(11) EP 2 189 995 A2

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: **26.05.2010 Bulletin 2010/21**

(51) Int Cl.: **H01H 3/30** (2006.01)

(21) Numéro de dépôt: 09176296.3

(22) Date de dépôt: 18.11.2009

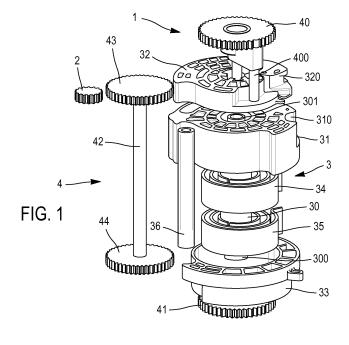
(84) Etats contractants désignés:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR Etats d'extension désignés:

AL BA RS

(30) Priorité: 20.11.2008 FR 0857898

(71) Demandeur: AREVA T&D SAS 92084 Paris La Défense Cedex (FR)


(72) Inventeurs:

 Maladen, Romain 71000 Macon (FR)

- Vicaigne, Antoine 71000 Mâcon (FR)
- Colin, Bruno 71260 Azé (FR)
- Marquet, Mathieu
 01750 Saint Laurent sur Saône (FR)
- (74) Mandataire: Ilgart, Jean-Christophe Brevalex
 3, rue du Docteur Lancereaux
 75008 Paris (FR)
- (54) Commande d'appareillage électrique haute ou moyenne tension à mécanisme à double accrochage amélioré et procédé d'armement associé.
- (57) L'invention concerne une commande d'appareillage haute ou moyenne tension du type comprenant un mécanisme à double accrochage avec deux ressorts en spirale et un motoréducteur d'armement du mécanisme à double accrochage.

Selon l'invention, on peut réaliser soit une compression du ressort d'ouverture (35) par le couple de sortie

du motoréducteur selon un sens donné puis on comprime le ressort de fermeture (34) par le couple de sortie du motoréducteur selon l'autre sens, le ressort d'ouverture (35) restant comprimé dans le même état lors de la compression du ressort de fermeture (34), soit une compression simultanée du ressort d'ouverture (35) et du ressort de fermeture (34) par une seule manoeuvre manuelle.

DOMAINE TECHNIQUE

[0001] L'invention concerne le domaine des commandes des appareillages électriques haute ou moyenne tension muni au moins d'un interrupteur.

1

[0002] Elle concerne les commandes qui comprennent un mécanisme à double accrochage dont le désarmement est apte à provoquer un cycle de fermeture/ouverture d'au moins un interrupteur en exploitation de l'appareillage électrique.

[0003] L'invention concerne plus particulièrement les commandes dans lesquelles le mécanisme à double accrochage comprend deux ressorts spirale dont le désarmement de l'un dit ressort d'ouverture est apte à provoquer une manoeuvre d'ouverture de l'interrupteur tandis que le désarmement de l'autre dit ressort de fermeture est apte à provoquer une manoeuvre de fermeture de l'interrupteur.

[0004] L'invention vise à proposer une nouvelle commande de ce type dont le réarmement motorisé est amélioré et qui autorise toujours un réarmement manuel.

ART ANTERIEUR

[0005] Les mécanismes dits à double accrochage d'une commande d'appareillage haute ou moyenne tension présentent comme caractéristiques de fonctionnement, les phases suivantes :

- on arme le mécanisme (on stocke de l'énergie pour effectuer les manoeuvres de fermeture et d'ouverture d'au moins un interrupteur de l'appareillage,
- on ferme l'interrupteur en libérant une partie de l'énergie stockée dans le mécanisme (on libère un accrochage dit accrochage de fermeture),
- on ouvre l'interrupteur en libérant le reste de l'énergie stockée (on libère l'accrochage dit accrochage d'ouverture).

[0006] Ainsi, les mécanismes à double accrochage permettent de stocker de l'énergie pour effectuer deux manoeuvres d'au moins un interrupteur de l'appareillage électrique qui en est muni : une manoeuvre de fermeture puis une manoeuvre d'ouverture.

[0007] Un type connu des mécanismes à double accrochage est celui comprenant deux ressorts en spirale, présentant typiquement une forte raideur pour l'application haute ou moyenne tension. Ils sont comprimés lors d'une manoeuvre dite « d'armement » qui peut être réalisée manuellement (avec un levier) et/ou motorisée. Les mécanismes comprenant deux ressorts à spirales coaxiaux sont privilégiés par rapport à ceux comprenant un (ou plusieurs) ressort(s) de compression du fait qu'ils permettent d'une part de concevoir un système compact et d'autre part d'obtenir une distribution d'énergie idéale puisque le couple fourni par chacun des ressorts à spi-

rales est maximal en début de manoeuvre (lorsque le ressort est comprimé au maximum) et qu'il est toujours idéalement orienté (effort radial nul).

[0008] Un tel mécanisme à double accrochage avec deux ressorts spirale à forte raideur est connu du document EP 0186171 qui divulgue une commande d'un disjoncteur haute tension dans laquelle il est prévu un ressort en spirale de fermeture 2 qui à l'état comprimé exerce un couple de torsion sur un arbre de transmission 4 sur lequel son extrémité intérieure est fixée, un ressort en spirale d'ouverture 1 qui à l'état comprimé exerce un couple de torsion sur un arbre de commande 3 sur leguel son extrémité intérieure est fixée. L'actionnement d'un moteur d'entraînement 22 met en compression le ressort de fermeture 2 par le biais d'une courroie 23. L'arbre de transmission 4 est aligné avec l'arbre de commande 3 et des moyens d'accouplement comprenant une roue étoile 6 sont agencés entre eux afin de les accoupler et ainsi permettre la fermeture du disjoncteur. Un tel accouplement permet également simultanément la compression du ressort d'ouverture 1 par le relâchement du ressort de fermeture 2. Le principal inconvénient de la commande divulguée selon ce document est que pour une énergie d'ouverture similaire à l'énergie de fermeture, il faut un ressort de fermeture 2 qui puisse emmagasiner deux fois plus d'énergie que nécessaire à la manoeuvre de fermeture proprement dite puisque le ressort d'ouverture 1 est comprimé par la détente du ressort de fermeture 2. Autrement dit, le couple nécessaire pour armer le ressort de fermeture 2 correspond à la somme des couples d'armement théoriques d'un ressort de fermeture et d'un ressort d'ouverture nécessaires uniquement pour un cycle donné fermeture/ouverture avec un fonctionnement complètement dissocié.

[0009] Les contraintes normatives imposent pour ce type de commande de pouvoir réaliser un armement manuel selon un seul sens par l'intermédiaire d'un levier spécifique qui peut être enclenché depuis l'extérieur de la commande.

40 [0010] Les commandes de ce type peuvent comprendre également en option un motoréducteur en tant que moyen motorisé pour réarmer les deux ressorts de fermeture et d'ouverture lorsque ceux-ci sont à l'état relâché et qu'ils ont donc servi à réaliser une manoeuvre de fermeture et d'ouverture d'au moins un interrupteur haute ou moyenne tension.

[0011] Les inventeurs ont en outre été confrontés à une problématique supplémentaire non connue à ce jour pour ce type de commande : ils doivent concevoir une commande capable de réaliser une manoeuvre d'ouverture et de fermeture d'au moins un interrupteur haute ou moyenne tension avec un couple total d'armement simultané des deux ressorts de l'ordre de 120 N.m.

[0012] Or, ils sont parvenus à la conclusion qu'aucun motoréducteur connu pour ce type de commande ne pouvait être utilisé.

[0013] En effet, l'encombrement disponible dans la commande de ce type est relativement limité au point de

ne pouvoir implanter un motoréducteur dimensionné pour un tel couple de 120 N.m sans augmenter de manière sensible les dimensions de ladite commande. De plus, le coût d'un motoréducteur pour un tel couple apparaît rédhibitoire pour une telle commande.

[0014] Enfin, il n'est pas possible d'augmenter infiniment le rapport de réduction du motoréducteur car, en plus d'augmenter le coût et l'encombrement de la motorisation, cette solution présente aussi l'inconvénient d'augmenter le temps de réarmement motorisé.

[0015] Le but de l'invention est ainsi de proposer une commande à mécanisme à double accrochage d'au moins un interrupteur à haute ou moyenne tension qui réponde aux exigences suivantes :

- fourniture d'un couple de manoeuvre élevé, typiquement de l'ordre de 120 N.m.
- respect des conditions normatives d'armement manuel
- utilisation possible d'un motoréducteur de réarmement du mécanisme à double accrochage à moindre coût,
- encombrement restreint.

EXPOSE DE L'INVENTION

[0016] Pour ce faire, l'invention a pour objet une commande d'appareillage haute ou moyenne tension comprenant un mécanisme à double accrochage, un motoréducteur d'armement du mécanisme à double accrochage et une chaîne de transmission pour transmettre le couple de sortie du motoréducteur à un élément du mécanisme à double accrochage.

[0017] La commande selon l'invention est telle que :

 le mécanisme à double accrochage comprend deux ressorts en spirale dont l'un dit ressort de fermeture est apte à fermer au moins un interrupteur de

l'appareillage en se relâchant depuis un état comprimé et dont l'autre dit ressort d'ouverture est apte à ouvrir l'interrupteur de l'appareillage en se relâchant depuis un état comprimé,

- la chaîne de transmission est apte à être interrompue, ladite chaîne de transmission et le mécanisme à double accrochage étant conçus de sorte que :
 - dans l'état interrompu de la chaîne, le ressort d'ouverture et le ressort de fermeture puissent être comprimés simultanément en une seule manoeuvre manuelle,
 - dans l'état non interrompu de la chaîne, le ressort d'ouverture puisse être comprimé par le couple de sortie du motoréducteur selon un sens donné puis le ressort de fermeture puisse être comprimé par le couple de sortie du motoréducteur selon l'autre sens, le ressort d'ouverture

restant comprimé dans le même état lors de la compression du ressort de fermeture.

[0018] La commande selon l'invention permet ainsi de pouvoir manoeuvrer un interrupteur d'un appareillage haute ou moyenne tension qui nécessite un couple de manoeuvre important de l'ordre de 120 N.m.

[0019] Avantageusement, la solution selon l'invention peut très bien s'appliquer pour des couples plus faibles et permettrait ainsi de diminuer la puissance du moteur ou motoréducteur d'un facteur 2.

[0020] L'idée de base de la solution consiste, pour une manoeuvre motorisée, à comprimer les deux ressorts l'un après l'autre à l'aide d'un même motoréducteur. Ainsi, le moteur fournit un couple deux fois moins élevé ce qui permet de diminuer son coût, ses dimensions et sa consommation de courant. Typiquement, le couple fourni par le motoréducteur est de l'ordre de 60 N.m.

[0021] De plus, la solution présentée permet, en manoeuvre manuelle, d'armer le mécanisme en une seule manoeuvre (un seul sens de manoeuvre) et donc de comprimer les deux ressorts simultanément. La commande selon l'invention permet donc de répondre aux conditions normatives d'armement manuel.

[0022] Selon un mode de réalisation préféré,

- le mécanisme à double accrochage comprend :
 - un arbre de commande auquel sont fixées les extrémités intérieures des ressorts d'ouverture et de fermeture; une première roue dite roue de fermeture montée libre en rotation autour de l'arbre de commande et à laquelle est fixée l'extrémité extérieure du ressort de fermeture,
 - une deuxième roue dite roue d'armement fixée autour de l'arbre de commande,
 - une troisième roue dite roue d'ouverture montée libre en rotation autour de l'arbre de commande et à laquelle est fixée l'extrémité extérieure du ressort d'ouverture.
- la chaîne de transmission comprend :
 - · un premier pignon dit pignon de fermeture,
 - un deuxième pignon dit pignon d'ouverture monté autour de l'arbre de commande et fixé à la roue d'ouverture,
 - un arbre de transmission agencé parallèlement à l'arbre de commande et comprenant à chacune de ses extrémités respectivement un troisième et un quatrième pignon de transmission dont l'un est en engrènement à la fois avec le pignon de fermeture et le pignon de sortie du motoréducteur et dont l'autre est en engrènement avec le pignon d'ouverture.

[0023] Selon ce mode, les rapports de réduction entre le pignon de fermeture et le troisième pignon et entre le

35

40

45

pignon d'ouverture et le quatrième pignon de transmission sont identiques et il est prévu des moyens d'accouplement pour accoupler le pignon de fermeture et la roue d'armement uniquement après que le ressort d'ouverture ait été comprimé par le couple de sortie du motoréducteur selon un sens et que la roue d'ouverture ait été accrochée, l'accouplement entre le pignon de fermeture et la roue d'armement permettant de comprimer le ressort de fermeture par le couple de sortie du motoréducteur dans l'autre sens et d'accrocher la roue d'armement tandis que le ressort d'ouverture reste dans le même état comprimé.

[0024] Avantageusement, les moyens d'accouplement comprennent un axe fixé au pignon de fermeture et un doigt dit doigt d'armement apte à se dégager de la roue d'armement en fin de manoeuvre sous l'action de poussée de l'axe fixé au pignon de fermeture.

[0025] Avantageusement encore, les roues d'ouverture et de fermeture sont chacune conçues avec un évidement pour loger respectivement le ressort d'ouverture et de fermeture.

[0026] De préférence, le pignon de fermeture est amovible, l'interruption de la chaîne de transmission étant réalisé par enlèvement dudit pignon de fermeture. Le pignon de fermeture est ainsi remplacé par un levier d'armement manuel.

[0027] Une commande particulièrement visée par l'invention est celle dans laquelle, dans l'état non interrompu de la chaîne, le motoréducteur est apte à fournir un couple de sortie d'environ 60 N.m pour comprimer chacun des deux ressorts alors que, dans l'état interrompu de la chaîne, les deux ressorts sont aptes à être comprimés simultanément avec un couple de réarmement de 120 N.m.

[0028] L'invention concerne également un levier d'armement manuel comprenant une partie mâle apte à être emmanché en lieu et place du pignon de fermeture de la commande décrit précédemment, et une patte qui a la même fonction que l'axe dudit pignon.

[0029] L'invention vise enfin un procédé d'armement du mécanisme, dit mécanisme à double accrochage à deux ressorts spirale, d'une commande d'appareillage électrique haute ou moyenne tension muni d'au moins un interrupteur. En fonction de l'armement souhaité (motorisé ou manuel) :

 soit le ressort spirale dit ressort de fermeture apte à fermer l'interrupteur de l'appareillage est comprimé par un motoréducteur en rotation selon un sens donné puis le ressort spirale dit ressort d'ouverture apte à ouvrir l'interrupteur de l'appareillage est comprimé par le motoréducteur en

rotation selon le sens inverse tandis que le ressort de fermeture est maintenu comprimé,

 soit le ressort d'ouverture et le ressort de fermeture sont comprimés simultanément en une seule manoeuvre manuelle.

BRÈVE DESCRIPTION DES DESSINS

- [0030] D'autres caractéristiques et avantages de l'invention ressortiront mieux à la lecture de la description détaillée faite en référence aux figures suivantes dans lesquelles :
- les figures 1 et 1A sont des vues en perspective respectivement éclatée et assemblée d'une partie d'une commande selon l'invention,
 - les figures 2A à 2E représentent les différentes phases d'armement motorisé de la commande selon les figures 1 et 1A,
 - les figures 3A à 3C représentent les différentes phases d'armement manuel de la commande selon les figures 1 et 1A.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS

[0031] La commande selon l'invention 1 telle que représentée comprend tout d'abord un bâti fixe non représenté et un motoréducteur dont seul le pignon de sortie 2 est représenté.

[0032] La commande comprend en outre un mécanisme à double accrochage 3 constitué des pièces suivantes :

- un arbre de commande 30 comprenant une gorge à l'intérieure de laquelle les pattes intérieures des ressorts à spirales 34, 35 sont insérées comme
- décrite ci-après. La rotation de cet arbre 30 permet donc la compression des ressorts à spirales comme expliqué ci-après,
- une première roue dite roue de fermeture 31 montée libre en rotation autour de l'arbre de commande 30 : lors de la manoeuvre d'armement, cette roue de fermeture 31 est maintenue par un accrochage coopérant avec un décrochement 310 pratiqué à la périphérie de la roue 31, comme décrit ci-après pour ne pas modifier la position de l'interrupteur,
 - une deuxième roue dite roue d'armement 32 fixée à l'arbre de commande 30 typiquement par un système de cannelures,
 - un doigt d'armement 320 en liaison pivot avec la roue d'armement 32. Lorsqu'il est en position enclenchée avec la roue d'armement 32, il permet d'armer le mécanisme à double accrochage 3 en accouplant la roue d'armement 32 et donc l'arbre de commande 30 au motoréducteur ou au levier d'armement manuel décrit par la suite. Lorsqu'il est en position dégagée de la roue d'armement 32, il permet de débrayer le mécanisme à double accrochage du motoréducteur à la fin d'une manoeuvre d'armement

50

(manuel ou motorisé),

- une troisième roue dite roue d'ouverture 33 montée libre en rotation autour de l'arbre de commande 30,
- un ressort en spirale 34 de fermeture dont l'extrémité (patte) intérieure est fixée à l'arbre de commande 30 (dans sa gorge) et dont l'extrémité (patte) extérieure est fixée à la roue de fermeture 31: son énergie permet de réaliser une manoeuvre de

[0033] fermeture de l'interrupteur comme expliqué par la suite,

- un ressort en spirale 35 d'ouverture dont l'extrémité (patte) intérieure est fixée à l'arbre de commande 30 (dans sa gorge) et dont l'extrémité (patte) extérieure est fixée à la roue d'ouverture 33 : son énergie permet de réaliser une manoeuvre d'ouverture de l'interrupteur comme expliqué par la suite,
- une colonnette 36 fixée au bâti : elle a pour fonction de servir de butée aux différentes roues de fermeture 31, d'armement 32, d'ouverture 33 comme décrit ciaprès.

[0034] La commande selon l'invention comprend en outre une chaîne de transmission 4 pour transmettre le mouvement de rotation du pignon de sortie 2 du motoréducteur en un mouvement de rotation à l'arbre de commande 30 et selon les différentes phases d'armement à une des roues 31, 32, 33 afin de comprimer le ressort de fermeture 34 puis le ressort d'ouverture 35.

[0035] La chaîne de transmission 4 est constituée des pièces suivantes :

- un premier pignon dit pignon de fermeture 40 qui permet lorsqu'il est en engrènement avec le pignon de sortie 2 du motoréducteur d'entraîner en rotation la roue d'armement 32 seulement sur une course de rotation déterminée. En d'autres termes, le pignon de fermeture 40 est solidaire en rotation de la roue de fermeture 31 uniquement sur une course de rotation du pignon de sortie 2. Ce pignon de transmission 40 est conçu pour être amovible afin qu'il soit remplacé par un levier d'armement manuel et donc, que cela permette

d'effectuer une manoeuvre manuelle d'armement comme décrit ci-après,

- un deuxième pignon dit pignon d'ouverture 41 fixé sur la roue d'ouverture 33 : sa fonction est donc de l'entraîner en rotation comme décrit ci-après,
- un arbre dit arbre de transmission 42 agencé parallèlement à l'arbre de commande 30. Cet arbre de transmission 42 comprend à ses extrémités un troisième et quatrième pignon 43, 44 dits pignons de transmission, ces pignons de transmission 43, 44 étant identiques entre eux. L'un des pignons de transmission 43 est en engrènement permanent

avec le pignon de fermeture 40 lorsque que celui-ci est en position installée, c'est-à-dire lorsque l'armement est réalisé par le motoréducteur. L'autre des pignons de transmission 44 est en engrènement permanent avec le pignon d'ouverture 41. L'arbre 42 assure donc la transmission entre d'une part le motoréducteur (pignon de sortie 2) et le pignon de fermeture 40 et d'autre part entre le motoréducteur (pignon de sortie 2) et le pignon d'ouverture 41.

[0036] Les caractéristiques du pignon d'ouverture 41 sont identiques à celles du pignon de fermeture 40 afin que les rapports de réduction d'une part entre le pignon de fermeture 40 et arbre de transmission 42 (pignon 43) et d'autre part entre le pignon d'ouverture 41 et arbre de transmission 42 (pignon 44) soient identiques.

[0037] Dans le mode de réalisation illustré, les ressorts en spirale 34 et 35 sont identiques.

[0038] Dans le mode de réalisation illustré lorsque le mécanisme à double accrochage est désarmé, les deux ressorts spirale 34 et 35 restent à un état comprimé ou autrement dit pré-comprimés (pré-comprimés à un niveau donné, nécessaire uniquement au fonctionnement).

[0039] Dans le mode de réalisation illustré, la roue de fermeture 31 comprend un évidement qui forme une cage dans laquelle le ressort spirale 34 de fermeture est logé. De même, la roue d'ouverture 33 est évidée et la cage ainsi constituée loge le ressort spiral 35 d'ouverture.

[0040] Le fonctionnement d'un armement motorisé de la commande selon l'invention va maintenant être décrit.
 [0041] En position initiale, les deux ressorts spirales 34, 35 sont pré-comprimés et mettent ainsi en appui la roue d'armement 32, et la roue d'ouverture 33 en appui sur la colonnette 36 (figure 1A). La roue de fermeture 31 est, quant à elle, retenue par un moyen d'accrochage (non représenté) venant accrocher le décrochement 310 de la roue 31.

[0042] La manoeuvre d'armement consiste donc à comprimer les deux ressorts en spirale 34, 35 par leur extrémité intérieure.

[0043] Selon l'invention, le couple total nécessaire à une manoeuvre combinée ouverture/fermeture de l'interrupteur de l'appareillage est tel qu'il est prévu un armement motorisé du ressort de fermeture 34 puis du ressort d'ouverture 35. Selon l'invention, il est donc prévu que le motoréducteur réalise la compression des deux ressorts spirales d'ouverture 35 et de fermeture 34 mais qu'il ne fournisse que le couple nécessaire à la compression d'un seul ressort 34 ou 35, soit de l'ordre de 60 N.m.

[0044] Les différentes étapes ou phases d'armement motorisé sont décrites ci-dessous en référence aux figures 2A à 2E :

[0045] Phase 1 (figure 2A): Le pignon de sortie 2 du motoréducteur tourne dans le sens anti-horaire sur une première course de rotation. Le pignon de fermeture 40 engrène alors le pignon de transmission 43 à l'extrémité de l'arbre de transmission 42 la plus proche du pignon

20

40

50

de sortie 2 du motoréducteur. Mais l'axe 400 fixé au pignon de transmission 40 est sur cette course de rotation libre de tout contact : le pignon de transmission 43 n'entraîne donc aucune pièce. La roue d'armement 32 et l'arbre de commande 30 auquel elle est fixée sont donc immobiles. Simultanément, la roue d'ouverture 33 est en rotation dans le même sens antihoraire par engrènement par l'intermédiaire du pignon de transmission 44 à l'extrémité de l'arbre de transmission 42 la plus éloignée du pignon de sortie 2 du motoréducteur. Le ressort en spirale d'ouverture 35 est ainsi comprimé par son extrémité extérieure puisque fixée à la roue d'ouverture 33. L'extrémité intérieure du ressort d'ouverture 35 reste quant à elle immobile car fixée à l'arbre de commande 30 immobile. Le motoréducteur fournit donc le couple (environ 60 N.m en fin de course figure 2C) pour l'armement d'un seul ressort, à savoir ici le ressort d'ouverture 35.

[0046] Phase 2 (figure 2B): Le pignon de sortie 2 du motoréducteur continue à tourner dans le même sens anti-horaire. L'axe 400 fixé au pignon de fermeture 40 vient alors en appui sur le doigt d'armement 320 qui s'écarte pour le laisser passer. En d'autres termes, le doigt d'armement 320 vient dans sa position dégagée de la roue d'armement 32. La rotation du pignon d'ouverture 41, de la roue d'ouverture 33 qui lui est liée se poursuivent : le ressort spirale d'ouverture 35 continue alors à se comprimer.

[0047] Phase 3 (figure 2C): Le pignon de fermeture 40 a atteint une position telle que l'axe 400 fixé audit pignon 40 a ramené le doigt d'armement 320 dans sa position engagée avec la roue d'armement 32. En d'autres termes, le doigt d'armement 320 est refermé sur l'axe 400 qui est coincé entre le doigt d'armement 320 et la roue de d'armement 32. Le motoréducteur est alors arrêté. Dans cette position d'engagement du doigt d'armement 320, l'axe 400 étant coincé, le pignon de fermeture 40 auquel il est fixé ne peut revenir en arrière car bloqué. La roue d'ouverture 33 est dans le même temps accroché par le moyen non représenté: le ressort d'ouverture 35 est donc maintenu à l'état comprimé. Dans cette phase, l'ensemble mécanique constitué par la roue d'armement 32, le pignon d'ouverture 41, l'arbre traversant 42 avec ses pignons 43, 44 et la roue d'ouverture 33 accrochée est donc équivalent à un ensemble mécanique rigide. Il n'engendre donc aucun couple résistant sur le motoréducteur.

[0048] Au cours des phases 1 à 3 (figure 2A à 2C), la roue de fermeture 31 n'a subi aucune rotation, elle reste toujours en appui contre la colonnette 36. Le ressort de fermeture 34 fixé à la roue de fermeture 31 n'a donc subi aucune compression supplémentaire.

[0049] Phase 4 (figure 2D): Le sens de rotation du motoréducteur est inversé: le pignon de sortie 2 du motoréducteur tourne alors dans le sens horaire. L'ensemble mécanique cité précédemment (roue d'armement 32, le pignon d'ouverture 41, l'arbre traversant 42 avec ses pignons 43, 44 et la roue d'ouverture 33 accrochée) reste rigide, le ressort d'ouverture 35 est donc maintenu com-

primé. De plus, du fait des rapports de réduction identiques entre le pignon de fermeture 40 et l'arbre de transmission 42 (pignon 43) et entre le pignon d'ouverture 41 et l'arbre de transmission 42 (pignon 44), la compression du ressort d'ouverture 35 n'est pas modifiée par cette inversion du sens de rotation du motoréducteur. La rotation du motoréducteur dans le sens horaire entraîne donc la rotation dans le même sens de la roue de fermeture 31 et donc de l'arbre de commande 30 auquel elle est fixée. Le ressort de fermeture 34 dont l'extrémité intérieure est fixée à l'arbre de commande 30 est alors comprimé car l'autre extrémité (extrémité extérieure) fixée à la roue de fermeture 31 est immobile, cette dernière étant accrochée par un moyen d'accrochage approprié non représenté.

[0050] Au cours de cette phase, le motoréducteur fournit donc encore uniquement le couple nécessaire pour n'armer qu'un seul ressort, le ressort de fermeture 34 (environ 60 N.m en fin de réarmement).

[0051] Phase 5 (figure 2 E): Un système (non représenté) permet de dégager le doigt d'armement 320 de la roue d'armement 32 et donc, de débrayer ou autrement dit désaccoupler le pignon de fermeture 40 de la roue d'armement 32. Par ailleurs, la roue d'ouverture 33 est dans cette position en appui sur la colonnette 36. La roue d'armement 32 est alors quant à elle arrêtée en rotation par un système d'accrochage (non représenté) qui s'est mis en place automatiquement en fin de manoeuvre d'armement.

[0052] Le mécanisme à double accrochage 3 est donc maintenant en position armée, les deux ressorts spirale respectivement d'ouverture 35 et de fermeture 34 étant comprimés et le pignon d'ouverture 40 étant libre.

[0053] Un cycle ou manoeuvre de fermeture/ouverture de la commande peut alors être effectué. Cette manoeuvre se réalise comme usuellement :

- libération de l'accrochage de la roue de fermeture 31, ce qui libère l'énergie du ressort de fermeture 34 et donc provoque la rotation de la roue de fermeture et donc la fermeture de l'interrupteur de l'appareillage
- libération de l'accrochage de la roue d'armement 32, ce qui libère l'énergie du ressort d'ouverture 35 et donc provoque la rotation de l'arbre de commande 30 tout en maintenant la roue d'ouverture 33 immobile. La rotation de la roue d'armement 32 (liée à l'arbre de commande 30) va également entraîner la roue de fermeture 31 de manière à ouvrir l'interrupteur,

[0054] A la fin d'un cycle de fermeture/ouverture, les roues de fermeture 31, d'armement 32 et d'ouverture 33 sont ramenées dans leur position initiale (figure 1A) et les ressorts 34, 35 sont désarmés.

[0055] La manoeuvre d'ouverture/fermeture peut être réalisée classiquement soit manuellement à l'aide d'un bouton poussoir soit automatiquement, en cas de défaut

25

30

40

45

électrique détecté sur la ligne électrique sur laquelle l'appareillage électrique muni de la commande est implanté, sous l'action d'une bobine électrique de déclenchement. [0056] Comme dit en préambule, la commande selon l'invention 1 répond aux conditions normatives qui imposent un armement manuel des deux ressorts spirales 34 et 35 avec un levier depuis l'extérieur de la commande et selon un seul sens de rotation.

[0057] Les différentes phases d'armement manuel sont décrites ci-dessous en référence aux figures 3A à 3C. Par souci de clarté, le motoréducteur ainsi que les différentes pièces de la chaîne de transmission 4 décrits ci-avant ne sont pas représentées.

[0058] Le mécanisme à double accrochage 3 est initialement désarmé et les différentes pièces du mécanisme 3 se retrouvent dans la position de la figure 1A.

[0059] Phase 1 (figure 3A): Le pignon de fermeture 40 étant amovible, il est au préalable enlevé de l'extrémité de l'arbre de commande 30 dans laquelle il est emmanché.

[0060] Un opérateur insère alors un levier 5 spécifiquement dédié à l'armement manuel.

[0061] Le levier 5 comprend une partie mâle 50 qui vient s'emmancher en lieu et place du pignon de fermeture 40 et une patte 500 qui a la même fonction que l'axe 400 du pignon de transmission 40. La patte 500 est ainsi coincée entre le doigt d'armement 320 et la roue de d'armement 32. Autrement dit, le doigt d'armement 320 est refermé sur la patte 500.

[0062] La roue de fermeture 31 est accrochée par son décrochement 310 et maintenue en position.

[0063] La roue d'ouverture 33 est quant à elle en appui sur la colonnette 36.

[0064] Phase 2 (figure 3B): L'opérateur tourne dans le sens horaire le levier 5 qui est en appui sur le doigt d'armement 320 et coincé entre celui-ci et la roue d'armement 32 : la roue d'armement 32 est alors entraînée en rotation.

[0065] La roue d'armement 32 étant liée en rotation à l'arbre de commande 30 et les roues respectivement de fermeture 31 et d'ouverture 33 étant bloquées en rotation (la première 31 par l'accrochage et l'autre 33 par son appui sur la colonnette 36), les deux ressorts en spirale respectivement d'ouverture 35 et de fermeture 34 sont alors comprimés simultanément par leur extrémité intérieure puisque fixée à l'arbre de commande 30. En fin d'armement, la roue d'armement 32 est accrochée par le moyen d'accrochage non représenté : les deux ressorts respectivement d'ouverture 35 et de fermeture 34 sont ainsi comprimés (couple total de 120 N.m) et maintenus dans cet état. Le mécanisme à double accrochage 3 a donc été armé manuellement.

[0066] Phase 3 (figure 3C): Avant de pouvoir réaliser un cycle d'ouverture /fermeture, tout comme l'armement motorisé, un débrayage ou désaccouplement entre le levier 5 d'armement et la commande 1 est réalisé.

[0067] Ce débrayage est réalisé en fin d'armement manuel, c'est-à-dire après accrochage de la roue d'ar-

mement 32.

[0068] L'opérateur continue à tourner le levier 5 d'armement dans le sens horaire, ce qui provoque le dégagement du doigt d'armement 320 de la roue d'armement 32 sous l'action de poussée de l'axe 500.

[0069] Le levier 5 peut alors être libéré en le désemmanchant de l'extrémité 301 de l'arbre de commande 30. [0070] L'avantage d'un tel moyen de débrayage 500, 320 est qu'en cas de maintien du levier 5 par l'opérateur dans la commande 1 et de déclenchement d'une manoeuvre de fermeture/ouverture, aucun mouvement de rotation du levier 5 ou aucun choc sur celui-ci ne se produit. En effet, la rotation de la roue d'armement 32 au cours d'un tel cycle provoque nécessairement le dégagement du doigt d'armement 320 sous l'action de poussée de la patte 500.

[0071] La commande selon l'invention qui vient d'être décrite présente de nombreux avantages par rapport aux commandes avec mécanisme à double accrochage selon l'état de l'art :

- pour un cycle complet d'armement motorisé, le motoréducteur de la commande n'a à fournir que le couple nécessaire pour armer un seul ressort (ressort d'ouverture puis ressort de fermeture dans le mode de réalisation illustré),
- baisse significative du coût du motoréducteur, de sa consommation en courant mais aussi de son encombrement,
- faisabilité technique de la commande d'appareillage haute ou moyenne tension plus simple avec des contraintes mécaniques moindres.

Revendications

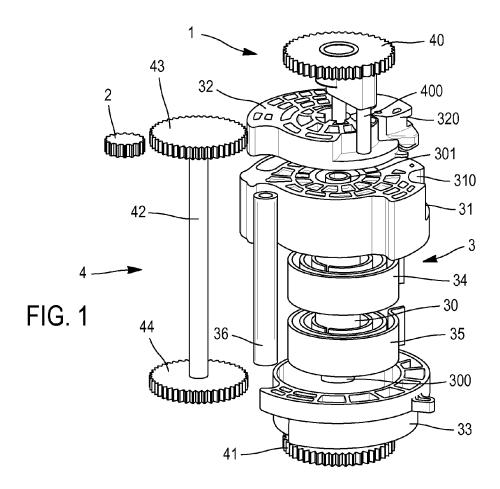
- 1. Commande (1) d'appareillage haute ou moyenne tension comprenant un mécanisme à double accrochage (3), un motoréducteur (2) d'armement du mécanisme à double accrochage et une chaîne de transmission (4) pour transmettre le couple de sortie du motoréducteur à un élément (30) du mécanisme à double accrochage, dans laquelle :
 - le mécanisme à double accrochage comprend deux ressorts en spirale (34, 35) dont l'un dit ressort de fermeture (34) est apte à fermer au moins un interrupteur de l'appareillage en se relâchant depuis un état comprimé et dont l'autre dit ressort d'ouverture (35) est apte à ouvrir l'interrupteur de l'appareillage en se relâchant depuis un état comprimé,
 - la chaîne de transmission (4) est apte à être interrompue, ladite chaîne de transmission et le mécanisme à double accrochage (3) étant conçus de sorte que :

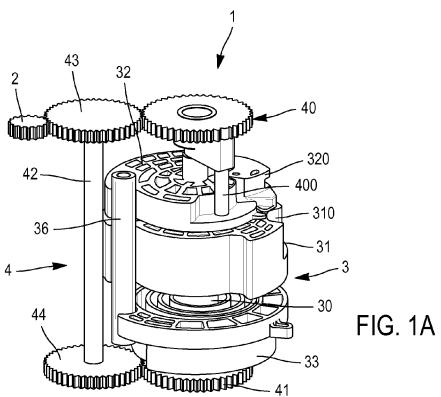
30

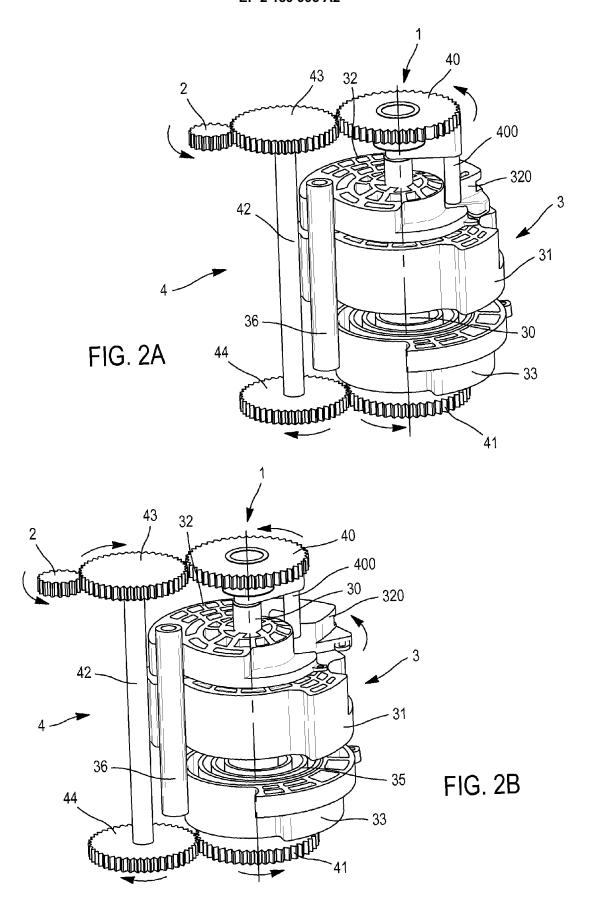
35

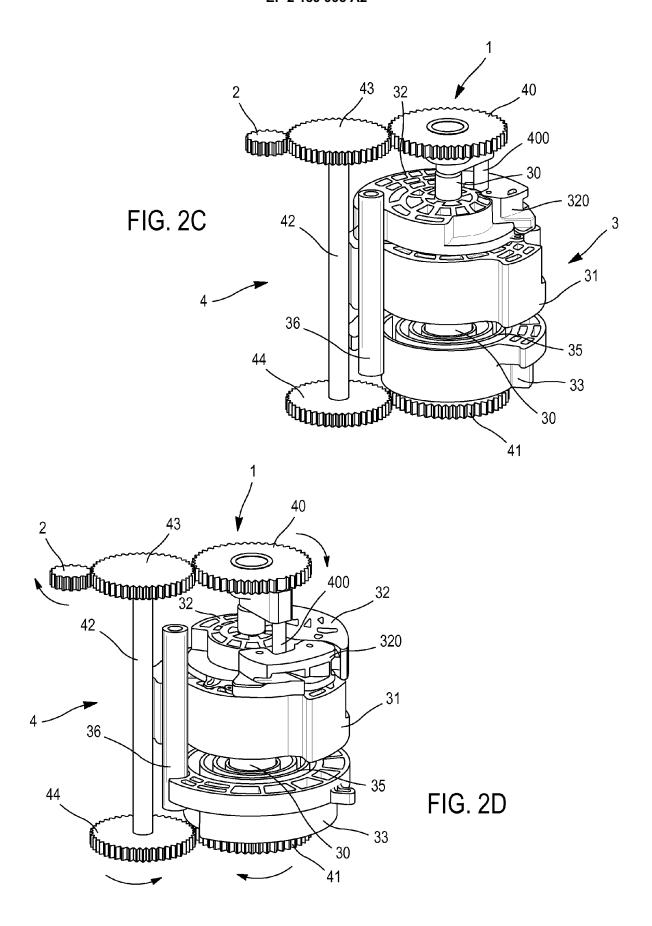
45

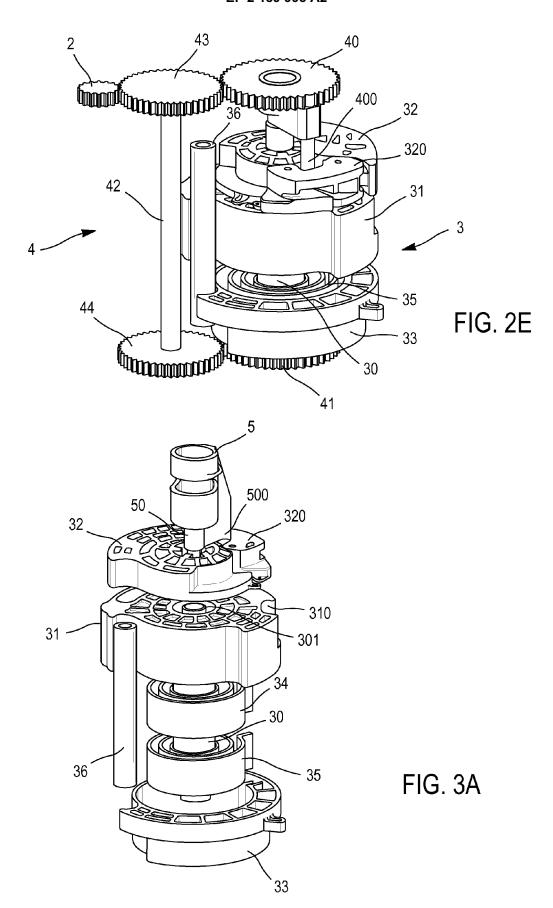
50

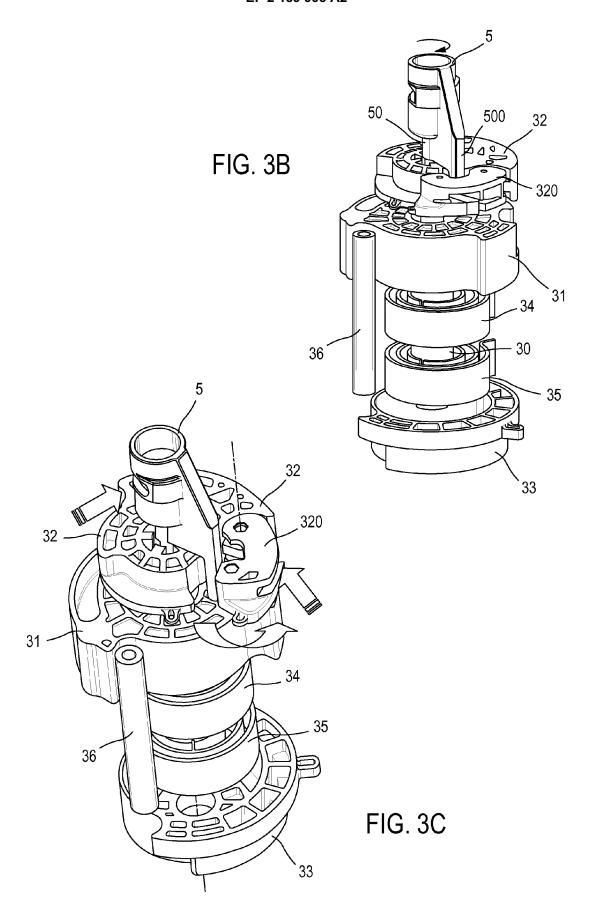

- dans l'état interrompu de la chaîne, le ressort d'ouverture (35) et le ressort de fermeture (34) puissent être comprimés simultanément en une seule manoeuvre manuelle,
 dans l'état non interrompu de la chaîne, le ressort d'ouverture (35) puisse être comprimé par le couple de sortie du motoréducteur selon un sens donné puis le ressort de fermeture (34) puisse être comprimé par le couple de sortie du motoréducteur selon l'autre sens, le ressort d'ouverture (35) restant comprimé dans le même état lors de la compression du ressort de fermeture (34).
- 2. Commande (1) selon la revendication 1, dans laquelle:
 - le mécanisme à double accrochage (3) comprend :
 - un arbre de commande (30) auquel sont fixées les extrémités intérieures des ressorts d'ouverture (35) et de fermeture (34),
 une première roue dite roue de fermeture (31) montée libre en rotation autour de l'arbre de commande et à laquelle est fixée l'extrémité extérieure du ressort de fermeture (34).
 - une deuxième roue dite roue d'armement (32) fixée autour de l'arbre de commande,
 une troisième roue dite roue d'ouverture (33) montée libre en rotation autour de l'arbre de commande et à laquelle est fixée l'extrémité extérieure du ressort d'ouverture (35),
 - la chaîne de transmission comprend :
 - un premier pignon dit pignon de fermeture (40),
 - un deuxième pignon dit pignon d'ouverture (41) monté autour de l'arbre de commande (40) et fixé à la roue d'ouverture (33),
 - un arbre de transmission (42) agencé parallèlement à l'arbre de commande et comprenant à chacune de ses extrémités respectivement un troisième (43) et un quatrième (44) pignon de transmission dont l'un est en engrènement à la fois avec le pignon de fermeture et le pignon de sortie (2) du motoréducteur et dont l'autre est en engrènement avec le pignon d'ouverture,


dans laquelle les rapports de réduction entre le pignon de fermeture (40) et le troisième pignon (43) et entre le pignon d'ouverture (41) et le quatrième pignon (44) de transmission sont identiques, et dans laquelle il est prévu des moyens d'accouple-


- ment (400, 320) pour accoupler le pignon de fermeture (40) et la roue d'armement (32) uniquement après que le ressort d'ouverture (35) ait été comprimé par le couple de sortie du motoréducteur selon un sens et que la roue d'ouverture (33) ait été accrochée, l'accouplement entre le pignon de fermeture (40) et la roue d'armement (32) permettant de comprimer le ressort de fermeture par le couple de sortie du motoréducteur dans l'autre sens et d'accrocher la roue d'armement tandis que le ressort d'ouverture reste dans le même état comprimé.
- 3. Commande (1) selon la revendication 2, dans laquelle les moyens d'accouplement comprennent un axe (400) fixé au pignon de fermeture (40) et un doigt dit doigt d'armement (320) apte à se dégager de la roue d'armement en fin de manoeuvre sous l'action de poussée de l'axe fixé au pignon de fermeture.
- 4. Commande (1) selon la revendication 2 ou 3, dans laquelle les roues d'ouverture (33) et de fermeture (31) sont chacune conçues avec un évidement pour loger respectivement le ressort d'ouverture (35) et de fermeture (34).
 - 5. Commande (1) selon l'une des revendications 2 à 4, dans laquelle le pignon de fermeture est amovible, l'interruption de la chaîne de transmission étant réalisé par enlèvement dudit pignon de fermeture.
 - 6. Commande (1) selon l'une des revendications précédentes dans laquelle, dans l'état non interrompu de la chaîne, le motoréducteur est apte à fournir un couple de sortie d'environ 60 N.m pour comprimer chacun des deux ressorts alors que, dans l'état interrompu de la chaîne, les deux ressorts sont aptes à être comprimés simultanément avec un couple de réarmement de 120 N.m.
- 40 7. Levier d'armement (5) manuel comprenant une partie mâle (50) apte à être emmanché en lieu et place du pignon de fermeture de la commande selon la revendication 3, et une patte (500) qui a la même fonction que l'axe (400) dudit pignon.
 - 8. Procédé d'armement du mécanisme, dit mécanisme à double accrochage à deux ressorts spirale, d'une commande d'appareillage électrique haute ou moyenne tension muni d'au moins un interrupteur, selon lequel:
 - soit le ressort spirale dit ressort de fermeture (34) apte à fermer l'interrupteur de l'appareillage est comprimé par un motoréducteur en rotation selon un sens donné puis le ressort spirale dit ressort d'ouverture (35) apte à ouvrir l'interrupteur de l'appareillage est comprimé par le motoréducteur en rotation selon le sens inverse


tandis que le ressort de fermeture est maintenu comprimé,


- soit le ressort d'ouverture (35) et le ressort de fermeture (34) sont comprimés simultanément en une seule manoeuvre manuelle.



EP 2 189 995 A2

RÉFÉRENCES CITÉES DANS LA DESCRIPTION

Cette liste de références citées par le demandeur vise uniquement à aider le lecteur et ne fait pas partie du document de brevet européen. Même si le plus grand soin a été accordé à sa conception, des erreurs ou des omissions ne peuvent être exclues et l'OEB décline toute responsabilité à cet égard.

Documents brevets cités dans la description

• EP 0186171 A [0008]