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(57) An object tracking system is described compris-
ing
- a plurality of sensor nodes (10) that each provide a
message (D) indicative for an occupancy status of a de-
tection area of an object infrastructure monitored by said
sensor node,

- a map-integrator with
- an object database facility comprising state information
of objects present at the object infrastructure, and a da-
tabase updating facility (DBU) for updating the database
facility (32, 34) on the basis of messages (D) provided
by the sensor nodes.
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Description

BACKGROUND OF THE INVENTION

Field of the invention

[0001] The present invention relates to an object tracking system.
The present invention relates to an object infrastructure provided with an object tracking system.
The present invention further relates to a method for tracking objects.

Related Art

[0002] In "Measuring Traffic", Statistical Science, 2007, Vol. 22, No. 4, pp. 581-597, Peter J. Bickel et al. describe a
traffic performance measurement system, PeMS, that functions as a statewide repository for traffic data gathered by
thousands of automatic sensors. It has integrated data collection, processing and communications infrastructure with
data storage and analytical tools. This system provides for global information relating to the average traffic speed and
the traffic density.
[0003] There is a need for a system that provides information relating to the state of individual traffic participants. This
information can be used in advanced cruise controllers for traffic management or for access control for example.

SUMMARY OF THE INVENTION

[0004] The object tracking system according to the present invention comprises

- a plurality of sensor nodes that each provide a message indicative for an occupancy status of a detection area of
an object infrastructure monitored by said sensor node,

- a message interpretator including an object database facility with state information of objects present at the object
infrastructure, and a database updating facility for updating the database facility on the basis of messages provided
by the sensor nodes.

[0005] In the object tracking system according to the present invention objects can be tracked with relatively simple
and cheap means. It is sufficient that the sensor nodes sense an occupancy state, i.e. whether a detection area associated
with the sensor node is occupied by an object or not and that they merely provide a message that indicates whether the
occupancy state is changed. The relatively cheap and simple construction of the sensor nodes contributes to an eco-
nomically feasible application in object tracking systems for large object infrastructures. Optionally, the message may
additionally include the value of the occupancy state after the change was detected.
[0006] In an embodiment the database update facility comprises

- an association facility for associating the messages provided by the sensor nodes with the state information present
in the object data base facility,

- a state updating facility for updating the state information on the basis of the messages associated therewith.

The association facility selects for which state information the received messages are relevant, and provides the selected
messages to the state updating facility. In this way the state updating facility can operate more efficiently, than in case
no selection takes place.
[0007] The present invention is in particular suitable for tracking vehicles. For these objects, suitable sensor elements
to be used in the sensor nodes are for example magneto restrictive sensors. These sensors determine whether their
associated detection area is occupied by detection of a perturbation of the earth magnetic field. Alternatively, magnetic
loop sensors, may be used, which detect a change of inductance caused by the presence of ferromagnetic material.
[0008] Preferably each sensor node is provided with a wireless transmission facility that transmits the preprocessed
data, e.g. the occupance status or an indication of a change thereof to a data to a receiver facility coupled to the message
interpreter. The absence of wiring towards the message interpreter makes the installation easier and cost effective.
Furthermore it is attractive if the sensor nodes provide their message at an event basis, e.g. if a perturbation of the earth
magnetic field exceeds a threshold value. This reduces communication load of the message interpreter and minimizes
power consumption of the sensor nodes.
In an embodiment a set of sensor elements may be clustered in a sensor module. For example the sensor module may
be a camera that monitors a part of the object infrastructure, wherein each photosensitive element of the camera serves
as a sensor element of the object tracking system. A camera may be used for example if a perturbation of the earth
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magnetic field can not be measured. This is the case for example if (parts of) the infra structure comprises metal
components e.g. a bridge. It is not necessary that the detection areas of the sensor elements are complementary. The
detection areas may overlap, or spaces may exist between the detection areas, but it is required that the detection area
of the sensor be smaller than the object to be tracked. Ideally the sensor elements are point detectors.
[0009] The sensor nodes can be either randomly distributed over the object infrastructure or placed in a pattern
optimized for the object tracking problem in hand.
[0010] In an embodiment the object tracking system comprises a plurality of system modules, each module comprising
a respective subset of the plurality of sensor nodes for monitoring a respective section of the object infrastructure and
a respective message interpreter, the object tracking system has a communication facility for enabling system modules
of mutually neighboring sections to exchange state and detection information. In this way the object tracking system
can be easily expanded if required. A new system module need only to communicate with the system modules arranged
for neighboring sections. Neighboring sections may be arranged in one dimensional scheme, e.g. in case of a narrow
road. For example if a certain road is already provided with an object tracking system, it is sufficient to provide for a
communication facility between the system module for the last section of said object tracking system and the new system
module for the appended section. In case of infrastructures for unconstrained object movements the new module may
communicate with other modules neighboring in various directions. As the system modules merely need to exchange
state information and object-detection information (i.e. the unprocessed sensor signals) in a limited subarea of the
respective sections, the amount of communication between the system modules is modest resulting in a scalable object
tracking system.
[0011] The association facility associates the messages provided by the sensor nodes or neighboring system modules
with the state information present in the object data base facility. In other words the association facility determines the
probability that the detections are caused by a particular object for which state information is present in the object data
base facility. If the messages cannot be associated with state information of an already identified object here or in the
neighboring system module, a new entry may be added to the database. Alternatively, the entry for the new object may
be added by a separate procedure. For example the object infrastructure may have an access with an object identification
facility that provides for an identification of every object that enters the infrastructure.
[0012] The individual sensor nodes do not need to provide other information than an occupancy status of their asso-
ciated detection area. However, optionally the sensor node may associate its own signal with a color, shape, or other
signature of the tracked objects to facilitate or obviate association by the message interpreter. An association facility for
associating the detection signals obtained on asynchronous basis with state information of a particular object may be
based on one of the following methods.

- Gating,
- Nearest Neighbor (NN),
- (Joint) Probabilistic Data Association ((J)DPA),
- Multiple Hypothesis Tracker (MHT), and
- MCMCDA.

[0013] Gating comprises forming a gate around the predicted measurement of an object. The size and shape of the
gate are chosen in such a way that unlikely messages are precluded to be associated with this particular object-track.

The method determines a statistical, quadratic distance from object i. A measurement y is associated with the

state-vector xoi of object i if  with G some constant threshold and  equal to:

Various methods can be used for finding the Threshold G. However, this data association method is not suitable for
associating event based messages. Moreover problems arise when two gates overlap.
[0014] The Nearest Neighbor method also uses a gate, but it can handle overlapping gates. The sum of all possible
combinations to associate a certain measurement to a certain track is analyzed. The chosen combination associates
the most measurements to a track for a minimum sum of distances.
[0015] A (Joint) Probabilistic Data Association method is described in Multitarget-Multisensor Tracking: Principles and
Techniques. YBS, 1995, by Y. Bar-Shalom and R. Li, for example. The (Joint) Probabilistic Data Association methods
(J)PDA is unsuitable for event-based sampling because it assumes that one target can give rise to at most one meas-
urement and one measurement is a result of at most one object. This cannot be assumed with event based sampling.
An extension to the JPDA can be found in O. Songhwai, S. Sastry, and L. Schenato, "A Hierarchical Multiple-Target
Tracking Algorithm for Sensor Networks," in Proc. of the 2005 IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 2005. Where the original JDPA assumes that a probability density function (PDF) of state-vector
xk+1|jk is a Gaussian function, in the extended JPDA the PDF can be a non-Gaussian function.
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[0016] A Multiple Hypothesis Tracker (MHT) allows that the state-vector of a single object can has multiple tracks.
This method resembles to the Particle filter as described in B. Ristic, S. arulampalam, and N. Gordon, "Beyond the
Kalman filter: Particle filter for tracking applications", 2002. Therein, each state is estimated by simulating N states with
each a different probability. It is a drawback of this method that it requires a high computational power.
[0017] A further data association method is the Markov chain Monte Carlo data association (MCMCDA). All observa-
tions are used to classify and cluster them. To that end the whole set of observations is divided into a number of partitions
represented by the set w. This is done nmc times resulting in nmc sets of w, i.e. possible partitions. The set of w with the
highest probability, given the number of objects in the previous sample instant, is chosen and the state-vectors of the
tracks a are updated according the partitioned observation. The computational time can be decreased by not using the
total history of observations, but by using a moving horizon. A downside of this method is that each observation can
belong to at most one object and, making this method unsuitable for event-based state-estimation.
[0018] Although these data association methods can be applied to associate messages obtained by (a) synchronous
sampling, they are not suitable for association messages obtained by event-based sampling. For then the main issue
with present association methods is that they assume either that one target results in at most one observation or that
one observation comes from at most one object. According to a preferred embodiment of the present invention messages
received from the sensor nodes are first associated with a particular object. In other words it is determined which object
most probably caused the observation by the sensor resulting in the message. Subsequently the state of said object is
(re-)estimated using that message. The estimation is based on the latest observation and the current state of the said
object. The state of the object that is most probable in view of all available observations is calculated. The state of an
object can also be estimated at a point in time later than the last message, but before a new message has arrived. In
that case the error covariance matrix is bounded, as it is known that the state change of the object must be within the
detection boundaries of the sensor node.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] These and other aspects are described in more detail with reference to the drawing. Therein:

Figure 1 shows a first view of an embodiment of an object infrastructure provided with an object tracking system
according to the invention,
Figure 2 shows a second view of an embodiment of an object infrastructure provided with an object tracking system
according to the invention,
Figure 3 shows another view of an embodiment of an object tracking system according to the invention,
Figure 4 schematically shows a part of the object infrastructure that is provided with a plurality of sensor nodes,
Figure 5 schematically shows a signal flow in a sensor node,
Figure 6 schematically shows a possible hardware implementation of a sensor node,
Figure 7 shows a possible method carried out by a sensor node,
Figure 8 shows a signal flow in a message interpreter,
Figure 9 shows a possible hardware implementation of a message interpreter,
Figure 10 shows neighboring infrastructure regions, with specially handled subregions marked ,
Figure 11 shows an overview of a method carried out by the message interpreter,
Figure 12 shows a first detail of the method of Figure 11,
Figure 13 shows a second detail of the method of Figure 11,
Figure 14 shows an example of an object to be detected at a reference position and orientation and at a different
position and orientation,
Figure 15 shows a definition of a set S and the equidistant sampled set Λ,
Figure 16 shows detection of an object at multiple detection points,
Figure 17 shows a definition of the set On of possible positions oi

k for a single detection point,
Figure 18 shows a definition of the set ON of possible positions oi

k for multiple detection points,
Figure 19 shows a derivation of ON(q ) given 2 detections and 2 different samples of q,
Figure 20 shows (Left) determination of -Λ, (right) the object’s possible position set ^On given dn and q,
Figure 21 shows (left) the mean of all Gaussians from f(o|z1, θ) and f(o|z2, θ); (right) The selection of means of the
Gaussians from f(o|z1, θ) and f(o|z2, θ), of which their mean ôni is close or in CN(θ ),
Figure 22 shows an association result with event-based data-association,
Figure 23 shows an association result with Nearest Neighbor data-association,
Figure 24 shows time sampling of a signal y(t),
Figure 25 shows event sampling of a signal y(t),
Figure 26 shows event sampling: Send-on-Delta,
Figure 27 shows the Gaussian function,
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Figure 28 shows a top view of the Gaussian function,
Figure 29 shows an approximation of ΛHke (yn) as a sum of Gaussian functions,
Figure 30 shows position, speed and acceleration of a simulated object,
Figure 31 shows a position estimation error for various methods,
Figure 32 shows a speed estimation speed for various methods,
Figure 33 shows a factor of increase in estimation error after zke, or yka.

DETAILED DESCRIPTION OF EMBODIMENTS

[0020] In the following detailed description numerous specific details are set forth in order to provide a thorough
understanding of the present invention. However, it will be understood by one skilled in the art that the present invention
may be practiced without these specific details. In other instances, well known methods, procedures, and components
have not been described in detail so as not to obscure aspects of the present invention.
[0021] The invention is described more fully hereinafter with reference to the accompanying drawings, in which em-
bodiments of the invention are shown. This invention may, however, be embodied in many different forms and should
not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this
disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In
the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.
[0022] It will be understood that when an element or layer is referred to as being "on", "connected to" or "coupled to"
another element or layer, it can be directly on, connected or coupled to the other element or layer or intervening elements
or layers may be present. In contrast, when an element is referred to as being "directly on," "directly connected to" or
"directly coupled to" another element or layer, there are no intervening elements or layers present. Like numbers refer
to like elements throughout. As used herein, the term "and/or" includes any and all combinations of one or more of the
associated listed items.
[0023] It will be understood that, although the terms first, second, third etc. may be used herein to describe various
elements, components, and/or sections, these elements, components, and/or sections should not be limited by these
terms. These terms are only used to distinguish one element, component or section from another element, component,
and/or section. Thus, a first element, component, and/or section discussed below could be termed a second element,
component, and/or section without departing from the teachings of the present invention.
[0024] Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning
as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood
that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is
consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal
sense unless expressly so defined herein. All publications, patent applications, patents, and other references mentioned
herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions,
will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
[0025] Figure 1 and 2 show a first and a second view of an embodiment of an object infrastructure 80 provided with
an object tracking system. The object infrastructure is intended to allow stationary and/or moving objects 70 thereon,
e.g. a road or a parking place. The object infrastructure may be part of a public or private space, e.g. a recreational park.
[0026] The object tracking system comprises a plurality of sensor nodes 10 that each provide a message indicative
for an occupancy status of a detection area of the object infrastructure monitored by said sensor node 10. As shown
therein the sensor nodes are randomly distributed over the object infrastructure.
[0027] The object tracking system comprises a message interpretator MI, each comprising an object database facility,
an association facility and a state updating facility. Each message interpretator is responsible for handling messages D
from a respective section 80A, 80B, 80C, 80D of the object infrastructure 80.
[0028] Figure 3 is another schematic view of the object tracking system. Figure 3 shows how sensor nodes 10 transmit
(detection) messages to a message interpreter MI in their neighborhood. The message interpreters MI may also com-
municate to each other via a communication channel 60 to indicate that an object crosses a boundary between their
respective sections and to exchange a status of such an object. As shown in Figure 3, the object tracking comprises a
plurality of system modules MD1, MD2, MD3. Although three modules are shown in this example, any number of system
modules is possible, dependent on the application. For example for an isolated object infra structure, e.g. an intersection
of roads a single module may be applicable, while on a long road thousands of modules may be present. Each module
MD 1, MD2, MD3 comprises a respective subset of the plurality of sensor nodes 10 for monitoring a respective section
of the object infrastructure and a respective message interpreter MI. The object tracking system further has a commu-
nication facility 60 for enabling system modules MD1, MD2, MD3 of mutually neighboring sections to exchange state
information. In the embodiment shown, messages from the sensor nodes are directly transmitted to a message interpreter.
Alternatively, the sensor nodes may form a network that routes the messages to the message interpreters. In that case
the transmitters may have a short transmission range.
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[0029] Figure 4 schematically shows a part of the object infrastructure that is provided with a plurality of sensor nodes
j having position cj. The sensor nodes have a detection area with radius R. An object i is present at the infrastructure
having a position (vi

x, vi
y). In this case if the object substantially covers the detection area the sensor node indicates

that the detection area is occupied as indicated in gray. Otherwise the sensor node indicates that the detection area is
not occupied (white). In practice the fraction of the detection area that should be covered before an occupied status is
detected may deviate from the above-mentioned 50% depending on the type of object.
[0030] Figure 5 schematically illustrates the signal flow for the sensor node 10, having sensor element 12, a processing
unit 14 (with memory), and a radio link 16.
[0031] The sensor element 12 is capable of sensing the proximity of the objects to be tracked. The processing unit
14 determines if an object is present or absent on the basis of the signals from the sensor element 12. If an occupancy
status of the detection area of the sensor changes, the processing unit 14 initiates a transmission of a message D
indicating the new occupancy status. In an alternative embodiment the message may include a time stamp indicative
of the time t at which the new occupancy status occurred. Alternatively the sensor nodes may transmit occupancy status
information on a periodical basis for example. However, an event-based transmission enables a lower power use. The
message D sent should reach at least one message interpreter MI. A concrete implementation of the sensor node 10
is used for road object tracking: in this case the sensor element 12 is a magnetoresistive component, which measures
the disturbance on the earth magnetic field induced by the objects. Alternatively, a magnetic rod or loop antenna may
be used to detect the occupancy by an object..
[0032] Figure 6 shows a possible implementation of the hardware involved for the sensor node 10 of Figure 5. The
sensor element 12 is coupled via an A/D converter 13 to a microcontroller 14 that has access to a memory 15, and that
further controls a radio transmitter 16 coupled to an antenna 17.
[0033] Figure 7 schematically shows a method performed by a sensor node to generate a message indicative for
occupancy status of a detection area of the sensor node.
[0034] Starting (Step S1: initialization) from an off-state of the sensor node, input from the A/D converter is received
(Step S2). In a next step S3, offset is removed from the sensed value.
[0035] In step S4 it is determined whether the occupancy state of the detection area as reported by the last message
transmitted by the sensor node was ON (object was alpresent in the detection range) or OFF (no object present in the
detection range. This occupancy state is internally stored in the sensor node.
[0036] In the first case, program flow continues with step S5. In the second case processing flow continues with step
S9. In step S5 it is determined whether a signal value v obtained from the A/D converter, and indicative for an occupied
status of the detection area is below a first predetermined value TL. If this is not the case program flow continues with
step S2. If however the value is lower than said first predetermined value then program flow continues with step S6. In
step S6 it is verified whether the signal value v remains below the first predetermined value TL for a first predetermined
time period. During step S6 the retrieval of input from the A/D convertor is continued. If the signal value v returns to a
value higher then said predetermined value TL before the end of said predetermined time-period then processing flow
continues with step S2. Otherwise the value for the occupancy state is internally saved as unoccupied in step S7, and
a message signaling this is transmitted in step S8.
[0037] In step S9 it is determined whether the signal value v obtained from the A/D converter, and indicative for an
occupied status of the detection area is above a second predetermined value TH. The second predetermined value TH
is higher than the first predetermined value TL. If this is not the case program flow continues with step S2. If however
the value is higher than said second predetermined value TH then program flow continues with step S10. In step S 10
it is verified whether the signal value v remains above the second predetermined value TH for a second predetermined
time period, which may be equal to the first predetermined time period. During step S10 the retrieval of input from the
A/D convertor is continued. If the signal value v returns to a value lower then said predetermined value TH before the
end of said predetermined time-period then processing flow continues with step S2. Otherwise the value for the occupancy
state is internally saved as occupied in step S11, and a message signaling this is transmitted in step S 12.
[0038] Figure 8 illustrates the signal flow in a message interpreter MI. As shown in more detail in Figure 8, a radio
receiver 20 receives the binary "object present" signals D (optionally with timestamp) from the sensor nodes 10 via the
radio link and runs a model based state estimator algorithm to calculate the motion states of the objects individually (i.e.
each real world object is represented in the message interpreter). The sensor density may be chosen dependent on the
required accuracy of the estimation. If a very accurate object tracking is desired multiple sensors per object area may
be present.
[0039] The message interpreter MI has an object database facility 32, 34 that comprises state information of objects
present at the object infrastructure.
[0040] The message interpreter MI further has a sensor map 45describing the spatial location of the sensor nodes
10. Alternatively, the sensor nodes may transmit their location, or their position could even be derived by a localization
method for wireless sensor networks.
[0041] The message interpreter MI further has an association facility 40 for associating the messages D provided by
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the sensor nodes 10 with the state information present in the object data base facility 32, 34. The association facility 40
may associate the messages received with state information for example with one of the methods Gating, Nearest
Neighbor (NN), (Joint) Probabilistic Data Association ((J)DPA), Multiple Hypothesis Tracker (MHT) and the MCMCDA.
[0042] The message interpreter further has a state updating facility 50 for updating the state information on the basis
of the messages D associated therewith by the association facility 40. Once the messages D are associated with a
particular object the state of that object in a local object data base is updated by the state updating facility 50.
[0043] The association facility 40 and the state updating facility 50 together form a database updating facility DBU.
[0044] In the embodiment shown a global map builder 65 may exchange this updated information with global map
builders of neighboring message interpreters via network interface 60 (wired or wireless) and to receive close to border
detections. Other uses are also possible (e.g. to calculate system level features like object density and average velocity,
but these are independent from the motion state estimation). , to exchange the motion state of crossing objects.
[0045] A message interpreter MI, shown in Figure 9, consists of a radio receiver 20, coupled to antenna 22, a processing
unit 24 (with memory 28) and a network interface 65, as well as a real-time clock 26. In other embodiments a real-time
clock may be part of the sensor node, and the sensor node may embed a time-stamp indicative for time at which an
event was detected in the message. However, generally a message interpreter will have a more reliable clock, as it can
be more reliable synchronized with a reference clock. The network interface 65 couples the message interpreter MI via
the communication channel 60 to other message interpreters.
[0046] In the embodiment shown the microcontroller 24 of Figure 9 processes the received messages D. The memory
28 stores the local and global object map and the sensor map as well as the software for carrying out the data association
and state estimation tasks. In an alternative embodiment separate memories may be present for storing each of these
maps and for storing the software. Likewise dedicated hardware may be present to perform one or more of these tasks.
[0047] There is no communication or any other interaction between the objects tracked. The result of the processing
(i.e. the estimation of the motion states of all sensed objects) is present in the memory of the message interpreters in
a distributed way.
Message interpreters may run additional (cooperative) algorithms to deduct higher level motion characteristics and/or
estimate additional object characteristics (e.g. geometry).
[0048] For applications in relative small area, e.g. a parking place, the object tracking system may comprise only a
single message interpreter MI. In that case the global map builder is superfluous, and local object map is identical to
the global object map.
[0049] In the embodiment shown in Figure 3, each message interpreter MI for a respective module comprises hardware
as described with reference to Figure 8 and 9.
[0050] Operation of the message interpreter is further illustrated with respect to Figures 10-13
[0051] Figure 10 schematically shows a part of an object infrastructure having sections Rj-1, Rj, Rj+1. By way of example
it is presumed that an object moves in a direction indicated by arrow X from Rj-1, via Rj, to Rj+1.
[0052] Figure 11 shows an overview of a method for detecting the object performed by the message interpreter for
section Rj, using the messages obtained from the sensor nodes.
[0053] In step S20 the method waits for a message D from a sensor node. At the moment that a message D is received,
program flow continues with step S21, where the time t associated with the message is registered. The registered time
t associated with the message may be a time-stamp embedded in the message or a time read from an internal clock of
the message interpreter.
[0054] In step S22, it is verified whether the detection is made by a sensor node in a location of section Rj that neighbors
one of the neighboring sections Rj-1 or Rj+1. If that is the case, then in step S23 the event is communicated via the
communication network interface to the message interpreter for that neighboring section. In step S24 it is determined
which object O in the object data base facility is responsible for the detected event. An embodiment of a method used
to carry out step S24 is described in more detail in Figure 12. After the responsible object O is identified in Step 25, i.e.
an association is made with existing object state information, it is determined in Step 26 whether it is present in the
section Rj. If that is the case, control flow continues with Step S27. Otherwise control flow returns to step S20, where
the state of obj ect O is estimated. A procedure for estimating the state is described in more detail with reference to
Figure 13. In step S28 it is determined whether the state information implies that the object O has a position in a
neighboring section Rj-1 or Rj+1. In that case the updated state information is transmitted in step S29 to the message
interpreter for the neighboring section and control flow returns to step S20. Otherwise the control flow returns immediately
to Step S20.
[0055] A method to associate a message D at time t, with an object O is now described in more detail with reference
to Figure 12.
[0056] In a first step S40, an object index i is initialized (e.g. i=1). In a next step S41, the current state known for the
object with that index i is retrieved from the object database facility. In the next step S42 a probability is determined that
the object O caused the detection reported by the message D at time t. The object index i is incremented in step S43
and if it is determined in step S44 that i is less than the number of objects, the steps S41 to S43 are repeated. Otherwise
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in step S45 it is determined which object caused the detection reported by the message D at time t with the highest
probability. In step S46 the index of that object is returned as the result if the method.
[0057] A method to estimate (update the present estimation of) the state of an object is now described in more detail
with reference to Figure 13.
[0058] In step S60 the messages D1,...,Dn associated with object O are selected.
[0059] In step S61 a probability density function is constructed on the basis of the associated messages D1,...,Dn.
[0060] In step S62 the current state S0 and time to for object O is retrieved from the object database.
[0061] In step S63 it is determined whether the time for which the state S of the object O has to be determined is
greater than the time to associated with the current state S0.
[0062] If that is the case, the state S (determined by the estimation method) is the state update of S0 to t, performed
in step S65. If that is not the case, then the message D relates to a detection preceding the detection that resulted in
the earlier estimation for state S0. In that case the state S0 is updated using the detection D by the state estimation
method in step S64.
[0063] In the claims the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or
"an" does not exclude a plurality. A single component or other unit may fulfill the functions of several items recited in
the claims. The mere fact that certain measures are recited in mutually different claims does not indicate that a combination
of these measures cannot be used to advantage. Any reference signs in the claims should not be construed as limiting
the scope. Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For
example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present),
A is false (or not present) and B is true (or present), and both A and B are true (or present).
[0064] More details relevant for the present invention are described in the following
Annexes:

A1: Estimation and association for multiple target tracking based on spatially, distributed detections

A2: On Event Based State Estimation

A1: Estimation and association for multiple target tracking based on spatially, distributed detections

[0065] Summary. In this paper we consider the multiple object tracking problem with event-based observations. For
that we predefine a number detection points which are spatially distributed along the road. Whenever the edge of an
object crosses one of the detection points, the position of that detection point together with the time of the event are
received by our tracking algorithm. We assume that objects can cover multiple detection points and propose a method
to estimate the object’s position and orientation from these detections using the shape of the object. Beside that another
method is designed which associates newly received detections with a known object. The objects are tracked with an
event-based state-estimator that uses the estimated position and orientation, although its design is out of the scope of
this paper. Finally our tracking algorithm is critically assessed in a simulation of a parking lot.

1 Introduction

[0066] In multiple target tracking [1-3] one aims to track all the objects/targets, which are moving in a certain area.
Three basic problems arise from tracking objects. The first one is how to measure the object’s position. The second one
is to associate a certain measurement with its correct object and the third one is a state-estimator to keep track of all
the objects. This paper considers the first 2 issues when objects are not measured but detected.
[0067] Consider a system in which objects are detected when they cross a predefined ’detection’ point. These detectors
are triggered by the event that the object’s edge crosses its position. However, they cannot distinguish between the
objects. This paper describes a method in which a new detection is associated with the object that most probable
generated it. Also, a method is described which estimates the position and orientation of the object given the observations
in position and time due to the detections. Other examples in which sensor-data is generated due to an event can be
found in [4, 5].
[0068] This paper is organized as follows. Section 2 defines background knowledge such as the notation of (object)
variables and functions that are used throughout this paper. After that the problem is formulated in section 3 together
with existing methods. Section 4 describes the approach which is taken in the design. A more detailed description of
the estimation and associated is presented in Section 5 and 6 respectively. Finally both methods are tested in a small
application example presented in Section 6 and conclusions are drawn in section 7. But let’s start with the background
information.
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2 Background

[0069] In order to be clear about notations and variables this section describes those that can be found throughout
this paper.

2.1 Variables

[0070] defines the set of real numbers whereas the set defines the non-negative real numbers. defines

the set spanned by the vectors ex and ey, the point p := x·ex+y·ey is shortly denoted as p = (x,y)T. The set Z defines

the integer values and defines the set of non-negative integer numbers. The variable 0 is used either as null, the
null-vector or the null-matrix. Its size will become clear from the context.

[0071] Vector x(t) ∈ is defined as a vector depending on time t and is sampled using some sampling method. The

time t at sampling instant k ∈ is defined as tk ∈ . The variables τk ∈ , xk ∈ and x0:k ∈ are defined as:

[0072] The matrix A(t2 - t1) ∈ depends on the difference between two time instants t2 > t1 and is shortly denotes

as At2-t1

2.2 Functions

[0073] The transpose, inverse and determinant of a matrix A ∈  are denoted as AT, A-1 and |A| respectively.

[0074] Let us define the probability of the random vector x ∈ as the scalar Pr(x) ∈ {0,1} and the conditional

probability of x given the vector u ∈ as the scalar Pr(x|u) ∈ {0,1}. The probability density function (PDF), as defined

in [6] section B2, of the vector x ∈ is denoted as p(x) and the conditional PDF of x given u ∈ is denoted as p
(x|u). The expectation and covariance of x are denoted as E[x] and cov(x) respectively. The conditional expectation of
x given a vector u is denoted as E[x|u|. The definitions of E[x], E[x|u] and cov(x) can be found in [6] sections B4 and B7.

[0075] The Gaussian function, shortly noted as Gaussian, depending on vectors x ∈ and u ∈ and on matrix

P ∈  is defined as:

[0076] If p(x) = G(x,u,P), then by definition it holds that E[x] = u and cov(x) = P.

[0077] Assume we have the set ⊂ and the vectors x ∈ and y ∈ . Then the function ix - yi ∈ is

defined as the distance between vectors x and y. The function |(x - )| ∈ is defined as the shortest distance from

vector x to set :
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2.3 Object variables

[0078] Assume there exist an object which is moving in the 3D world space. This object is observed with, for example,

a camera or sensors in the road. Meaning that the object is projected to a 2D space, i.e, If we assume that the
shape of the projected object is constant and known, then we can draw a smallest, rectangular box around the object.

[0079] For the box we define a position-vector o = (x, y)T ∈ , equal to the center of the box, and an orientation-

vector θ ∈ . In the case of o = 0 and θ = 0 the corners of this box, as shown in Figure 14, are defined in the set :

[0080] Notice that for an object having a certain o and θ the new corner-positions of the object’s box are calculated

with . For that a rotation matrix T ∈ is used as defined in (5). An example of the object’s box for a certain o
and θ is graphically depicted in Figure 14.

[0081] Beside the positions o and θ each object also has a certain shape or geometry which covers a certain set of

positions in , i.e. the grey area of Figure 14. This closed set is denoted with S ⊂ and is defined as the union

of the open set of the object’s body SB ⊂ and the closed set of the object’s edge SE ⊂ , i.e. S := SB ∪ SE. The

set S is approximated by a set of sampled position-vectors Λ = [λ1,λ2, ···, λK], with λi ∈ . To define the vectors λi

we equidistant sample the rectangular box defined by using a grid with a distance r. Each λi is a grid point within

the set S as graphically depicted in Figure 15.
[0082] The aim is to estimate position, speed and rotation of the object in the case that its acceleration and rotational

speed are unknown. Therefore the object’s state-vector s(t) ∈  and process-noise w(t) ∈  are defined as:

[0083] Next the problem is formulated using this background knowledge.

3 Problem formulation

[0084] A total of E objects are observed within the set . The vectors oi = (xi,yi)T and θi are the ith object’s position-
and rotation-vector respectively. Ti represents the ith object’s rotation-matrix dependent on θi. The dynamical process
of object i with state-vector si, process-noise wi and measurement-vector mi is defined with the following state-space
model:
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with

The definition of the elements of state-vector si(t), also shown in Figure 16, are:

[0085] The objects are observed in by a camera or a network of sensors. For that M ’detection’ points are marked

within and collected in the set D ⊂ . The position of a detection point is denoted as d ∈ D. The kth tection of

the system generates the observation vector if the edge of the ith object covers one of the detection points

dk ∈ D at time tk:

[0086] However, the system does not know which object was detected for it can be any object. As a result the system

will not generate but a general observation vector zk ∈ { , }, which is yet to be associated with an object.

Therefore, due to the kth detection, the observation vector zk is generated whenever one of the E object covers a detection

point dk ∈ D at time tk:

[0087] From equations (9) and (10) we conclude that of (9) is the result after the received observation vector zk

(10) is associated with object i. Notice that both definitions of zk and assume that the object’s edge is detected exactly

at a detection point d. In reality the detection will be affected by noise. The object therefore has some probability to be

detected at a position υ ∈ which is close to d. This is modeled by defining that the object’s position at the instant

of the detection, i.e. υ, is a random vector with mean d and covariance ε ∈ :

[0088] Figure 16 shows an example of object i which is detected by multiple detection points. The covariance ε of
each detection point is also indicated.
[0089] The sampling method of the observation vectors z0:k s a form of event sampling [4, 5,7]. For a new observation

vector is sampled whenever an event, i.e. object detection, takes place. With these event samples all N objects are to
be tracked. To accomplish that three methods are needed. The first one is the association of the new observation-vector

zk to an object i and therefore denote it with Suppose that all associated observation-vectors are collected in
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the set Then the second method is to estimate from the observation-set This is used in the third

method, which is a state-estimator.
[0090] Present association methods are: Gating and Nearest Neighbor (NN) [2], (Joint) Probabilistic Data Association
((J)DPA) [2,8], Multiple Hypothesis Tracker (MHT) [9] and the MCMCDA [10]. Although these can be transformed for

associating the event samples z0:k, this paper will show that the estimation of results in a probability that zk is in fact

i.e. Therefore the problem which is covered in this paper is the estimation of from the set

which also results in the probability For that we assume that the shape of the object is known and that it
is samples as shown in Section 2.3. The state-estimation is not covered in this paper, although it is used in the application
example. Before going into the mathematical details of the estimation we will first describe the approach that is taken.

4 Approach measurement estimation

[0091] In the problem formulation we stated that is defined as the set with all observation-vectors from z0:k that

were associated with object i. We will first redefine this set before continuing with the approach for estimating

[0092] The set is defined as the set of all observation-vectors zn which were associated with object i, from

which their detection point is still covered by the object. We will first show how this is done. At time step k we have the

observation-set and the observation zk was associated to object i, i.e. Now if the object’s edge is detected at

dk for the first time, then is added to the set However, if the object’s edge is detected at dk for the second

time, then is not added to the set and the vector for which holds that dn = dk. is removed from This

because in the second case, it means that object i drove off the detection point positioned at dn = dk. Therefore is

defined as:

[0093] With this definition of the approach for estimating i.e. is given. For clarity we assume that

the object’s shape is rectangular and that all its detection points are denoted with dn, with n ∈ N ⊂ [0,k].

1. The first step is to position the object on each detection point dn and mirror its set S into the set On, as shown in

Figure 17 for a single detection. This way we transform the points that are covered by the object, into possible

vectors of the object’s position  given that it is detected at the detection point dn.

2. The second step, graphically depicted in Figure 18, is to turn all sets On simultaneously around their detection

point dn. This way, each possible orientation of the object results in a corresponding possible object’s position

For must be inside all the sets On, ∀n ∈ N, and therefore thus inside the intersection of all sets On, ∀n ∈
N, which is denoted as ON.

[0094] Therefore if we apply these two steps for a number of orientations then at each orientation we have a set

ON which has to contain the object’s position From all these orientations we can calculate as shown in

the next section.

5 Measurement estimation

[0095] Estimation of the measurement-vector given the observation set results in calculating
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Because both and always belong to the same object and at sample instant k throughout this section we will

remove the sub- and superscripts i and k in the rest of this section. Therefore we have; and The set
Z consists of the observation vectors zn, for all n ∈ N ⊂ [0,k], that were associated to the same object.

[0096] Although the measurement vector is defined as m = (o, θ)T, with o ∈ and θ ∈ , the detection point at

time-step n are defined as dn ∈ . Meaning that the objects orientation is not directly. However, because every

observation vector zn ∈ Z detects the object for one and the same θ, the PDF p(m|Z) is approximated by sampling in θ, i.e.:

with

[0097] The main aspect of equation (13a) is to determine p(o|z, θ). To do that we define the set On(θ) ∈ to be

equal to all possible object positions o, given that the object is detected at position dn ∈ zn(∈ Z) and that the object’s

rotation is equal to θ. The determination of On(θ) ∈ is presented in the n the next section. Therefore, if one object

is detected at multiple detection points dn, ∀n ∈ N, then the set of all possible object positions o given a certain θ equals

On(θ):

[0098] Equation (14) is graphically explained in Figure 19 for two different values of θ and N = {1,2}.
[0099] Both p(o|Z, θ) and αl are related to the set ON(θ) due to the fact that it ON(thet a) defines the set of possible
object positions o for a given θ. To calculate p(o|Z, θ) and αl we define the functions f(o|Z, θ) and g(o|Z, θ):

[0100] Therefore the PDF p(o|Z, θ) and probability αl are:

[0101] With (16) both p(m|Z) is calculated according to (13). The rest of this section is divided into two parts. The first
part derives the probability function based on a single detection, i.e. f(o|zn, θ). While the second part derives the probability
function based on a multiple detections, i.e. g(o|Z, θ).
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5.1 Single event detection

[0102] In order to derive f(o|zn, θ) we will use the set Λ, defined in 2.3, which contains the sampled positions λi that
are covered by the object if o = 0 and θ = 0. Notice that if the object covers the origin, i.e. (x,y)T = 0, then the possible
values of the object position o are given by the set -Λ. This is graphically depicted in Figure 20 (left). From that we can
conclude that if the object covers the detection point dn, given a certain orientation θ and rotation-matrix T, the sampled
set Λ can be transformed into a sampled set of On, denoted with Ôn:

[0103] Figure 20 (right) graphically depicts the determination of Ôn from the set Λ for a given θ and detection point dn.
[0104] The function f(o|zn, θ), as defined in (15), is approximated by placing a Gaussian function at each sampled
position ôi ∈ Ôn with a certain covariance dependent on the grid-size r:

with,

[0105] The approximation of (18) assumes that the object is detected exactly at dn. In Section 3 we stated that the

detection can be a bit of a detection point. The PDF that the object is detected at position υ ∈ given the detection
point dn is defined in (11). Inserting this uncertainty into (18) results in the final f(o|zn, θ):

[0106] Equation (19) is solved with the following Proposition and the fact that G(x,a + b,C) = G(x-b,a,C):

Proposition 1. Let there exist two Gaussian functions of the random vectors x ∈ and m ∈ and the matrix Γ
∈ ; G(x, u, U) and G(m,Γx,M). Then they have the following property:
[0107]

Proof. The proof can be found in Section 9.
[0108] Applying Proposition 1 to (19) results in:
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[0109] From f(o|zn, θ) based on a single detection, the next step to multiple detections, i.e. g(o|Z, θ), is taken.

5.2 Multiple event detections

[0110] The aim of this section is to calculate the function g(o|Z, θ) by substituting equation (21) in the definition of g
(o|Z, θ) as shown in (15):

[0111] If N contains m elements, then calculating equation (22) would result in Km products of m Gaussian functions
and sum them afterwards. This would take too much processing power if m is large. That is why equation (22) is calculated
differently.
[0112] Instead of using all detection points dn we will use a subset of them. The derivation of this subset is graphically

depicted in Figure 21 for N = {1,2}. For that consider the rectangular set ∈ of Section 2.3 defined by its corners

[c1,c2,c3,c4]. For each detection point dn we define the set (θ) ⊂ with corner-points [cn1(θ),cn2(θ),cn3(θ),cn4(θ)]

defined as:

[0113] Let us define the rectangular set  (θ) ⊂  as the intersection of the sets  (θ), ∀n ∈ N, i.e.:

[0114] Meaning that each detection point dn defines a rectangular set denoted with (θ) dependent on rotation θ.
The intersection of all these rectangular sets is defined with the set  (θ).
[0115] In the beginning of this section we defined two different sets shown in Figure 17 and 18. The first set, On(θ),

shown in Figure 17 defines all possible objet positions o based on a single detection at dn. The second set, i.e. ON(θ),

shown in Figure 18, defines all possible object positions o based on all detections at dn, ∀n ∈ N. Notice that as a result

On(θ) ⊂ (θ) and ON(θ) ⊂ CN(θ). Meaning that only within the set (θ) all the functions f(o|zn, θ) have an overlapping

area in which they are 1. Outside (θ) there is always at least one f(o|zn, θ) which is 0 and therefore makes g(o|Z,

θ) outside CN(θ) equal to 0. Therefore g(o|Z, θ) of (22) can be approximated by taking only those Gaussians of the

functions f(o|zn, θ) into account of which their mean, i.e. is close or in the set (θ). We define that close to

(θ) means a distance of at most γ+ε, which defined R in (21). The function g(o|Z, θ) of (22) is therefore approximated as:

with

We can even decrease the number of Gaussians of (25) even further. This because if for a certain detection point dn it

holds (θ) ⊂ On(θ), it means that when we remove the detection point dn it will not affect the set (θ). Therefore
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equation (25) is reduced to:

with

[0116] The calculation of (26) is done by applying the following two propositions. The first one, i.e. Proposition 2,
shows how to rewrite a product of a summation of Gaussians into a summation of a product of Gaussians. The second
one, i.e. Proposition 3, proofs that a product of Gaussians results in a single Gaussian.

Proposition 2. The product of a summation of Gaussians can be written into a summation of a product of Gaussian:

[0117]

The proof is given by writing out the left hand side of (27a) and restructuring it.

Proposition 3. The product of Gaussians is again a Gaussian:

[0118]

The proof is given in Section 10.
[0119] Now applying Propositions 2 and 3 on (26) results in a solution of g(o|Z, θ) as a summation of Gaussians of
the form:

Equation (29) is approximated as a single Gaussian function:
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[0120] With the result of (30) we can approximate g(o|Z, θ). In order to calculate the PDF p(m|Z), equation (30) is
substituted into equation (16) together with g(o|zn, θ) of (21) to calculate p(o|Z, θ) and αl. Substituted these results into
(13) gives:

[0121] As was mentioned in the problem formulation, the PDF p(m|Z) also gives us the probability that a new observation
vector is generated by an certain object i. This is discussed in the next section.

6 Detection association

[0122] The total probability that a new observation vector zk is generated by object i is equal to the total probability of

the measurement-vector given the observation set For this probability we can use which

is equal to equation (31). The definition of a PDF is that its total probability, i.e. its integral from -∞ to ∞, is equal to 1.

To make sure that of equation (31) has a total probability of 1, it is divided by its true probability

In order to be able to compare these different measurement-vector per object, we normalize each

probability with the surface covered by the object. As a result,  is equal to:

[0123] The variables γi and Ki are equal to γ and K respectively, which define the approximation of the function

as shown in (18). With the probability of (32) one can design a method which associates an observation-

vector due to a new detection, to its most probable object i. Although the estimation method requires a certain amount
of processing power, one can reduce this by reducing the number of samples in the set Λ. Meaning that association
and estimation can be done with different sizes of Λ. Moreover, if the objects have a rectangular shape, then with some
tricks one can reduce the amount of processing power to a level at which both association as well as estimation can
run real-time.
[0124] Now that both the measurement estimation as well as the detection association are designed, both are tested
in a multiple object tracking application.

7 Application example

[0125] As an application example we take a parking lot of 50 by 50 meters with a network of wireless sensors distributed
randomly along the road’s surface. Each sensor can detect a crossing vehicle. A total of 2500 sensors was used resulting
in a density of one sensor per square meter. The vehicles are all assumed rectangular shaped objects with a length of
5 meters and a width of 2 meters. A total of 4 vehicles manoeuvre within the parking lot and are tracked using a data-
associator followed with an event state-estimator.
[0126] The simulation case is made such that it contains two interesting situation. One in which two vehicles cross
each other in parallel and one where two vehicles cross perpendicular. For comparison the objects are tracked using
two different association methods. The first one is a combination of Gating and detection association of 6. The second
one is a combination of Gating and Nearest Neighbor.
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[0127] The result of the detection associator (DA) for both crossings is shown in Figure 22 while the result of the
Nearest Neighbor (NN) associator is shown in Figure 23. In both results the real object is plotted in a thick, solid line
while its estimated one is plotted in a thin, solid line. The associated detections of each object are given with a symbol
which is different for each object; ’h’ if associated with vehicle 1, ’s’ if associated with vehicle 2, ’∇’ if associated with
vehicle 3 and ’*’ if associated with vehicle 4. Figure 22 shows with the DA all detections were correctly associated to
the one object, while If NN is used as an association method,we see that a lot of incorrect associated detections.
Therefore we can concluded that using the detection association of 6 results in less estimation-error compared to NN.
[0128] A second simulation is done to compare the percentage of incorrect associated detections. Again for the both
DA as well as NN only now 4 different amount of detection points were used: 3000, 2500, 2000 and 1500. This table
shows that the detection association has a better performance compared to Nearest Neighbor.

8 Conclusions

[0129] This paper presents a method for estimating the position- and rotation-vector of objects from spatially, distributed
detections of that object. Each detection is generated at the event that the edge of an object crosses a detection point.
From the estimation method a detection associator is also designed. This association method calculates the probability
that a new detection was generated by an object i.
[0130] An example of a parking lot shows that the detection association method has no incorrect associated detections
in the case that two vehicles cross each other both in parallel as well as orthogonal. If the association method of Nearest
Neighbor was used, a large amount of incorrect associated detections were noticed, resulting in a higher state-estimation
error.
[0131] The data-assimilation can be further improved with two adjustments. The first one is replacing the set S with
SE only at the time-instants that the observation vector is received. The second improvement is to take the detection
points that have not detected anything also in account.
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9 Proof of Proposition 1

[0133] Proof. Defined are two Gaussian functions with the vectors x ∈ , u ∈ , m ∈ and matrices U ∈
, M ∈ , Γ ∈ : G(x,u,U) and G(m,Γx,M). Suppose we define the following PDFs and relation of m with

some c ∈ :

Then from probability theory [6] p(m) is equal to:

[0134] Applying theorem 3.2.1 of [11] on (33b) we have that p(Γx) = G(Γx,Γu,ΓUΓT). Now if we have the random

vectors a ∈ and b ∈ with p(a) = G(a,u1,U1) and p(b) = G(b,u2,U2) then they have the property p(a + b) = G(a +

b,u1 + u2, U1 + U2) as proven in [12]. Applying this on (33a) results in:

10 Proof of Proposition 3

[0135] Proof. A product of Gaussians can be written as:

[0136] From Proposition 1 and the Kalman filter in Information form [13], a product of 2 Gaussians equals:

with
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[0137] Applying (37) on (36b), together with the fact that G(x,y,Z) = G(y,x,Z) we have:

[0138] Equation (38) is equal to (28) for:

A2: On Event Based State Estimation

[0139] Summary. To reduce the amount of data transfer in networked control systems and wireless sensor networks,
measurements are usually taken only when an event occurs, rather that at each synchronous sampling instant. However,
this complicates estimation and control problems considerably. The goal of this paper is to develop a state estimation
algorithm that can successfully cope with event based measurements. Firstly, we propose a general methodology for
defining event based sampling. Secondly, we develop a state estimator with a hybrid update, i.e, when an event occurs
the estimated state is updated using measurements; otherwise the update is based on the knowledge that the monitored
variable is within a bounded set used to define the event. A sum of Gaussians approach is employed to obtain a
computationally tractable algorithm.

1 Introduction

[0140] Different methods for state estimation have been introduced during the last decades. Each method is specialized
in the type of process, the type of noise or the type of system architecture. In this paper we focus on the design of a
state estimator that can efficiently cope with event based sampling. By even sampling we mean that measurements are
generated only when an a priori defined event occurs in the data monitored by sensors. Such an effective estimator is
very much needed in both networked control systems and wireless sensor networks (WSNs) [1]. Especially in WSNs,
where the limiting resource is energy, data transfer and processing power must be minimized. The existing estimators
that could be used in this framework are discussed in Section 4. For related research on event based control, the
interested reader is referred to the recent works [2], [3].
[0141] The contribution of this paper is twofold. Firstly, we introduce a general mathematical description of event
based sampling. We assume that the estimator does not know when new measurements are available, which usually
results in unbounded eigenvalues of its error-covariance matrix. To obtain an estimator with a bounded error-covariance
matrix, we develop an estimation algorithm with hybrid update, which is the second main contribution. The developed
event based estimator is updated both when an event occurs, with received measurements, as well as at sampling
instants synchronous in time. Then the update is based on the knowledge that the monitored variable is within a bounded
set used to define the event. In order to meet the requirements of a low processing power, the proposed state estimator
is based on the Gaussian sum filter [4, 5], which is known for its computational tractability.

2 Background notions and notation

[0142] R defines the set of real numbers whereas the set defines the non-negative real numbers. The set Z

defines the integer numbers and defines the set of non-negative integer numbers. The notation 0 is used to denote
either the null-vector or the null-matrix. Its size will become clear from the context.
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[0143] A vector x(t) ∈ is defined to depend on time t ∈ and is sampled using some sampling method. Two
different sampling methods are discussed. The first one is time sampling in which samples are generated whenever
time t equals some predefined value. This is either synchronous in time or asynchronous. In the synchronous case the

time between two samples is constant and defined as ts ∈ . If the time t at sampling instant ka ∈ is defined as tka,

with t0a := 0, we define:

[0144] The second sampling method is event sampling, in which samples are taken when an event occurred. If t at
event instant ke ∈ Z+ is defined as tke, with t0e := 0, we define:

[0145] A transition-matrix At2-t1 ∈ is defined to relate the vector u(t1) ∈ to a vector x(t2) ∈ as follows:

[0146] The transpose, inverse and determinant of a matrix A ∈ are denoted as AT, A-1 and |A| respectively.
The ith and maximum eigenvalue of a square matrix A are denoted as λi(A) and λmax(A) respectively. Given that A ∈

and B ∈ are positive definite, denoted with A s 0 and B s 0, then A s B denotes A - B s 0. A s 0 denotes
A is positive semi-definite.

[0147] The probability density function (PDF), as defined in [6] section B2, of the vector x ∈ is denoted with p(x)

and the conditional PDF of x given u ∈ is denoted as p(x|u). The expectation and covariance of x are denoted as
E[x] and cov(x) respectively. The conditional expectation of x given u is denoted as E[xlu]. The definitions of E[x], E[x|u]
and cov(x) can be found in [6] sections B4 and B7.

[0148] The Gaussian function (shortly noted as Gaussian) of vectors x ∈ and u ∈ and matrix P ∈ is

defined as G(x,u,P) : 3 3 → , i.e.:

[0149] If p(x) = G(x,u,P), then by definition it holds that E[x] = u and cov(x) = P.

[0150] The element-wise Dirac-function of vector x ∈ , denoted as δ(x) : → {0,1}, satisfies:

[0151] For a vector x ∈ and a bounded Borel set [7] Y ⊂ , the set PDF is defined as AY(x) : → {0, v} with

v ∈  defined as the Lebesque measure [8] of the set Y, i.e.:
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3 Event sampling

[0152] Many different methods for sampling a vector y(t) ∈ can be found in literature. The one mostly used is time

sampling in which the sampling instant is defined at time tka = tka-1 + τka-1 for some τka-1 ∈ . Recall that if y(t)

is sampled at ta it is denoted as yka. This method is formalized by defining the observation vector zka-1 =

at sampling instant ka-1. Let us define the set Hka(zka-1) ⊂ containing all the values that t can

take between tka-1 and tka-1 + τka-1, i.e.:

[0153] Then time sampling defines that the next sampling instant, i.e. ka, takes place whenever present time t exceeds
the set Hka (zka-1)· Therefore Zka is defined as:

[0154] In the case of synchronous time sampling τka = ts, ∀ka ∈ , which is graphically depicted in Figure 24. Notice

that with time sampling, the present time t specifies when samples of y(t) are taken, but time t itself is independent of y

(t). As a result y(t) in between the two samples can have any value within . Recently, asynchronous sampling
methods have emerged, such as, for example "Send-on-Delta" [9,10] and "Integral sampling" [11]. Opposed to time
sampling, these sampling methods are not controlled by time t, but by y(t) itself.
[0155] Next, we present a general definition of event based sampling, which recovers the above mentioned asynchro-
nous methods, for a particular choice of ingredients. Let us define the observation vector at sampling instant ke -1 as

With that we define the following bounded Borel set in time-measurement-

space, i.e. Hke(Zke-1,t) ⊂ , which depends on both Zke-1 and t. In line with time sampling the next event instant,

i.e. ke, takes place whenever y(t) leaves the set Hke(Zke-1,t) as shown in Figure 25 for q = 2. Therefore zke is defined as:

The exact description of the set Hke(Zke-1,t) depends on the actual sampling method. As an example Hke (zke-1, t) is
derived for the method "Send-on-Delta", with y(t) ∈ . In this case the event instant ke occurs whenever |y(t) - yke-1|
exceeds a predefined level ∆, see Figure 26, which results in Hke(zke-1,t) = {y ∈  | - ∆ <y - yke-1 < ∆}.
[0156] In event sampling, a well designed Hke(zke-1,t) should contain the set of all possible values that y(t) can take
in between the event instants ke - 1 and Ke. Meaning that if tke-1 ≤ t < tke, then y(t) ∈ Hke(zke-1,t). A sufficient condition
is that yke-1 ∈ Hke(zke-1,t), which for "Send-on-Delta" results in y(t) ∈ [yke-1-∆1ye-1 + ∆] for all tke-1 ≤ t < tke.

4 Problem formulation: State estimation based on event sampling

[0157] Assume a perturbed, dynamical system with state-vector x(t) ∈ , process-noise w(t) ∈ , measurement-

vector y(t) ∈ and measurement-noise v(t) ∈ . This process is described by a state-space model with Aτ ∈ ,

Bτ ∈  and C ∈ . An event sampling method is used to sample y(t). The model of this process becomes:
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with

[0158] The state vector x(t) of this system is to be estimated from the observation vectors z0e:ke. Notice that the
estimated states are usually required at all synchronous time samples ka, with ts = tka - tka-1, e.g., as input to a controller
that runs synchronously in time. As such our goal is to construct an event-based state-estimator (EBSE) that provides
an estimate of x(t) not only at the event instants tke but also at the sampling instants tka. Therefore, we define a new set
of sampling instants tn as the combination of sampling instants due to event sampling, i.e. ke, and time sampling, i.e. ka:

and

[0159] The estimator calculates the PDF of the state-vector xn given all the observations until tn. This results in a
hybrid state-estimator, for at time tn an event can either occur or not, which further implies that measurement data is
received or not, respectively. In both cases the estimated state must be updated (not predicted) with all information until
tn. Therefore, depending on tn a different PDF must be calculated, i.e.:

The important parameters for the performance of any state-estimator are the expectation and error-covariance matrix
of its calculated PDF. Therefore, from (9) we define:

The PDFs of (9) can be described as the Gaussian G(xn,xn|n,Pn|n). The square root of the eigenvalues of Pn|n, i.e.

define the shape of this Gaussian function. Together with xn|n they indicate the bound which surrounds 63%

of the possible values for xn. This is graphically depicted in Figure 27 for the 1D case and Figure 29 for a 2D case, in a

top view. The smaller the eigenvalues λi(Pn|n) are, the smaller the estimation-error is.

[0160] As such, the problem of interest in this paper is to construct a state-estimator suitable for the general event
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sampling method introduced in Section 3 and which is computationally tractable. Furthermore, it is desirable to guarantee
that Pn|n has bounded eigenvalues for all n.
[0161] Existing state estimators can be divided into two categories. The first one contains estimators based on time
sampling: the (a)synchronous Kalman filter [12, 13] (linear process, Gaussian PDF), the Particle niter [14] and the
Gaussian sum filter [4,5] (nonlinear process, non-Gaussian PDF). These estimators cannot be directly employed in
event based sampling as if no new observation vector zke is received, then tn - tke → ∞ and λi(Pn|ke-1) → ∞. The second
category contains estimators based on event sampling. In fact, to the best of our knowledge, only the method proposed
in [15] fits this category. However, this EBSE is only applicable in the case of "Send-on-Delta" event sampling and it
requires that any PDF is approximated as a single Gaussian function. Moreover, the asymptotic property of P n|n is not
investigated in [15].
[0162] In the next section we propose a novel event-based state-estimator, suitable for any event sampling method,
together with a preliminary result on asymptotic analysis.

5 An event-based state estimator

[0163] The EBSE estimates xn given the received observation vectors until time tn. Notice that due to the definition
of event sampling we can extract information of all the measurement vectors y0:n. For with ti ∈ {t0:n} and tje ∈ [t0e:ke] it
follows that:

[0164] Therefore, from the observation vectors z0e:ke and (11) the PDFs of the hybrid state-estimation of (9), with the

bounded, Borel set Yi ⊂ , results in:

[0165] For brevity (12a) is denoted as p(xn|y0:n ∈ Y0:n) and with Bayes-rule [16] yields:

[0166] TohaveanEBSEwith lowprocessingdemand,multivariateprobability theory [17] isused tomake(13) recursive:
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[0167] The calculation of p(xn|y0:n ∈ Y0:n) is done in three steps: 1. Assimilate p(yn ∈ Yn|xn) for both tn = tke and tn =
tka. 2. Calculate p(xn|y0:n ∈ Y0:n) as a summation of N Gaussians. 3. Approximate p(xn|y0:n ∈ Y0:n) as a single Gaussian
function. The reason for this last step is to design an algorithm in which p(xn|y0:n ∈ Y0:n) is described by a finite set of
Gaussians and therefore attain computational tractability. Notice that (13) gives a unified description of the hybrid state-
eslimator, which makes an asymptotic analysis of the EBSE possible, as it will be shown later in this section.

5.1 Step 1: measurement assimilation

[0168] This section gives a unified formula of the PDF p(yn ∈ Yn|xn) valid for both tn = tke and tn = tka. From multivariate
probability theory [17] and (7b) we have:

[0169] The PDF p(yn ∈ Yn) is modeled as a uniform distribution for all yn ∈ Yn. Therefore, depending on the type of
instant, i.e. event or not, we have:

[0170] Substitution of (16) into (15) gives that p(yn ∈ Yn|xn) = G(yke,Cxn,V) if tn = tke. However, if tn = tka then p(yn ∈
Yn|xn) equals ΛHke (yn), which is not necessarily Gaussian. Moreover, it depends on the set Hke and therefore on the
actual event sampling method that is employed. In order to have a unified expression of p(yn ∈ Yn|xn) for both types of
tn, independent of the event sampling method, ΛHke (yn) can be approximated as a summation of N Gaussians, i.e.

This is graphically depicted in Figure 29 for yn ∈ . The interested reader is referred to [4] for more details.

[0171] Substituting (17) into (16) yields the following p(yn E Yn|xn) if tn = tka:

Proposition 1. [12, 14] Let there exist two Gaussians of random vectors x ∈ and m ∈ , with Γ ∈ : G(m,
Γx,M) and G(x,u,U). Then they satisfy:
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Applying Proposition 1 ((19) to be precise) and G(x,y,Z) = G(y,x,Z) on (18) yields:

In conclusion we can state that the unified expression of the PDF p(yn ∈ Yn|xn), at both tn = tke and tn = tka, for any event
sampling method results in:

If tn = tke the variables of (22) are: N = 1, and the variables depend on ΛHke (yn)

and its approximation. As an example these variables are calculated for the method "Send-on-Delta" with y ∈ .
Example 1. In "Send-on-Delta", for certain N, the approximation of ΛHke (yn), as presented in (17), is obtained with i ∈
{1,2,...,N} and:

With the result of (22), p(xn|y0:n ∈ Y0:n) can also be expressed as a sum of N Gaussians.

5.2 Step 2: state estimation

[0172] First the PDF p(xn|y0:n-1 ∈ Y0:n-1) of (14b) is calculated. From the EBSE we have p(xn-1|y0:n-1 ∈ Y0:n-1):=G(xn-1,

xn-1|n-1,Pn-1,n-1) and from (7a) with τn:=tn-tn-1 we have Therefore using (19) in

(14b) yields:

Next P(xnly0:n ∈ Y0:n), defined in (13), is calculated after multiplying (22) and (24):

Equation (25) is explicitly solved by applying Proposition 1:
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The expression of p(xn|y0:n ∈ Y0:n) as a sum of N Gaussians is the result of the following substitutions: (26) into (13),
(26) into (14c) to obtain p(yn ∈ Yn|y0:n-1 ∈ Y0:n-1) and the latter into (13) again. This yields

The third step is to approximate (27) as a single Gaussian to retrieve a computationally tractable algorithm. For if both
p(xn-1|y0:n-1 ∈ Y0:n-1) and p(yn ∈ Yn|xn) are approximated using N Gaussians, the estimate of xn in (27) is described with
Mn Gaussians. The value of Mn equals Mn-1N, meaning that Mn increases after each sample instant and with it also the
processing demand of the EBSE increases.

5.3 Step 3: state approximation

[0173] p(xn|y0:n ∈ Y0:n) of (27) is approximated as a single Gaussian with an equal expectation and covariance matrix,
i.e.:

The expectation an covariance of (27), equal to xn|n and Pn|n of (28), can be derived from the corresponding definitions.
Notice that because the designed EBSE is based on the equations of the Kalman filter, the condition of computational
tractability is met.

5.4 Asymptotic analysis of the error-covariance matrix

[0174] In this section we investigate the asymptotic analysis of the error-covariance matrix of the developed EBSE.
By this we mean that we analyze limn→∞Pn|n which for convenience is denoted as P∞. Note that for the classical Kalman
filter (KF) [12] such an analysis is already available. However, for any other type of estimator asymptotic analysis remains
a very challenging problem, which is why in most cases it is not even considered.
[0175] Let us first recall the result on the asymptotic analysis of the Kalman filter. If x(t) of (7) is estimated, directly
from y(t), with the KF at synchronous sampling times tn := n·ts, then Pn|n is updated as follows:

[0176] In [18,19] it is proven that if the eigenvalues of Ats are within the unit circle and (Ats, C) is observable, then P∞
= PK. The matrix PK equals the solution of:
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For the EBSE however, we cannot prove that P∞ equals a constant matrix, Instead we will prove that all the eigenvalues
of P∞ are bounded, i.e. that λmax(P∞) < ∞, As described in Section 4 this is a valid indication of an estimator’s performance.
[0177] The main result of this section is obtained under the standing assumption that ΛHke is approximated using a
single Gaussian. Note that the result then also applies to the estimator presented in [15], as a particular case. We
assume that the eigenvalues of the Aτn-matrix are within the unit-circle and (Aτn,C) is an observable pair. The following
technical Lemmas will be of use.
Lemma 1. Given the process model (7) and covariance matrices P s 0 and Q s 0, then for any 0 < τ1 ≤ τ2 we have that

and

See the Appendix for the proof.
Lemma 2. Let any square matrices V1 a V2 and W1 a W2 with V1 s 0 and W1 s 0 be given. Suppose that the matrices

U1 and U2 are defined as and for any C of suitable size. Then

it holds that U1 a U2.

Proof. From [20] we have that and

Hence, it follows that

which yields

Thus, U1 a U2, which concludes the proof.
Next, recall that Hke(yn) is assumed to be a bounded set. Therefore, it is reasonable to further assume that ΛHke can be
approximated using the formula (17), for N = 1, and that there exists a constant matrix V such that

for all n.
Theorem 1. Suppose that the EBSE, as presented in Section 5, approximates ΛHke accarding to (17) with N = 1 and

the above assumptions hold. Then λmax(P∞) < λmax(P
~

k) where P
~

K is equal to the solution of

See the Appendix for the proof.
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6 Illustrative example

[0178] In this section we illustrate the effectiveness of the developed EBSE in terms of state-estimation error, sampling
efficiency and computational tractability. The case study is a ID object-tracking system. The states x(t) of the object are
position and speed while the measurement vector y(t) is position. The process-noise w(t) represents the object’s accel-
eration. Then given a maximum acceleration of 0.5[m/s2] its corresponding Q, according to [21], equals 0.02. Therefore

the model as presented in (7) yields C = (10) and D = 0, which is in fact a discrete-time double

integrator. The acceleration in time is shown in Figure 30 together with the object’s position and speed. The sampling
time is ts = 0.1 and the measurement-noise covariance is V = 0.1 · 10-3.

[0179] Three different estimators are tested. The first two estimators are the EBSE and the asynchronous Kalman
filter (AKF) of [13]. For simplicity, in both estimators we used the "Send-on-Delta" method with ∆ = 0.1 [m]. For the EBSE
we approximated ΛHke (yn) using (23) with N = 5. The AKF estimates the states only at the event instants tke. The states
at tka are calculated by applying the prediction-step of (14b). The third estimator is based on the quantized Kalman filter
(QKF) introduced in [21] that uses synchronous time sampling of yka. The QKF can deal with quantized data, which also
results in less data transfer, and therefore can be considered as an alternative to EBSE. In the QKF yka is the quantized
version of yka with quantization level 0.1, which corresponds to the "Send-on-Delta" method. Hence, a comparison can
be made.
[0180] In Figure 31 and Figure 32 the state estimation-error of the three estimators is plotted. They show that the QKF
estimates the position of the object with the least error. However, its error in speed is worse compared to the EBSE.
Further, the plot of the AKF clearly shows that prediction of the state-estimates gives a significant growth in estimation-
error when the time between the event sampling-instants increases (t > 4).
[0181] Beside estimation error, sampling efficiency η is also important due to the increased interest in WSNs. For
these systems communication is expensive and one aims to have the least data transfer. We define

which is a measure of the change in the estimation-error after the measurement

update with either zke or yka was done. Notice that if η < 1 the estimation error decreased after an update, if η > 1 the

error increased and if η = 1 the error remained the same. For the EB SE i = ke with i - 1 equal to ke - 1 1 or ka - 1. For

the AKF i = ke with i - 1 = ke - 1. For the QKF i = ka and i - 1 = ka - 1. Figure 33 shows that for the EBSE η < 1 at all

instants n. The AKF has one instant, t = 3.4, at which η > 1. In case of the QKF the error sometimes decreases but it
can also increase considerably after an update. Also notice that η of the QKF converges to 1. Meaning that for t > 5.5
the estimation error does not change after an update and new samples are mostly used to bound λi(Pka|ka). The EBSE

has the same property, although for this method the last sample was received at t = 4.9.
[0182] The last aspect on which the three estimators are compared is the total amount of processing time which was
needed to estimate all state-vectors. For the EBSE, both xke and xka were estimated and it took 0.094 seconds. The
AKF estimated xke and predicted xka in a total time of 0.016 seconds and the QKF estimated xka and its total processing
time equaled 0.022 seconds. This means that although the EBSE results in the most processing time, it is computationally
comparable to the AKF and QKF, while it provides an estimation-error similar to the QKF, but with significantly less data
transmission. As such, it is most suited for usage in networks in general and WSNs in particular.

7 Conclusions

[0183] In this paper a general event-based state-estimator was presented. The distinguishing feature of the proposed
EBSE is that estimation of the states is performed at two different type of time instants, i.e. at event instants tke, when
measurement data is used for update, and at synchronous time sampling tka, when no measurement is received, but
an update is performed based on the knowledge that the monitored variable lies within a set used to define the event.
As a result, it could be proven that, under certain assumptions, for the error-covariance matrix of the EBSE it holds that
λmax(P∞) < ∞, even in the situation when no new observation zke is received anymore. Its effectiveness for usage in
WSNs has been demonstrated on an application example.
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A Proof of Lemma 1

[0185] Suppose that A ∈ and B ∈ are defined as the state-space matrices for the time-continuous
counterpart of (7). Then it is known [22] that for any sampling period τ > 0, Aτ and Bτ of (7a) are obtained from their

corresponding continuous-time matrices A and B as follows:

Using (31) one obtains:

As for any τ > 0 the series eAτ converges [22], then also converges. Then, since 0 < τ1 ≤ τ2 and P
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s 0, for any fixed i, j, we have

for any matrix A and thus, it follows that

The same reasoning can be used to prove that

B Proof of Theorem 1

[0186] Under the hypothesis, for the proposed EBSE, Pn|n of (28), with τn := tn - tn-1 and  becomes:

The upper bound on λmax(P∞) is proven by induction, considering the asymptotic behavior of a KF that runs in parallel

with the EBSE, as follows. The EBSE calculates as (32) and the KF calculates as (29) in which V is replaced

with R := V + V. Notice that for these estimators we have that τn ≤ ts and Rn a R, for all n. Let the EBSE and the KF

start with the same initial covariance matrix P0.

[0187] The first step of induction is to prove that

From the definition of in (32) and in (29) we have that and

[0188] Suppose we define W1 := R1 and W2 := R. Then W1

a W2 and from Lemma 1 it follows that V1 a V2. Therefore applying Lemma 2, with and yields

[0189] The second and last step of induction is to show that if

then
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Let and let W1 := Rn, W2 := R. Notice that this yields

W1 a W2. The second condition of Lemma 2, i.e. V1 a V2 also holds by applying Lemma 1, i.e.

Hence, applying Lemma 2, with  and  yields

[0190] This proves that

which yields (see e.g., [20])

As was calculated with the KF it follows from (30) that with P
~

K as the salution of

 which completes the proof.

Claims

1. Object tracking system comprising

- a plurality of sensor nodes (10) that each provide a message (D) indicative for an occupancy status of a
detection area of an object infrastructure (80) monitored by said sensor node,
- a message interpreter (MI) including an object database facility (32, 34) with state information of objects
present at the object infrastructure, and a database updating facility (DBU) for updating the object database
facility (32, 34) on the basis of messages (D) provided by the sensor nodes.

2. The object tracking system according to claim 1, comprising a plurality of system modules (MD1, MD2, MD3), each
module comprising a respective subset of the plurality of sensor nodes (10) for monitoring a respective section (80A,
80B, 80C, 80D) of the object infrastructure and a respective message interpreter (MI), the object tracking system
further having a communication facility (60) for enabling system modules of mutually neighboring sections to ex-
change state information.

3. Object tracking system according to claim 1 or 2, wherein the database updating facility (DBU) comprises

- an association facility (40) for associating the messages (D) provided by the sensor nodes with the state
information present in the object data base facility (32, 34),
- a state updating facility (50) for updating the state information on the basis of the messages (D) associated
therewith.

4. Object tracking system according to claim 1, wherein the sensor nodes (10) provide the messages (D) at an event
basis.
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5. Object tracking system according to claim 1, wherein the sensor nodes (10) are provided with a wireless transmission
facility (16) for wirelessly transmitting the message (D), and wherein the message interpreter (40) comprises a
wireless reception facility (20) for receiving the message (D).

6. The object tracking system according to claim 1, wherein the sensor nodes (10) are randomly distributed over the
object infrastructure (80).

7. The object tracking system according to claim 1, wherein the state updating facility (50) is arranged for updating
the state information on the basis of event-based messages (D) and on the basis of messages sampled synchronous
in time.

8. Object infrastructure (80) provided with an object tracking system according to one of the previous claims.

9. Method for tracking objects at an infrastructure, the method comprising

a) providing a message indicative for an occupancy status of a detection area of an object infrastructure,
b) storing state information of objects present at the object infrastructure,
c) updating said stored information on the basis of the message.

10. Method according to claim 9, wherein the step of updating said stored information comprises,

d) associating the message with state information present in the object data base facility,
e) updating the state information associated in step d) on the basis of said message.

11. Method according to claim 9 or 10, wherein the steps a) to c) are independently performed for mutually non coinciding
sections of the object infrastructure, the method further comprising the step of exchanging state information.
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