben können. Dies ist in mehreren Variationen in Fig. 7 dargestellt. Dazu können die Unwuchtkörper 5 beispielsweise in rohrförmigen Kanälen 7 der Rolle angeordnet sein, wobei die rohrförmigen Kanäle 7 wellenförmig, elliptisch oder in ähnlicher Gestaltung um die Drehachse der Rolle 2 angeordnet sein können. Dabei besteht weiter die Möglichkeit, diese rohrförmigen Kanäle auch mit einer profilierten Wandung zu versehen.

[0042] Die Unwuchtkörper 5 können dabei von Kugeln gleicher oder unterschiedlicher Dichte gebildet sein; es bieten sich hierfür jedoch auch andere Materialien an, wie beispielsweise Granulat, eine Flüssigkeit, Gel oder der gleichen.

[0043] In Fig. 8 sind weitere Ausführungsformen von beweglich aufgehängten bzw. gelagerten Unwuchtkörpern 5 dargestellt, die dazu am Achsmittelpunkt und/oder an der Lauffläche über Federelemente 8 angeschlossen sein können. Die Unwuchtkörper 5 sind dazu wiederum in radial verlaufenden Kanälen 7 angeordnet, wobei auch die Möglichkeit besteht, einen Kanal 7 konisch sich erweiternd auszubilden, wodurch zusätzliche, sich überlagernde Vibrationsbewegungen erzeugt werden können. [0044] In Fig. 9 ist eine weitere Ausführungsvariante dargestellt, bei der die Rolle 2 mehrere gleichmäßig oder ungleichmäßig über den Umfang verteilt angeordnete Lamellen 9 aufweist, die elastisch verformbar sind und die Rollenachse 10 mit der Rollenlauffläche verbinden. Diese Lamellen 9 können entlang des Umfangs einen unterschiedlichen Elastizitätsgrad und/oder unterschiedlichen Krümmungsgrad aufweisen und ermöglichen eine Verformung der Lauffläche 11 der Rolle 2, woraus sich eine Art "wobbelnder" elastischer Reifen ergibt. Dieser wird sich unter Belastung elliptisch verformen und hierüber auch Anlass zu Vibrationsschwingungen geben.

[0045] Der Zwischenraum zwischen diesen Lamellen kann entweder hohl ausgebildet oder aber auch mit Kunststoff oder Gel gefüllt sein. Ebenso besteht die in der Zeichnung angedeutete Möglichkeit, dass die Lamellen untereinander über Federelemente 12 miteinander verbunden sind.

[0046] In Figur 10 ist schließlich eine weitere Ausführungsvariante wiedergegeben, bei der die Achse 10 der Rolle 2 schwenkbar federnd aufgehängt ist. Die Rolle 2 ist hierbei mit randseitigen Aussparungen 13 im Bereich ihrer Lauffläche 11 versehen, wodurch im Ergebnis Vibrationen in einer anderen Ebene erzeugt werden können.

[0047] Schließlich kann die Rolle auch - wie dies in Fig. 6 dargestellt ist - an ihrer Lauffläche 11 unmittelbar mit einer Profilierung versehen sein, wodurch eine exzentrische Lagerung entfällt. Diese Profilierung kann in Längsrichtung ihrer Lauffläche 11 eine unterschiedliche

Dichte und/oder quer zur Laufrichtung eine unterschiedliche Profilierungstiefe aufweisen.

Patentansprüche

- 1. Trainings- oder Sportgerät, insbesondere zur Durchführung auch eines Vibrationstrainings u.a. zum Aufbau von Muskel- und Knochengewebe und gegen bestehenden oder zur Prophylaxe bei zu erwartendem Knochen- und/oder Muskelschwund am menschlichen Körper, dadurch gekennzeichnet, daß ein oder mehrere kinematische Wandler vorgesehen sind, die aus dem Bewegungsablauf bevorzugt durch Muskelkraft des Trainierenden aufgebrachte Bewegungsenergie eine Vibrationsbewegung erzeugen.
- Trainings- oder Sportgerät nach Anspruch 1, dadurch gekennzeichnet, daß für den Bewegungsablauf eine oder mehrere Rollen (2) vorgesehen sind und der kinematische Wandler in Wirkverbindung mit der/den Rollen (2) steht.
- 25 3. Trainings- oder Sportgerät nach Anspruch 1 oder 2, gekennzeichnet durch eine Ausbildung in Form von Rollschuhen, Inline-Skatern, eines Fahrrades oder Fahrradergometers, eines Rollators oder Rollstuhls, eines Rollsitzes in einem Ruderboot oder einem Hometrainer, bei Umlenkrollen von mit Gewichten arbeitenden Trainingsgeräten, bei Laufbändern oder eines vergleichbaren, eine Rollbewegung beinhaltenden Gerätes.
- 35 4. Trainings- oder Sportgerät nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der kinematische Wandler von dem Achslagerelement (3) der Rolle (2) gebildet ist, wobei das Achslagerelement (3) exzentrisch zur Rolle (2) angeordnet ist.
 - Trainings- oder Sportgerät nach Anspruch 4, dadurch gekennzeichnet, daß die Exzentrizität des Achslagerelements (3) einstellbar ist.
- 45 6. Trainings- oder Sportgerät nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der kinematische Wandler von dem Achslagerelement (3) der Rolle (2) gebildet ist, wobei das Achslagerelement (3) gegen wenigstens ein Federelement (4) aus seiner zur Rolle (2) zentrischen Lage auslenkbar ist.
 - Trainings- oder Sportgerät nach Anspruch 6, dadurch gekennzeichnet, daß die Kraft des Federelements (4) einstellbar ist.
 - 8. Trainings- oder Sportgerät nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß das Achslagerelement (3) in einer oder mehreren radialen Richtungen

55

15

20

25

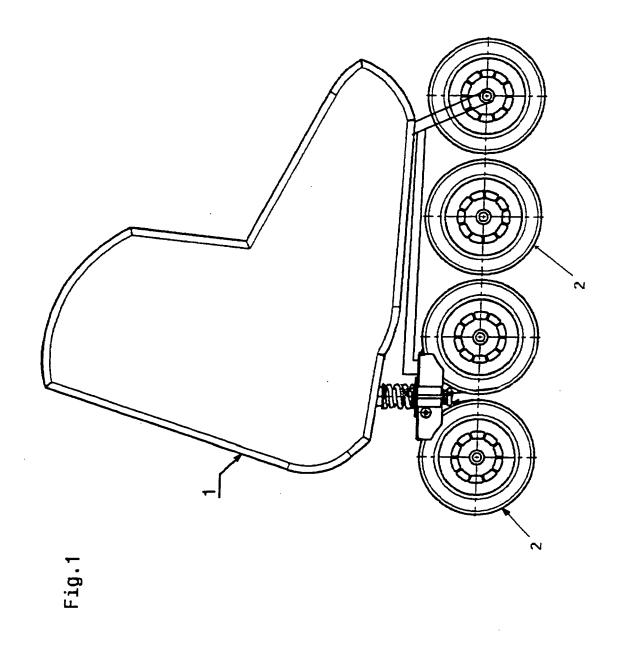
30

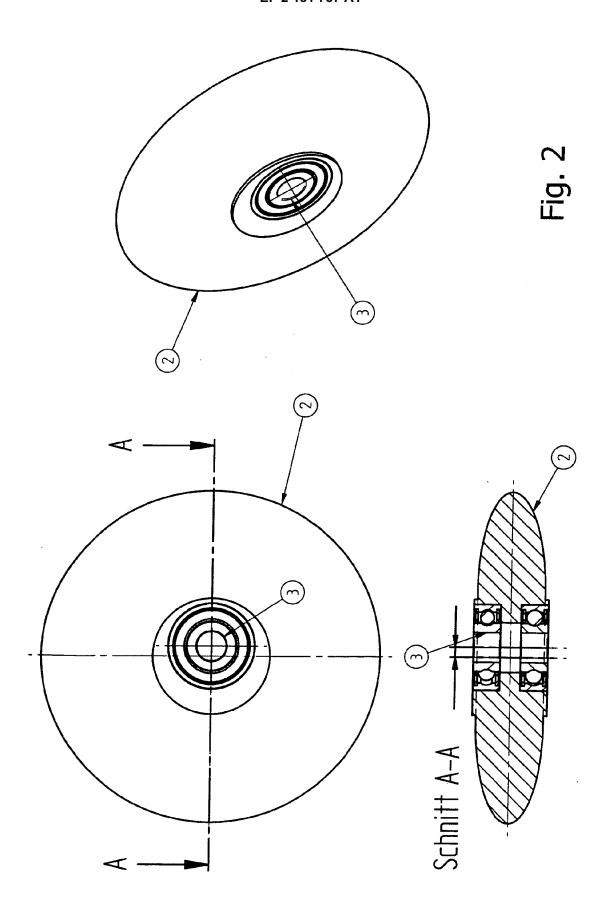
35

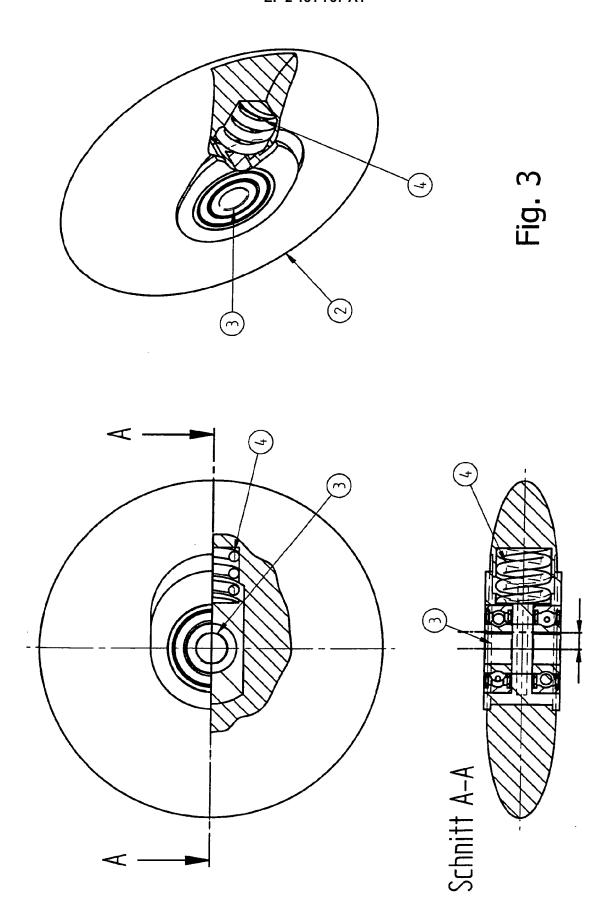
40

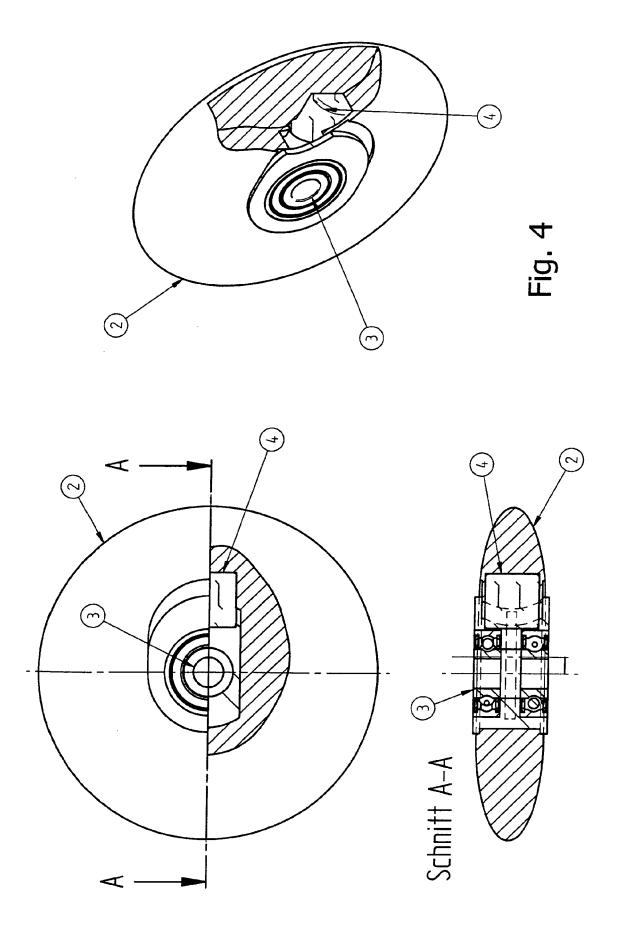
45

50


der Rolle (2) auslenkbar ist.


- 9. Trainings- oder Sportgerät nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß das Federelement (4) als Schraubenfeder oder als elastisches Pufferelement ausgebildet ist.
- 10. Trainings- oder Sportgerät nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß der Vibrationshub des Achslagerelements (3) ein- und feststellbar ist.
- 11. Trainings- oder Sportgerät nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der kinematische Wandler von dem Achslagerelement (3) der Rolle (2) gebildet ist, wobei das Achslagerelement mit einem Aussenzahnkranz versehen und exentrisch gelagert ist, während die Rolle mit einem Innenzahnkranz an dem Aussenzahnkranz des Achslagerelements (3) abläuft.
- **12.** Trainings- oder Sportgerät nach Anspruch 11, **dadurch gekennzeichnet**, **daß** das Übersetzungsverhältnis der beiden Zahnkränze veränderbar ist.
- 13. Trainings- oder Sportgerät nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der kinematische Wandler von einer inhomogenen Massenverteilung (5,6) in der Rolle gebildet ist.
- 14. Trainings- oder Sportgerät nach Anspruch 13, dadurch gekennzeichnet, daß die inhomogene Massenverteilung (5,6) von einem in der Rolle (2) fest eingebetteten Unwuchtkörper (5) mit gegenüber der Rolle (2) deutlich höherem spezifischem Gewicht gebildet ist.
- 15. Trainings- oder Sportgerät nach Anspruch 14, dadurch gekennzeichnet, daß dem Unwuchtkörper (5) radial gegenüberstehend Bereiche (6) von verringertem spezifischen Gewicht bevorzugt in Form von Ausnehmungen in der Rolle (2) vorgesehen sind.
- 16. Trainings- oder Sportgerät nach Anspruch 13, dadurch gekennzeichnet, daß die inhomogene Massenverteilung (5) von in der Rolle (2) beweglich angeordneten Unwuchtkörpern (5) gebildet ist.
- 17. Trainings- oder Sportgerät nach Anspruch 16, dadurch gekennzeichnet, daß die Unwuchtkörper (5) in rohrförmigen Kanälen (7) der Rolle (2) angeordnet sind.
- 18. Trainings- oder Sportgerät nach Anspruch 17, dadurch gekennzeichnet, daß die rohrförmigen Kanäle (7) wellenförmig, elliptisch oder in ähnlicher Gestaltung um die Drehachse (10) der Rolle (2) ange-


ordnet sind.


- Trainings- oder Sportgerät nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß die rohrförmigen Kanäle (7) mit profilierten Wandungen versehen sind.
- 20. Trainings- oder Sportgerät nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß die Unwuchtkörper (5) von Kugeln gleicher oder unterschiedlicher Dichte, von Granulat, von Flüssigkeit, Gel oder ähnlichem gebildet sind.
- 21. Trainings- oder Sportgerät nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Rolle (2) mehrere gleichmäßig oder ungleichmäßig über den Umfang verteilt angeordnete, elastisch verformbare Lamellen (9) aufweist, die die Rollenachse (10) mit der Rollenlauffläche (11) verbinden.
- 22. Trainings- oder Sportgerät nach Anspruch 21, dadurch gekennzeichnet, daß die Lamellen (9) entlang des Umfangs einen unterschiedlichen Elastizitätsgrad und/oder unterschiedlichen Krümmungsgrad aufweisen.
- 23. Trainings- oder Sportgerät nach Anspruch 21 oder 22, dadurch gekennzeichnet, daß der Zwischenraum zwischen den Lamellen (9) hohl oder mit Kunststoff oder Gel gefüllt ist.
- **24.** Trainings- oder Sportgerät nach einem der Ansprüche 21 bis 23, **dadurch gekennzeichnet**, **daß** die Lamellen (9) untereinander über Federelemente (12) miteinander verbunden sind.
- 25. Trainings- oder Sportgerät nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Achse (10) der Rolle (2) schwenkbar federnd aufgehängt ist und die Rolle (2) mit randseitigen Aussparungen (13) im Bereich ihrer Lauffläche (11) versehen ist.
- **26.** Trainings- oder Sportgerät nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Rolle (2) an ihrer Lauffläche (11) mit einer Profilierung versehen ist.
- 27. Trainings- oder Sportgerät nach Anspruch 26, dadurch gekennzeichnet, daß die Profilierung in Längsrichtung ihrer Lauffläche (11) eine unterschiedliche Dichte und/oder quer zur Laufrichtung eine unterschiedliche Profilierungstiefe aufweist.

6

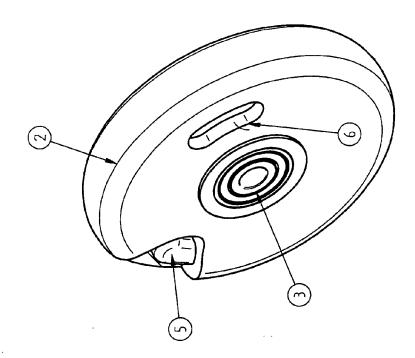
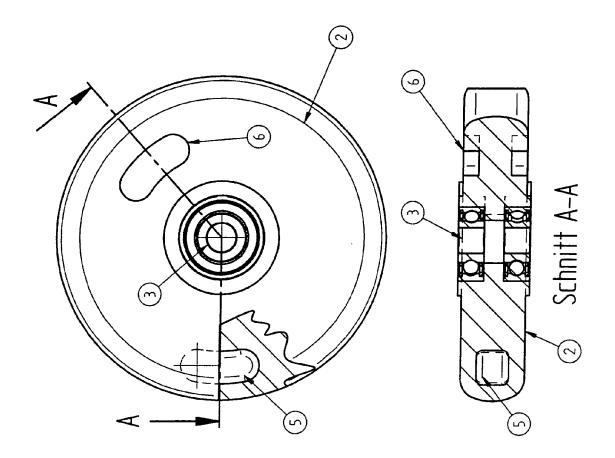
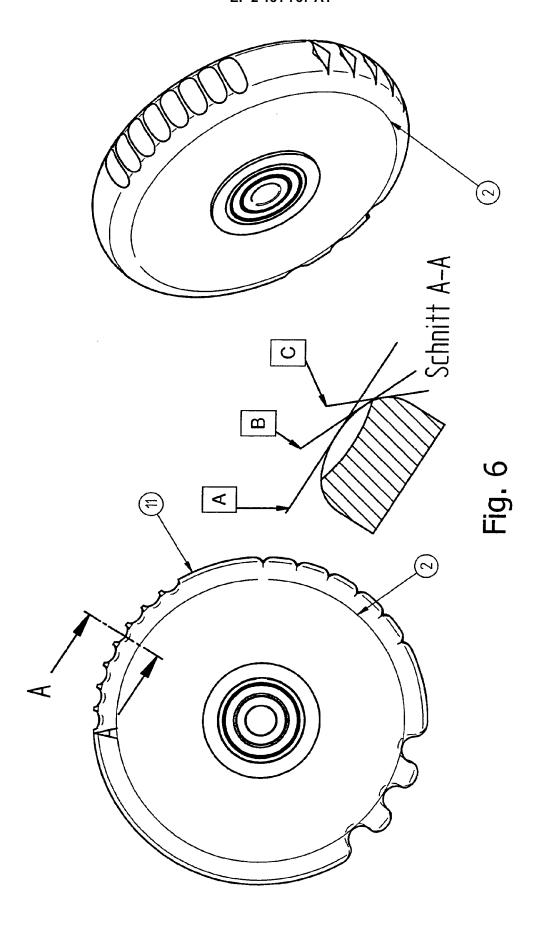
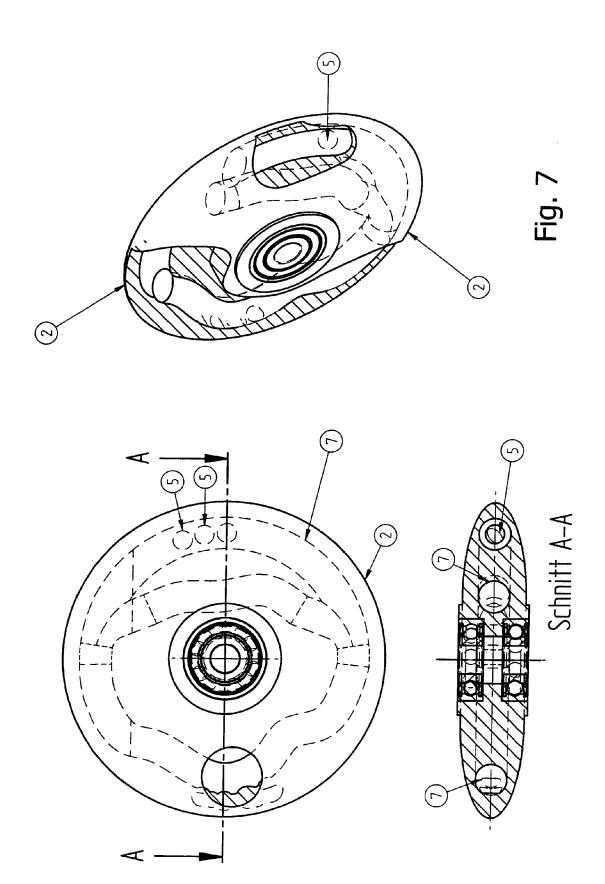
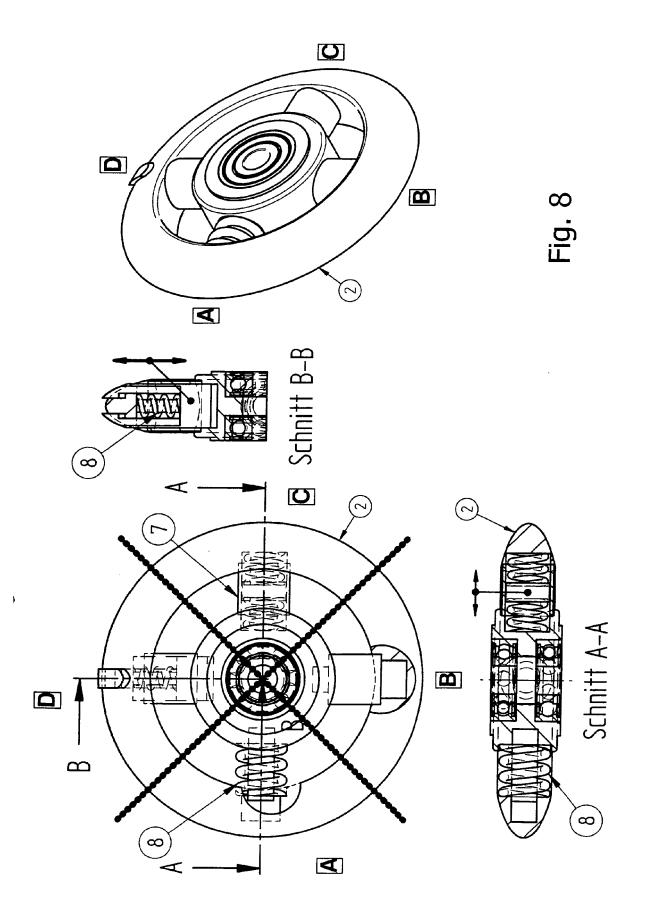






Fig. 5

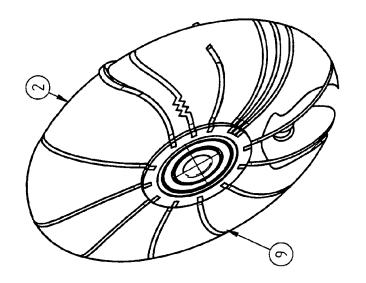
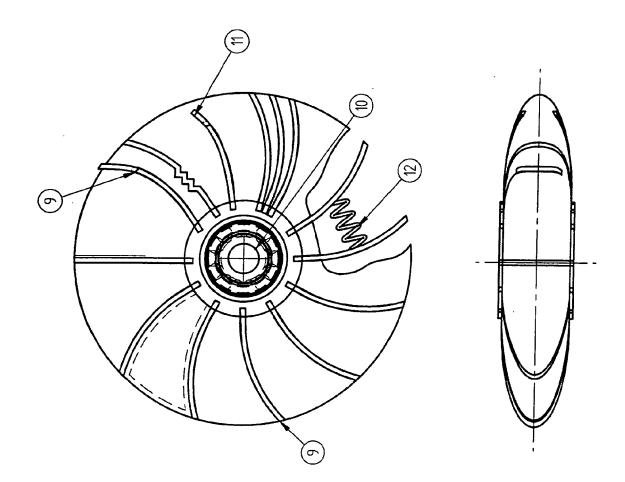
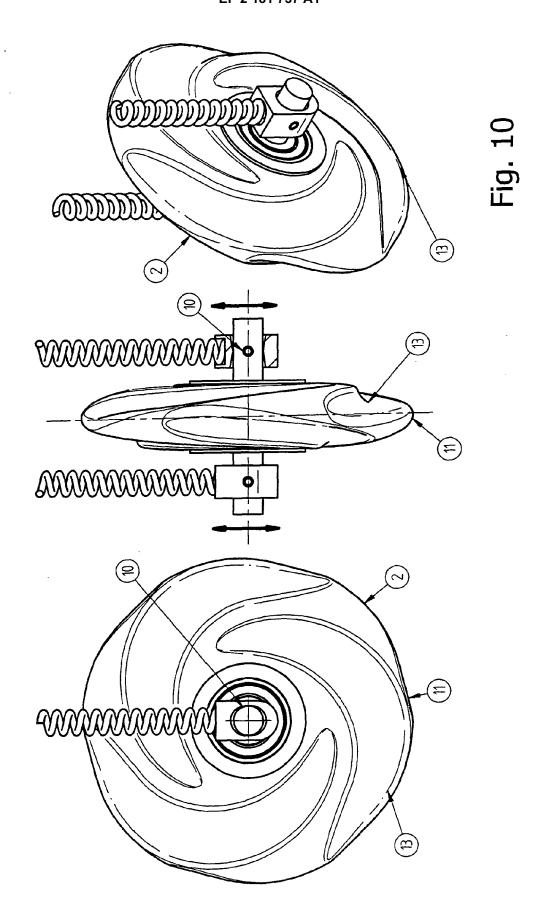




Fig. 9

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 09 01 2848

	EINSCHLÄGIGE	DOKUMENTE		
Kategorie	Kennzeichnung des Dokum der maßgebliche	ents mit Angabe, soweit erforderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
х	US 5 909 889 A (LAR 8. Juni 1999 (1999-	06-08)	1-4	INV. A63C17/06
A	* Spalte 2, Zeile 2 Abbildungen 1,3 *	5 - Spalte 3, Zeile 34;	5-27	A63C17/22 A63C17/26 A61B5/22 A61G5/10 B62M25/04
Х	US 5 718 438 A (CHO 17. Februar 1998 (1	SUNG HO [KR]) 998-02-17)	1-10	
A	* Seite 7, Zeile 23 Abbildungen 11,12 *	- Seite 8, Zeile 21; - Seite 9, Zeile 60;	11-27	
х	US 605 182 A (JOHNS 7. Juni 1898 (1898-		1-5	
A		- Seite 1, Zeile 86;	6-27	
Х	US 2004/124692 A1 (1. Juli 2004 (2004-	1-3, 13-14, 16-17,20		
A	* Abbildungen 5,6 * * Absatz [0033] - A Abbildungen 5,6 *	bsatz [0034];	4-12,15, 21-27	RECHERCHIERTE SACHGEBIETE (IPC)
Х	US 1 878 330 A (HER 20. September 1932 * Seite 1, Zeile 46 Abbildungen 2,3 *		1-3,21, 23	A61B A61G B62M
Der vo	rliegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche		Prüfer
	München	10. Februar 2010	Mur	er, Michael
X : von Y : von ande A : tech	ATEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kateg nologischer Hintergrund	E: älteres Patentdoki nach dem Anmeld mit einer D: in der Anmeldung prie L: aus anderen Grig	ument, das jedoo edatum veröffen angeführtes Dol den angeführtes	tlicht worden ist kument Dokument
	itschriftliche Offenbarung schenliteratur	& : Mitglied der gleich Dokument	ien Patentfamilie	, upereinstimmendes

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 09 01 2848

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

10-02-2010

	Recherchenbericht ihrtes Patentdokumer	nt	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US	5909889	Α	08-06-1999	KEINE	-
US	5718438	Α	17-02-1998	KEINE	
US	605182	Α		KEINE	
US	2004124692	A1	01-07-2004	CN 1511604 A KR 20040059506 A	14-07-2004 06-07-2004
US	1878330	Α	20-09-1932	KEINE	

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82