(11) **EP 2 194 375 A1**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 09.06.2010 Patentblatt 2010/23

(51) Int Cl.: **G01N 23/20** (2006.01) **G2**

G21K 1/02 (2006.01)

(21) Anmeldenummer: 09177712.8

(22) Anmeldetag: 02.12.2009

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Benannte Erstreckungsstaaten:

AL BA RS

(30) Priorität: 02.12.2008 DE 102008060070

(71) Anmelder: Bruker AXS GmbH 76187 Karlsruhe (DE)

(72) Erfinder:

 Ollinger, Christoph 76133 Karlsruhe (DE)
 Kuhnmünch, Norbert

76327 Pfinztal (DE)

(74) Vertreter: Kohler Schmid Möbus Patentanwälte Ruppmannstraße 27 70565 Stuttgart (DE)

(54) Röntgenoptisches Element und Diffraktometer mit einer Sollerblende

(57) Ein röntgenoptisches Element (1, 1', 1") mit einer Sollerblende umfassend mehrere Lamellen zum Kollimieren eines Röntgenstrahls bezüglich der Richtung der Achse (5, 15) der Sollerblende, und einer weiteren Blende zur Begrenzung eines Röntgenstrahls (10), wobei die weitere Blende mit der Sollerblende (2, 14) im Betrieb starr verbunden ist, ist dadurch gekennzeichnet, dass der von der weiteren Blende begrenzte Rönt-

genstrahl (10) die Achse (5, 15) der Sollerblende innerhalb der Sollerblende schneidet und die Richtung des Röntgenstrahls (10) mit der Achse (5, 15) der Sollerblende einen Winkel $\alpha \geq 10^{\circ}$ einschließt. Somit wird ein röntgenoptisches Element (1, 1', 1 ") mit einer Sollerblende (2, 14) und einer weiteren Blende realisiert, welches ein automatisches Wechseln zwischen der Sollerblende (2, 14) und der weiteren Blende ermöglicht.

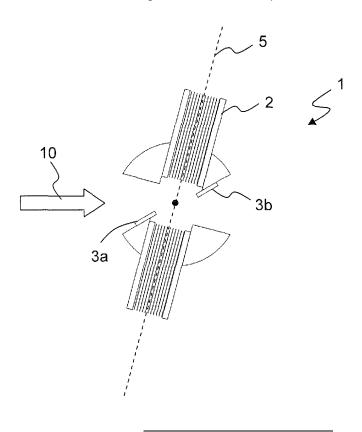


Fig. 1b

25

Beschreibung

[0001] Die Erfindung betrifft ein röntgenoptisches Element mit einer Sollerblende umfassend mehrere Lamellen zum Kollimieren eines Röntgenstrahls bezüglich der Richtung der Achse der Sollerblende, und mit einer weiteren Blende zur Begrenzung eines Röntgenstrahls, wobei die weitere Blende mit der Sollerblende im Betrieb starr verbunden ist.

Hintergrund der Erfindung

[0002] Röntgendiffraktometrie kann für vielfältige analytische Aufgabenstellungen verwendet werden, wobei verschiedene Messgeometrien zum Einsatz kommen, z.B. Bragg-Brentano oder Parallelstrahl-Geometrie. Hierfür werden jedoch verschiedene optische Elemente im Strahlengang benötigt. Um ein schnelles Wechseln zwischen den verschiedenen Messgeometrien zu ermöglichen, ist es wünschenswert, die hierfür nötigen Umbaumaßnahmen so gering wie möglich zu halten.

[0003] Aus US 6,807,251 B2 ist ein Röntgendiffraktometer mit einem Parabolspiegel zur Verwendung des Diffraktometers in der Parallelstrahlgeometrie, sowie eine Schlitzblende zur Begrenzung des Röntgenstrahls in der Bragg Brentano-Geometrie bekannt. Der Spiegel und die Schlitzblende sind starr miteinander verbunden. Eine drehbare Pfadselektionsscheibe mit einem Schlitz ist hinter der Blenden/Spiegeleinheit angeordnet und kann durch Rotation den für die entsprechende Geometrie benötigten Röntgenstrahl (parallel oder divergent) auswählen.

[0004] Aus US 606650372 B2 ist ein Röntgendiffraktometer bekannt, bei dem die Röntgenstrahlung für verschiedene Aufgabenstellungen abschnittsweise auf unterschiedlichen Strahlpfaden geführt werden kann, von denen der eine geradlinig von der Probe durch ein Blendensystem mit einstellbaren und/oder austauschbaren Blenden zum Röntgen-Detektors verläuft, während der andere Strahlpfad geknickt verläuft und zwar zunächst von der Probenposition zu einem dispersiven oder reflektierenden röntgenoptischen Element, und von dort zum Röntgendetektor. Mittels einer Verschlussblende kann der abgeknickte Strahlpfad gegenüber dem Detektor ausgeblendet werden. Die Blende und das dispersive oder reflektierende röntgenoptische Element sind starr zueinander justiert und können zusammen gegenüber der Probe verschwenkt werden.

[0005] Nachteilig an diesen Anordnungen ist jedoch, dass eine Aufteilung des Röntgenstrahls erfolgt und demnach für jede Anwendung jeweils nur ein Teil der von der Röntgenquelle ausgehenden Strahlung genutzt werden kann. Darüber hinaus beanspruchen die bekannten Anordnungen relativ viel Platz, um die verschiedenen Strahlpfade realisieren zu können.

[0006] Insbesondere für Messungen in der Parallelstrahlgeometrie ist der Einsatz von Sollerblenden vorteilhaft, mit denen vertikale und/oder horizontale Divergenz

von Röntgenstrahlen beschränkt werden können. Lineare Sollerblenden sind beispielsweise in US 6,266,392 B1, US2005/0281382 A1 und US 6,307,917 B1 ausführlich beschrieben.

[0007] Bruker Advanced X-ray solutions "Diffraction Solutions D8 Advance" 2002 offenbart ein Röntgendiffraktometer für Reflexions- und Transmissionsmessungen in Parallelstrahlgeometrie. Der von der Probe ausgehende Röntgenstrahl verläuft hierbei durch eine lineare oder eine radiale Sollerblende.

[0008] US 6,307,917 B1 offenbart eine Röntgenapparatur mit Sollerblende zum Kollimieren von divergenten Röntgenstrahlen. Die Sollerblende ist Teil einer Monochromatoreinheit mit einer Monochromatorblende, die zur Begrenzung des Röntgenstrahls dient, der anschließend von der Sollerblende kollimiert wird.

Aufgabe der Erfindung

[0009] Aufgabe der Erfindung ist es, ein röntgenoptisches Element mit einer Sollerblende und einer weiteren Blende vorzuschlagen, welches ein automatisches Wechseln zwischen der Sollerblende und der weiteren Blende ermöglicht.

Kurze Beschreibung der Erfindung

[0010] Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass der von der weiteren Blende begrenzte Röntgenstrahl die Achse der Sollerblende innerhalb der Sollerblende schneidet und die Richtung des von der weiteren Blende begrenzten Röntgenstrahls mit der Achse der Sollerblende einen Winkel $\alpha \geq 10^\circ$ einschließt.

[0011] Ein aus einer Strahlungsquelle kommender Röntgenstrahl kann somit entweder durch die Sollerblende oder durch die weitere Blende begrenzt werden, je nachdem in welchem Winkel die Sollerachse zur Richtung des einfallenden Röntgenstrahls ausgerichtet ist. Fällt der Röntgenstrahl parallel oder in einem kleinen Winkel (< 10°) zur Sollerachse ein, durchläuft er die Sollerblende. Je größer die Richtung des einfallenden Röntgenstrahls von der der Sollerachse abweicht, desto mehr Strahlung gelangt durch die weitere Blende.

[0012] Die Richtungen der durch die Sollerblende und die weitere Blende begrenzten Röntgenstrahlen durchdringen sich innerhalb der Sollerblende. Die Sollerblende weist hiefür ein Strahlfenster auf, das eine Durchführung von Röntgenstrahlung in einer Richtung erlaubt, die mit der Achse der Sollerblende einen Winkel $\alpha \geq 10^{\circ}$ einschließt. Auf diese Weise wird ein sehr kompaktes und flexibles optisches Element realisiert.

[0013] Unter der "Achse der Sollerblende" ist die Symmetrieachse der Sollerblende zu verstehen, die in Richtung des durch die Sollerblende zu kollimierende Röntgenstrahls verläuft (optische Achse), d.h. bei linearer Sollerblende verläuft die Sollerachse zwischen einer Eintrittsöffnung und einer Austrittsöffnung parallel zu den Lamellen der Sollerblenden. Im Falle einer radialen Sollerblenden.

30

40

lerblende verläuft die Sollerachse entlang der Spiegelebene der Sollerblende zwischen einer Eintrittsöffnung und einer Austrittsöffnung.

[0014] Mit dem erfindungsgemäßen optischen Element kann das Optiksetup eines Diffraktometers an die von der Probe oder der Fragestellung geforderten Applikation (z.B. Bragg-Brentano, Pulver-GID, Reflektometrie) angepasst werden.

Bevorzugte Ausführungsformen der Erfindung

[0015] Eine Ausführungsform des erfindungsgemäßen röntgenoptischen Elements sieht vor, dass die Sollerblende eine lineare Sollerblende ist. Eine lineare Sollerblende umfasst eine Vielzahl von dünne Lamellen (z.B. Metallfolien), die parallel zueinander und beabstandet voneinander angeordnet sind. Lineare Sollerblenden kommen insbesondere bei Verwendung von Punktdetektoren zum Einsatz.

[0016] Eine andere Ausführungsform des erfindungsgemäßen röntgenoptischen Elements sieht vor, dass die Sollerblende eine radiale Sollerblende ist. Bei einer radialen Sollerblende sind die Lamellen nicht parallel, sondern innerhalb eines bestimmten Winkelbereichs (Gesamtöffnungswinkel = Winkel zwischen der ersten und letzten Lamelle) radial bezüglich eines Mittelpunktes ausgerichtet. Der Abstand zwischen den einzelnen Lamellen definiert den Divergenzwinkel der radialen Sollerblende. Radiale Sollerblenden kommen insbesondere bei Verwendung von Streifendetektoren zum Einsatz.

[0017] Bei einer Weiterbildung der Ausführungsform mit linearer Sollerblende sind die Lamellen der linearen Sollerblende parallel zur Strahlrichtung des von der weiteren Blende begrenzten Röntgenstrahls angeordnet. Bei dieser Anordnung kann sowohl der von der weiteren Blende begrenzte Röntgenstrahl als auch ein in Richtung der Sollerachse verlaufender Röntgenstrahl (in verschiedenen Richtungen) durch die Sollerblende verlaufen.

[0018] Es kann aber auch vorteilhaft sein, wenn die Sollerblende eine Ausnehmung senkrecht zur Sollerachse aufweist. Der von der weiteren Blende begrenzte Röntgenstrahl kann somit unabhängig von der Ausrichtung der Lamellen der Sollerblende die Achse der Sollerblende innerhalb der Sollerblende schneiden.

[0019] Alternativ hierzu kann die Sollerblende zwei Teilblenden umfassen, wobei die weitere Blende zumindest teilweise zwischen den beiden Teilblenden angeordnet ist. Die beiden Teilblenden der Sollerblende müssen dann jedoch genau justiert sein.

[0020] Besonders vorteilhaft ist eine Ausführungsform, bei der die weitere Blende mindestens zwei Blendenbacken aufweist, wobei die Blendenbacken auf verschiedenen Seiten der Sollerblende angeordnet sind. Insbesondere ist es vorteilhaft, wenn eine Blendenbacke auf der Seite der Sollerblende angeordnet ist, die dem auf die weitere Blende einfallenden Röntgenstrahl zugewandt ist, und die andere Blendenbacke auf der Seite angeordnet ist, die dem auf die weitere Blende einfallen-

den Röntgenstrahl abgewandt ist.

[0021] Hierbei ist es besonders vorteilhaft, wenn die Blendenbacken mit der Achse der Sollerblende einen Winkel ungleich 90°, vorzugsweise 45°, einschließen.

[0022] Alternativ hierzu kann die weitere Blende jedoch auch vollständig auf einer Seite der Sollerblende angeordnet, insbesondere einstückig ausgeführt sein. In diesem Fall kann beispielsweise eine Lochblende verwendet werden.

0 [0023] Vorzugsweise ist die weitere Blende aus Tantal.

[0024] Darüber hinaus ist es von Vorteil, wenn die Geometrie der weiteren Blende, insbesondere die Blendenöffnung, im Nichtbetriebszustand justierbar ist. Der Strahlquerschnitt das aus der weiteren Blende austretenden Röntgenstrahls ist somit wohldefiniert.

[0025] Eine weitere Ausführungsform des erfindungsgemäßen röntgenoptischen Elements sieht vor, dass die die weitere Blende eine lineare Sollerblende ist. Das röntgenoptische Element umfasst in dieser Ausführungsform zwei Sollerblenden, deren Achsen in einem Winkel $\alpha \geq 10^\circ$ angeordnet sind. Die beiden Sollerblende in durchkreuzen sich, so dass mindestens eine der Sollerblenden eine Ausnehmung aufweist, innerhalb der die andere Sollerblende zumindest teilweise angeordnet ist.

[0026] Bei einer vorteilhaften Weiterbildung der Ausführungsform mit zwei linearen Sollerblenden weisen die beiden linearen Sollerblenden verschiedene Divergenzwinkel auf, d.h. die Abstände der Lamellen sind bei den beiden linearen Sollerblenden unterschiedlich.

[0027] Darüber hinaus kann die weitere Blende eine radiale Sollerblende sei. Dieses insbesondere vorteilhaft bei der Verwendung von Streifendetektoren.

[0028] Bei einer speziellen Weiterbildung dieser Ausführungsform weist das erfindungsgemäße optische Element zwei radiale Sollerblenden mit verschiedenen Öffnungswinkeln auf.

[0029] Die Erfindung betrifft auch ein Diffraktometer mit einer Quelle zur Erzeugung eines Primärstrahls, einer Probenhalterung zur Anordnung einer Probe, einem Detektor zur Registrierung eines von der Probe ausgehenden Sekundärstrahls und mit einem oben beschriebenen röntgenoptischen Element.

[0030] Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Diffraktometers ist das röntgenoptische Element um eine Drehachse senkrecht zu Achse der Sollerblende drehbar im Diffraktometer eingebaut. Die Eintrittsöffnung der Sollerblende kann somit durch Rotation aus dem Strahlengang und gleichzeitig das Strahlfenster der weiteren Blende in den Strahlengang gefahren werden. Der einfallende Röntgenstrahl muss somit nicht auf zwei Strahlpfade aufgeteilt werden, vielmehr kann das röntgenoptische Element durch Rotation so ausgerichtet werden, dass für jede Geometrie eine optimale Einstrahlung realisiert werden kann.

[0031] Vorzugsweise ist ein Motor zur Drehung des röntgenoptischen Elements vorgesehen. Das röntgenoptische Element wird hierzu auf der Motorachse mon-

tiert. Entsprechend der Einstellung des Motors kann die Größe der durch die weitere Blende definierten Öffnung senkrecht zum Röntgenstrahl (lichte Höhe der weiteren Blende) variiert werden.

[0032] Bei einer besonders bevorzugten Ausführungsform ist eine automatische Steuerung der Drehung des röntgenoptischen Elements vorgesehen, insbesondere eine Rechnersteuerung.

[0033] Das röntgenoptische Element ist vorzugsweise sekundärstrahlseitig angeordnet, z.B. zum Wechseln zwischen Bragg-Brentano (weitere Blende im Strahl) und Reflektometrie (lineare Sollerblende im Strahl).

[0034] Alternativ oder zusätzlich hierzu ist es jedoch auch möglich, dass das röntgenoptische Element primärstrahlseitig angeordnet ist, z.B. zum Wechseln zwischen Bragg-Brentano an flachen Pulverproben (weitere Blende im Strahl) und Reflektionsmessungen an unebenen Pulverproben (lineare Sollerblende im Strahl).

[0035] Bei Verwendung einer Ausführungsform des erfindungsgemäßen optischen Elements mit mindestens einer radialen Sollerblende kann die radiale Sollerblende unterschiedlich bezüglich der weiteren Komponenten des Diffraktometer ausgerichtet sein:

[0036] Für den Fall, dass das röntgenoptische Element sekundärseitig angeordnet ist, kann es vorteilhaft sein, wenn der Detektor im Kreuzungspunkt der Lammellenrichtungen zumindest einer radialen Sollerblende des röntgenoptischen Elements angeordnet ist. Die Lamellenrichtung verläuft in der durch die entsprechende Lamelle definierten Ebene entlang der Mittellinie der Lamelle (in Ausbreitungsrichtung des kollimierten Röntgenstrahls). Eine Anordnung des Detektors im Kreuzungspunkt der Sollerblendenlamellen ist besonders vorteilhaft für beispielsweise Transmissionsmessungen mit fokussierendem Primärstrahl.

[0037] Unabhängig von der Anordnung des röntgenoptischen Elements kann es vorteilhaft sein, wenn die Probenhalterung im Kreuzungspunkt der Lammellenrichtungen zumindest einer radialen Sollerblende des röntgenoptischen Elements angeordnet ist. Eine Anordnung der Probenhalterung im Kreuzungspunkt der Sollerblendenlamellen ist besonders vorteilhaft für Transmissionsmessungen an Kapillarproben mit Streifendetektor

[0038] Für den Fall, dass das röntgenoptische Element primärseitig angeordnet ist, kann es auch vorteilhaft sein, wenn die Quelle im Mittelpunkt zumindest einer radialen Sollerblende des röntgenoptischen Elements angeordnet ist. Eine Anordnung der Quelle im Kreuzungspunkt der Sollerblendenlamellen ist besonders vorteilhaft für Messungen in Bragg-Brentano Anordnung, bei denen besonderer Wert auf Streustrahlunterdrückung gelegt wird.

[0039] Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und

beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.

Zeichnung und detaillierte Beschreibung der Erfindung

Es zeigen:

0 [0040]

Fig. 1a-c eine Schnittdarstellung eines erfindungsgemäßen röntgenoptischen Elements in verschiedenen Ausrichtungen bezüglich des einfallenden Röntgenstrahls mit linearer Sollerblende und weiterer Blende mit Blendenbacken;

- Fig. 2 eine perspektivische Darstellung des röntgenoptischen Elements aus Fig. 1;
 - Fig. 3 eine schematische Darstellung eines erfindungsgemäßen Diffraktometers,
 - Fig. 4 eine Schnittdarstellung eines erfindungsgemäßen röntgenoptischen Elements mit radialer Sollerblende und weiterer Blende mit Blendenbacken; und
 - Fig. 5 eine Schnittdarstellung eines erfindungsgemäßen röntgenoptischen Elements mit linearer Sollerblende und radialer Sollerblende als weiterer Blende.

[0041] Fig. 1a-c und Fig. 2 zeigen eine besonders bevorzugte Ausführungsform eines erfindungsgemäßen optischen Elements 1 mit einer linearen Sollerblende 2 (äguatorial angeordnete Sollerblende) und einer weiteren Blende, die zwei Blendenbacken 3a, 3b, z.B. in Form 40 von Tantal-Schneiden, umfasst. Die Blendenbacken 3a, 3b, sowie die Sollerblende 2 sind an einer Halterung 4 befestigt, wodurch die weitere Blende starr mit der Sollerblende 2 verbunden ist. Die Sollerblende 2 weist eine Sollerachse 5 auf, die zwischen einer Eintrittsöffnung 6 und einer Austrittsöffnung 7 parallel zu den Lamellen der Sollerblende verläuft. Die durch die Blendenbacken 3a, 3b der weitere Blende gebildeten Ebene schließt mit der Achse 5 der Sollerblende einen Winkel ein, der ungleich 90° und vorzugsweise > 10°, im gezeigten Fall 45° ist. Der Abstand der Blendenbacken 3a, 3b zueinander kann im Nichtbetriebszustand durch Verschieben der Blendenbacken 3a. 3b verändert werden. Die Sollerblende 2 weist ein Strahlfenster in Form einer Ausnehmung 8 auf, durch die Strahlung mit einer Ausbreitungsrichtung, die nicht entlang der Sollerachse 5 verläuft durch das röntgenoptische Element 1 hindurch treten kann (Fig. 1b, 1c). Alternativ hierzu kann ein Strahlfenster auch dadurch realisiert werden, dass durch geeignete Ausrichtung der Lamellen der Sollerblende 2 der Strahlengang bei Verdrehung des röntgenoptischen Elements 1 gegenüber der Sollerachse 5 sowohl durch die Lamellen der Sollerblende 2 als auch durch die weitere Blende verläuft (nicht gezeigt). Die Lamellen der Sollerblende 2 aus Fig. 1a-c wären dann parallel zur Zeichenebene ausgerichtet.

[0042] In Fig. 1a ist eine Ausrichtung des erfindungsgemäßen röntgenoptischen Elements gegenüber einem einfallenden Röntgenstrahl 10 ("Röntgenstrahl 10" soll im Weiteren auch Strahlenbündel beinhalten) gezeigt, bei der die Sollerblende 2 parallel zum Röntgenstrahl 10 angeordnet ist. Der Röntgenstrahl 10 wird dann durch die Sollerblende 2 kollimiert.

[0043] Durch Rotation des röntgenoptischen Elements 1 um eine Rotationsachse 9, kann das röntgenoptische Element 1 relativ zum einfallenden Röntgenstrahl 10 verdreht werden. Die Rotationsachse 9 des röntgenoptischen Elements 1 ist hierbei in jeder Position des röntgenoptischen Elements 1 senkrecht zur Sollerachse 5 und zum einfallenden Röntgenstrahl 10. Das erfindungsgemäße röntgenoptische Element 1 ermöglicht die Wahl zwischen einem Strahlengang durch die Sollerblende 2 oder einem Strahlengang durch die weitere Blende, ohne dabei den Röntgenstrahl 10 abzulenken oder zu teilen. Ausgehend vom Bezugssystem des röntgenoptischen Elements 1 schneidet der durch die weitere Blende verlaufende Strahlengang den durch die Sollerblende 2 verlaufenden Strahlengang innerhalb der Sollerblende 2. Hierdurch wird eine kompakte Ausführung des röntgenoptischen Elementes 1 realisiert.

[0044] Fig. 1b, 1c zeigen zwei verschiedene Stellungen des röntgenoptischen Elements 1 relativ zum einfallenden Röntgenstrahl 10, bei denen der Röntgenstrahl 10 durch die weitere Blende begrenzt (abgeblendet) wird. Durch verschiedene Winkelstellungen der Sollerachse 5 zum einfallenden Röntgenstrahl 10 kann die durch die Blendenbacken 3a, 3b beschränkte lichte Höhe (bezüglich des einfallenden Röntgenstrahls 10) der weiteren Blende variiert werden. Dies wird durch die Fig. 1b, 1c deutlich. Der maximale Durchtritt des Röntgenstrahls 10 durch die weitere Blende erfolgt in der hier dargestellten Ausführungsform in einer um 90° gegenüber der in Fig. 1a gezeigten Position (Position mit Strahlengang parallel zur Sollerachse 5).

[0045] Die Verwendung des erfindungsgemäßen röntgenoptischen Elementes in einem Diffraktometer ermöglicht einen automatischen Wechsel zwischen einem Bragg-Brentano Strahlengang, bei dem die einfache weitere Blende den Röntgenstrahl 10 begrenzt, und einem Parallel-Strahlengang durch die Sollerblende 2. Damit wird die Untersuchung verschiedenster Pulver-Proben mit einem Aufbau und ohne Neujustage des Gerätes ermöglicht. In Verbindung mit einem parallelen Primärstrahl sind außerdem Reflektometriemessungen möglich, bei denen für kleine Einfallswinkel, also im Bereich intensiver Reflexe, ein Aufbau mit einfacher Blende (z.B. mit Blendenbacken 3a, 3b) gewählt wird. Für große Ein-

fallswinkel, also im Bereich schwacher Intensitäten, kann dann automatisch auf einen Strahlengang mit der Sollerblende 2 gewechselt werden, um die Intensitätsausbeute der Probe zu erhöhen. Auch der Wechsel zwischen Messungen entlang der spekulären Achse der Probe mit hoher Auflösung, d.h. mit kleiner Öffnung der weiteren Blende, und Messungen des diffusen und lichtschwachen Streusignals der Probe unter streifendem Einfall, also mit Sollerblende 2, sind damit mit einem einzigen Aufbau möglich.

[0046] Fig. 3 zeigt einen schematischen Aufbau eines solchen erfindungsgemäßen Diffraktometers mit einer Röntgenquelle 11, einer Probenhalterung 12, einem Detektor 13 und zwei erfindungsgemäßen röntgenoptische Elementen 1, wobei eines der röntgenoptischen Elemente primärstrahlseitige und das andere sekundärstrahlseitig angeordnet ist. Die röntgenoptischen Elemente 1 sind an einem Goniometer befestigt und drehbar gegenüber der Röntgenquelle 11, der Probenhalterung 12 und dem Detektor 13 angeordnet. Vorzugsweise wird die Drehung der röntgenoptischen Elemente 1 jeweils mittels eines Motors (nicht gezeigt) realisiert. Die optische Achse (Richtung des Röntgenstrahls 10) verläuft durch die Rotationsachse des röntgenoptische Elements 1 bzw. des Motors. Es ist auch möglich lediglich ein optisches Element 1 vorzusehen, also entweder primärstrahlseitig oder sekundärstrahlseitig.

[0047] Statt des in Fig. 1a-c und Fig.2 gezeigten röntgenoptischen Elements 1 können im Primärstrahl **10a** und/oder im Sekundärstrahl **10b** auch andere Ausführungsformen des erfindungsgemäßen röntgenoptischen Elements zum Einsatz kommen.

[0048] So kann das erfindungsgemäß röntgenoptische Element 1' statt einer linearen Sollerblende 2 zum Beispiel eine radiale Sollerblende 14 umfassen, wie in Fig. 4 gezeigt. Diese Ausführungsform des röntgenoptische Elements 1' kann für einen Wechsel zwischen z.B. Transmissionsmessungen mit Kapillaren und Streifendetektor (Verwendung der radialen Sollerblende 14) und Bragg-Brentano-Messungen in Reflektionsgeometrie (Verwendung der weiteren Blende mit Blendenbacken 3a, 3b) eingesetzt werden. Je nach Anwendung kann es vorteilhaft sein, die Quelle 11, die Probenhalterung 12 oder den Detektor 13 im Mittelpunkt der radialen Sollerblende 14 anzuordnen, wobei als Mittelpunkt der radialen Sollerblende 14 der Schnittpunkt der Lamellen der radialen Sollerblende 14 mit der Achse 15 der radialen Sollerblende 14 definiert ist.

[0049] Fig. 5 zeigt eine weitere Ausführungsform des erfindungsgemäßen röntgenoptische Elements 1", bei dem eine lineare Sollerblende 2 und eine radiale Sollerblende 14 kombiniert sind. Die Achse 5 der linearen Sollerblende 2 und die Achse 15 der radialen Sollerblende 14 stehen vorzugsweise senkrecht aufeinander. Diese Ausführungsform des erfindungsgemäßen röntgenoptische Element 1" dient der Anpassung des Strahlengangs beim automatischen Wechsel zwischen Transmissionsmessungen und Reflektionsmessungen bei Pulverpro-

40

30

35

40

45

50

55

ben. Insbesondere beim Wechsel zwischen Kapillarproben mit Streifendetektor (Verwendung der radialen Sollerblende 2) und flachen Proben mit Punktdetektoren (Verwendung der linearen Sollerblende 14).

[0050] Darüber hinaus können auch zwei lineare Sollerblenden 2 kombiniert werden (nicht gezeigt). Sind die Lamellen der beiden linearen Sollerblenden 2 senkrecht zueinander und senkrecht zur Sollerachse 5 ausgerichtet, kann ein solches röntgenoptische Element zum Wechsel zwischen Anwendungen verwendet werden, bei denen einerseits in der Streuebene gemessen wird und andererseits aus der Streuebene heraus gemessen wird.

[0051] Es ist auch möglich mehr als zwei Blenden innerhalb eines röntgenoptischen Elements miteinander in entsprechender Weise zu kombinieren.

[0052] Sämtliche Ausführungsformen des erfindungsgemäßen Diffraktometers können auch für Neutronenstrahldiffraktomerie verwendet werden.

[0053] Mit dem erfindungsgemäßen Diffraktometer kann ein Wechsel zwischen einer Sollerblende und mindestens einer weiteren Blende ohne Nutzereingriff und Neujustage automatisch erfolgen.

Bezugszeichenliste

[0054]

1 2	röntgenoptisches Element Sollerblende (linear)
3a, 3b	Blendenbacken der weiteren Blende
4	Halterung
5	Sollerachse der linearen Sollerblende
6	Eintrittsöffnung der Sollerblende
7	Austrittsöffnung der Sollerblende
8	Ausnehmung in Sollerblende
9	Rotationsachse des röntgenoptischen Ele-
	ments
10	Röntgenstrahl
10a	Primärstrahl
10b	Sekundärstrahl
11	Röntgenquelle
12	Probenhalterung
13	Detektor
14	radiale Sollerblende
15	Achse der radialen Sollerblende

Patentansprüche

Röntgenoptisches Element (1, 1', 1 ") mit einer Sollerblende umfassend mehrere Lamellen zum Kollimieren eines Röntgenstrahls bezüglich der Richtung der Achse (5, 15) der Sollerblende, und einer weiteren Blende zur Begrenzung eines Röntgenstrahls (10), wobei die weitere Blende mit der Sollerblende (2, 14) im Betrieb starr verbunden ist, dadurch gekennzeichnet,

dass der von der weiteren Blende begrenzte Röntgenstrahl (10) die Achse (5, 15) der Sollerblende innerhalb der Sollerblende schneidet und die Richtung des Röntgenstrahls (10)mit der Achse (5, 15) der Sollerblende einen Winkel $\alpha \ge 10^\circ$ einschließt.

- 2. Röntgenoptisches Element (1, 1") nach Anspruch 1, dadurch gekennzeichnet, dass die Sollerblende eine lineare Sollerblende (2) ist.
- **3.** Röntgenoptisches Element (1°, 1") nach Anspruch 1, **dadurch gekennzeichnet**, **dass** die Sollerblende eine radiale Sollerblende (14) ist.
- 15 4. Röntgenoptisches Element (1, 1', 1") nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sollerblende eine Ausnehmung (8) senkrecht zur Sollerachse (5) aufweist.
- 20 5. Röntgenoptisches Element (1, 1') nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die weitere Blende mindestens zwei Blendenbacken (3a, 3b) aufweist, wobei die Blendenbacken (3a, 3b) auf verschiedenen Seiten der Sollerblende (2, 14) angeordnet sind.
 - 6. Röntgenoptisches Element (1, 1') nach Anspruch 5, dadurch gekennzeichnet, dass die Blendenbakken (3a, 3b) mit der Achse (5, 15) der Sollerblende (2, 14) einen Winkel ungleich 90°, vorzugsweise 45°, einschließen.
 - Röntgenoptisches Element (1 ") nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die die weitere Blende eine lineare Sollerblende (2) ist.
 - 8. Röntgenoptisches Element nach Anspruch 7 und Anspruch 2, dadurch gekennzeichnet, dass die beiden linearen Sollerblenden (2) verschiedene Divergenzwinkel aufweisen.
 - Röntgenoptisches Element (1 ") nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die die weitere Blende eine radiale Sollerblende (14) ist.
 - 10. Röntgenoptisches Element nach Anspruch 3 und Anspruch 9, dadurch gekennzeichnet, dass die beiden radiale Sollerblenden (14) verschiedene Öffnungswinkel und/oder verschiedene Divergenzwinkel aufweisen.
 - 11. Diffraktometer mit einer Quelle (11) zur Erzeugung eines Primärstrahls, einer Probenhalterung (12) zur Anordnung einer Probe, einem Detektor (13) zur Registrierung eines von der Probe ausgehenden Sekundärstrahls und mit einem röntgenoptischen Ele-

ment (1, 1 1") nach einem der vorhergehenden Ansprüche.

- 12. Diffraktometer nach Anspruch 16, dadurch gekennzeichnet, dass das röntgenoptische Element (1, 1', 1") um eine Drehachse (9) senkrecht zu Achse (5, 15) der Sollerblende (2, 14) drehbar im Diffraktometer eingebaut ist.
- **13.** Diffraktometer nach Anspruch 12, **dadurch gekennzeichnet**, **dass** eine automatische Steuerung der Drehung des röntgenoptischen Elements (1, 1', 1") vorgesehen ist, insbesondere eine Rechnersteuerung.
- **14.** Diffraktometer nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass das röntgenoptische Element (1, 1', 1 ") primärstrahlseitig angeordnet ist.
- **15.** Diffraktometer nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass das röntgenoptische Element (1, 1', 1") sekundärstrahlseitig angeordnet ist.

10

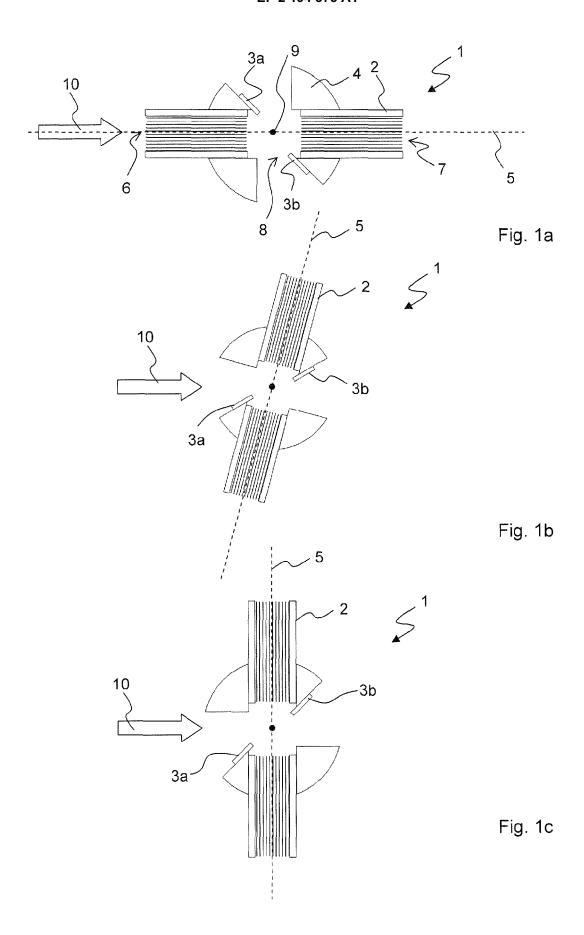
15

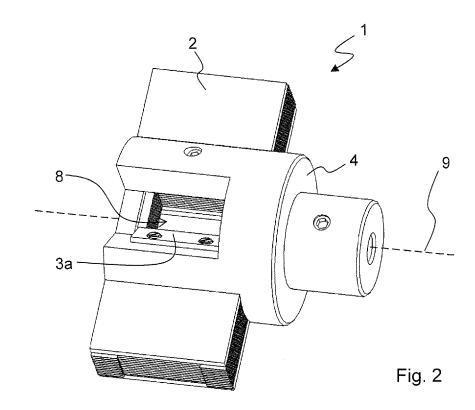
20

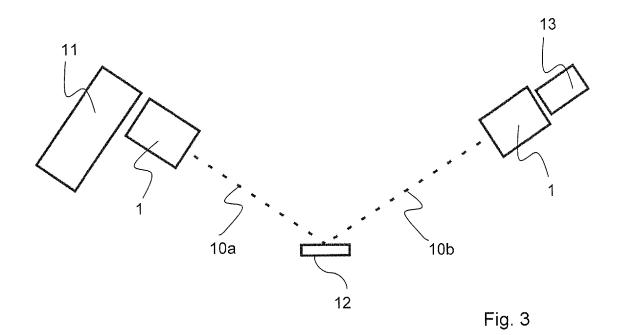
25

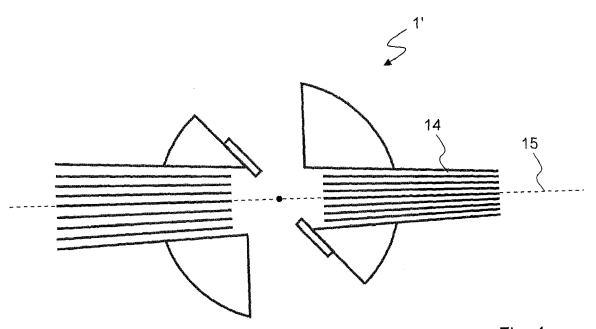
--

30

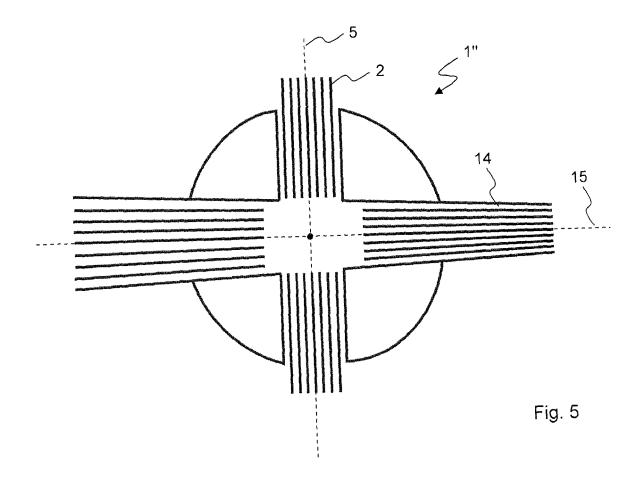

35


40


45


50

55



EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 09 17 7712

-	EINSCHLÄGIGE				
ategorie	Kennzeichnung des Dokun der maßgebliche	nents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)	
A	US 6 807 251 B2 (OH AL) 19. Oktober 200 * Zusammenfassung * * Abbildungen 2a, 2	*	1,11	INV. G01N23/20 G21K1/02	
A	US 2007/086567 A1 (ET AL) 19. April 20 * Absatz [0030] * * Zusammenfassung * * Abbildung 1 *		1,2,7, 10,11,14		
А	US 6 665 372 B2 (BA 16. Dezember 2003 (* Zusammenfassung * * Abbildungen 1-4 *	·	1,11		
				RECHERCHIERTE SACHGEBIETE (IPC)	
				G01N G21K	
Der vo	rliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt			
	Recherchenort	Abschlußdatum der Recherche	<u> </u>	Prüfer	
München		1. April 2010		Rouault, Patrick	

EPO FORM 1503 03.82 (P04C03)

4

- You besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A : technologischer Hintergrund
 O : nichtschriftliche Offenbarung
 P : Zwischenliteratur

- D : in der Anmeldung angeführtes Dokument L : aus anderen Gründen angeführtes Dokument
- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 09 17 7712

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

01-04-2010

Im Recherchenbericht angeführtes Patentdokument		nt	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichun
US	6807251	B2	19-10-2004	EP JP JP US	1324023 3548556 2003194744 2003123610	B2 A	02-07-200 28-07-200 09-07-200 03-07-200
US	2007086567	A1	19-04-2007	JР	2007139754	Α	07-06-20
US 	6665372	B2 	16-12-2003	DE EP US	10141958 1288652 2003043965	A2	03-04-200 05-03-200 06-03-200

EPO FORM P0461

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EP 2 194 375 A1

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- US 6807251 B2 [0003]
- US 606650372 B2 [0004]
- US 6266392 B1 [0006]

- US 20050281382 A1 [0006]
- US 6307917 B1 [0006] [0008]