(11) EP 2 199 707 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:23.06.2010 Bulletin 2010/25

(51) Int Cl.: **F25B 40/00** (2006.01)

(21) Numéro de dépôt: 09177775.5

(22) Date de dépôt: 02.12.2009

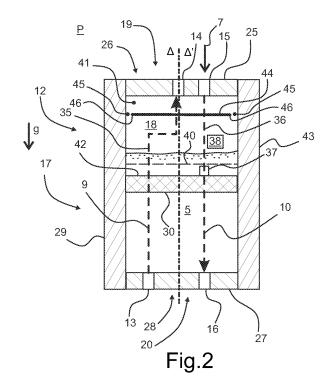
(84) Etats contractants désignés:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Etats d'extension désignés:

AL BA RS

(30) Priorité: 22.12.2008 FR 0807424


(71) Demandeur: Valeo Systèmes Thermiques 78321 Le Mesnil Saint Denis (FR)

(72) Inventeurs:

Lemee, Jimmy
 72380 Saint Jean d'Asse (FR)

- Denoual, Christophe 72430 Noyen sur Sarthe (FR)
- Pourmarin, Alain
 72210 La Suze sur Sarthe (FR)
- Goyer, Eric
 72230 Arnage (FR)
- Meiche, Michel 72230 Ruaudin (FR)
- (74) Mandataire: Léveillé, Christophe Valeo Systemes Thermiques Service Propriété Industrielle Branche Thermique Habitacle 8, rue Louis Lormand La Verrière BP 513 78321 Le Mesnil-Saint- Denis Cedex (FR)
- (54) Dispositif combiné comprenant un échangeur de chaleur et un accumulateur constitutifs d'une boucle de climatisation.
- (57) L'invention a pour objet un dispositif combiné (12) comprenant une enceinte (17) logeant au moins un échangeur de chaleur interne (5) et une zone d'accumu-

lation (18). La zone d'accumulation (18) est délimitée par au moins une paroi inférieure (42). La paroi inférieure (42) est au-dessus de l'échangeur de chaleur interne (5).

EP 2 199 707 A1

25

40

50

Description

Domaine technique de l'invention.

[0001] La présente invention est du domaine des boucles de climatisation coopérant avec une installation de ventilation, de chauffage et/ou de climatisation d'un véhicule automobile. Elle a pour objet un dispositif combiné comprenant un échangeur de chaleur interne et un accumulateur participant d'une telle boucle. Elle a aussi pour objet une boucle de climatisation comprenant un tel dispositif combiné.

1

Etat de la technique.

[0002] Un véhicule automobile est couramment équipé d'une installation de ventilation, de chauffage et/ou de climatisation pour réguler les paramètres aérothermiques de l'air contenu à l'intérieur de l'habitacle du véhicule. Une telle installation coopère avec une boucle de climatisation pour refroidir un flux d'air préalablement à la délivrance de ce dernier à l'intérieur de l'habitacle. Ladite boucle comprend une pluralité d'éléments à l'intérieur desquels circule successivement un fluide réfrigérant, tel qu'un fluide supercritique, dioxyde de carbone connu sous la référence R744 notamment. Ces éléments comprennent au moins un compresseur, un refroidisseur de gaz, un échangeur de chaleur interne, un organe de détente, un évaporateur et un accumulateur.

[0003] Le fluide réfrigérant circule depuis le compresseur vers le refroidisseur de gaz, puis au travers d'une branche « haute pression » de l'échangeur de chaleur interne, puis vers l'organe de détente, ensuite au travers de l'évaporateur, puis vers l'accumulateur, et enfin au travers d'une branche « basse pression » de l'échangeur de chaleur interne, pour retourner au compresseur.

[0004] Le compresseur est destiné à recevoir le fluide réfrigérant à l'état gazeux et à le comprimer pour le porter à haute pression. Le refroidisseur de gaz est apte à refroidir le fluide réfrigérant comprimé, à pression relativement constante, en cédant de la chaleur à son environnement. L'organe de détente est à même d'abaisser la pression du fluide réfrigérant sortant du refroidisseur de gaz en l'amenant au moins en partie à l'état liquide. L'évaporateur est quant à lui propre à faire passer à l'état gazeux le fluide réfrigérant à l'état liquide provenant de l'organe de détente, à pression relativement constante, en prélevant de la chaleur audit flux d'air qui traverse l'évaporateur. Le fluide réfrigérant vaporisé est ensuite aspiré par le compresseur. Ces dispositions sont telles que le fluide réfrigérant est à haute pression à l'intérieur de la branche « haute pression » de l'échangeur de chaleur interne tandis qu'il est à basse pression à l'intérieur de la branche « basse pression » de l'échangeur de chaleur interne.

[0005] L'accumulateur assure une fonction de séparation entre une phase gazeuse et une phase liquide du fluide réfrigérant. A cette fin, l'accumulateur comporte

une zone de séparation dédiée à cette fonction. L'accumulateur assure aussi une fonction de stockage d'une charge circulante de fluide réfrigérant en fonction des conditions d'utilisation de la boucle de climatisation. Pour cela, l'accumulateur comporte une zone d'accumulation du fluide réfrigérant à l'état liquide que ledit accumulateur recueille en provenance de l'évaporateur. Dans sa généralité, l'accumulateur est constitué d'une enceinte logeant la zone de séparation et la zone d'accumulation, l'enceinte comprenant une paroi inférieure qui délimite la zone d'accumulation en partie basse de l'enceinte. Ainsi, le fluide réfrigérant à l'état liquide en provenance de l'évaporateur se sépare en phase gazeuse et en phase liquide, cette dernière venant s'accumuler par gravité audessus de la paroi inférieure, à l'intérieur de la zone d'accumulation.

[0006] L'échangeur de chaleur interne est configuré de manière à ce que le fluide réfrigérant circulant à l'intérieur de la branche « haute pression » puisse céder de la chaleur au fluide réfrigérant circulant à l'intérieur de la branche « basse pression ».

[0007] Le document JP 10019421 (NIPPON SOKEN; DENSO CORP) propose d'associer l'échangeur de chaleur interne et l'accumulateur en un dispositif combiné. Dans sa généralité, ce dernier comprend ladite enceinte qui est pourvue d'une ouverture obturée par un couvercle. L'enceinte loge l'échangeur de chaleur interne qui surplombe la zone d'accumulation de fluide réfrigérant à l'état liquide, l'échangeur de chaleur étant interposé entre la zone de séparation et la zone d'accumulation, en position d'utilisation du dispositif combiné sur la boucle de climatisation.

[0008] Le fluide réfrigérant à haute pression en provenance du refroidisseur de gaz pénètre à l'intérieur du dispositif combiné par l'intermédiaire d'une entrée « haute pression » ménagée à travers le couvercle pour circuler à l'intérieur de l'échangeur de chaleur interne et finalement être évacué hors du dispositif combiné par l'intermédiaire d'une sortie « haute pression » également ménagée à travers le couvercle.

[0009] Le fluide réfrigérant à basse pression en provenance de l'évaporateur pénètre à l'intérieur du dispositif combiné par l'intermédiaire d'une entrée « basse pression » encore ménagée à travers le couvercle. Le fluide réfrigérant à basse pression et à l'état liquide tend à s'accumuler par gravité au dessus de la paroi inférieure de l'enceinte tandis que le fluide réfrigérant à basse pression et à l'état gazeux tend à se concentrer en une zone supérieure de l'enceinte. Cette dernière loge un conduit coudé agencé en U, dont une première extrémité est disposée en partie supérieure de l'enceinte pour admettre à l'intérieur du conduit le fluide réfrigérant à basse pression et à l'état gazeux, et le véhiculer jusqu'à une deuxième extrémité du conduit en communication avec l'échangeur de chaleur interne. A l'intérieur de ce dernier, le fluide réfrigérant à haute pression cède de la chaleur au fluide réfrigérant à basse pression. Le fluide réfrigérant à basse pression et à l'état gazeux est évacué hors

30

de l'échangeur de chaleur interne et hors du dispositif combiné à travers une sortie « basse pression » elle aussi encore ménagée à travers le couvercle.

[0010] Un tel dispositif combiné présente des inconvénients au regard d'une complexité structurelle excessive qui mérite d'être simplifiée.

[0011] Plus particulièrement, un tel dispositif combiné est constitué d'un nombre conséquent de pièces disparates ce qui engendre des coûts de fabrication qu'il convient de réduire.

[0012] Enfin, le dispositif tel que décrit dans le document JP 10019421 ne prend pas en compte l'intégration d'un tel dispositif combiné dans un compartiment moteur d'un véhicule. Il apparaît contraignant au regard de l'agencement de la boucle de climatisation que les entrées et sorties « haute pression » et « basse pression » de fluide réfrigérant soient toutes ménagées du même côté, c'est-à-dire à travers le couvercle de l'enceinte.

Objet de l'invention.

[0013] Un premier but de la présente invention est de proposer un dispositif combiné comprenant une enceinte logeant un échangeur de chaleur interne et une zone d'accumulation d'un fluide réfrigérant à l'état liquide circulant à travers le dispositif combiné, l'agencement structurel des pièces qui composent ledit dispositif étant le plus simple possible, le nombre de ces pièces étant le plus réduit possible.

[0014] Un second but de la présente invention est de proposer une boucle de climatisation comprenant un tel dispositif combiné, l'agencement de ce dernier facilitant son intégration sur la boucle de climatisation dans certaines conformations de cette dernière. La présente invention prend en compte les entrées ou sorties de fluide réfrigérant disposées à chaque extrémité du dispositif combiné selon l'invention. En effet, le circuit emprunté par des conduites véhiculant le fluide réfrigérant dans le compartiment moteur est dicté par la place disponible dans ce dernier. La connexion de deux conduites par extrémité du dispositif combiné présente un avantage important comparé à un dispositif combiné selon l'art antérieur où les quatre conduites sont rassemblées à une même extrémité.

[0015] Le dispositif de la présente invention est un dispositif combiné comprenant une enceinte logeant au moins un échangeur de chaleur interne et une zone d'accumulation. Ladite zone d'accumulation est délimitée par au moins une paroi inférieure. La paroi inférieure est audessus de l'échangeur de chaleur interne.

[0016] De préférence, l'enceinte comporte une cloison supérieure et une cloison inférieure opposée l'une à l'autre, la cloison supérieure étant équipée d'une entrée « basse pression » et d'une sortie « haute pression » tandis que la cloison inférieure est équipée d'une entrée « haute pression » et d'une sortie « basse pression ». L'entrée « basse pression » est reliée à la sortie « basse pression » par l'intermédiaire d'un chemin de circulation

« basse pression » qui traverse le dispositif combiné, l'entrée « haute pression » étant reliée à la sortie « haute pression » par l'intermédiaire d'un chemin de circulation « haute pression » qui traverse le dispositif combiné.

[0017] La cloison supérieure est préférentiellement agencée en un couvercle supérieur d'obturation d'une ouverture supérieure que comporte l'enceinte, tandis que la cloison inférieure est agencée en un couvercle inférieur d'obturation d'une ouverture inférieure que comporte également l'enceinte.

[0018] Le couvercle supérieur est avantageusement équipé de ladite entrée « basse pression » et de ladite sortie « haute pression » tandis que le couvercle inférieur est équipé de ladite entrée « haute pression » et de la sortie « basse pression ».

[0019] Selon une première variante de réalisation, l'enceinte comprend un tube logeant une cloison de séparation de ladite zone d'accumulation et de l'échangeur de chaleur interne, la cloison de séparation constituant ladite paroi inférieure.

[0020] Selon une deuxième variante de réalisation, l'enceinte comprend un réceptacle supérieur et un réceptacle inférieur associés tête-bêche l'un à l'autre par l'intermédiaire de leurs fonds respectifs qui constituent conjointement ladite paroi inférieure.

[0021] De préférence, l'enceinte loge également une zone de séparation qui jouxte le couvercle supérieur.

[0022] La zone d'accumulation est préférentiellement interposée entre la zone de séparation et la paroi inférieure.

[0023] Une plaque est préférentiellement interposée entre la zone de séparation et la zone d'accumulation.

[0024] Un espace est avantageusement ménagé entre un bord de la plaque et au moins une paroi latérale délimitant la zone d'accumulation.

[0025] L'entrée « haute pression » et la sortie « basse pression » sont de préférence diamétralement opposées l'une à l'autre par rapport à un axe d'extension longitudinale Δ du dispositif combiné, cette axe étant l'axe longitudinal de l'enceinte.

[0026] De préférence, l'entrée « haute pression », la sortie « basse pression », l'entrée « basse pression » et la sortie « haute pression » sont contenues dans un même plan P d'extension générale du dispositif combiné.

[0027] L'échangeur de chaleur interne comprend de préférence au moins un tube plat enroulé sur lui-même.
[0028] Une boucle de climatisation de la présente invention est principalement reconnaissable en ce que ladite boucle comprend un tel dispositif combiné.

50 [0029] En position d'utilisation du dispositif combiné sur la boucle de climatisation, la zone d'accumulation est avantageusement au-dessus de l'échangeur de chaleur interne

[0030] La paroi inférieure constitue préférentiellement une paroi de réception d'un fluide réfrigérant à l'état liquide en provenance d'un évaporateur que comporte ladite boucle.

[0031] De préférence, ledit chemin de circulation

40

45

« basse pression » est constitutif d'une ligne « basse pression » <u>BP</u> de la boucle de climatisation tandis que ledit chemin de circulation « haute pression » est constitutif d'une ligne « haute pression » <u>HP</u> de la boucle de climatisation.

Description des figures.

[0032] La présente invention sera mieux comprise, et des détails en relevant apparaîtront, à la lecture de la description qui va être faite de variantes de réalisation en relation avec les figures des planches annexées, dans lesquelles :

La fig.1 est une illustration schématique d'une boucle de climatisation comprenant un dispositif combiné selon la présente invention.

Les fig.2 et fig.3 sont des illustrations schématiques en coupe longitudinale de variantes respectives de réalisation du dispositif combiné représenté sur la figure précédente.

[0033] Sur la fig.1, une installation de ventilation, de chauffage et/ou de climatisation équipant un véhicule automobile coopère avec une boucle de climatisation 1 pour refroidir un flux d'air 2 préalablement à la délivrance de ce dernier à l'intérieur de l'habitacle du véhicule. La boucle de climatisation 1 comprend un compresseur 3, un refroidisseur de gaz 4, un échangeur de chaleur interne 5, un organe de détente 6, un évaporateur 7 et un accumulateur 8 à l'intérieur desquels circule un fluide réfrigérant, tel qu'un fluide supercritique, dioxyde de carbone connu sous la référence R744 notamment. Plus particulièrement, le fluide réfrigérant circule depuis le compresseur 3 vers le refroidisseur de gaz 4, puis au travers d'une branche « haute pression » 9 de l'échangeur de chaleur interne 5, puis vers l'organe de détente 6, ensuite au travers de l'évaporateur 7, puis vers l'accumulateur 8, et enfin au travers d'une branche « basse pression » 10 de l'échangeur de chaleur interne 5, pour retourner au compresseur 3. Ces dispositions visent à permettre un échange de chaleur entre le fluide réfrigérant circulant à haute pression et à haute température à l'intérieur de ladite branche « haute pression » 9 et le fluide réfrigérant circulant à basse pression et à basse température à l'intérieur de ladite branche « basse pression » 10, ce qui a pour conséquence d'améliorer un coefficient de performance « COP » de la boucle de climatisation 1.

[0034] La boucle de climatisation 1 comprend une ligne « haute pression » <u>HP</u> qui débute en sortie du compresseur 3 et se termine en entrée de l'organe de détente 6, selon un sens de circulation 11 du fluide réfrigérant à l'intérieur de la boucle de climatisation 1, le refroidisseur de gaz 4 et la branche « haute pression » 9 de l'échangeur de chaleur interne 5 étant interposés entre ces deux points.

[0035] La boucle de climatisation 1 comprend aussi

une ligne « basse pression » <u>BP</u> qui débute en sortie de l'organe de détente 6 et se termine en entrée du compresseur 3, selon le sens de circulation 11 du fluide réfrigérant à l'intérieur de la boucle de climatisation 1, l'évaporateur 7, l'accumulateur 8 et la branche « basse pression » 10 de l'échangeur de chaleur interne 5 étant interposés entre ces deux points.

[0036] L'accumulateur 8, situé en aval de l'évaporateur 7 selon le sens de circulation 11 du fluide réfrigérant à l'intérieur de la boucle de climatisation 1, permet la récupération d'un éventuel reliquat de fluide réfrigérant à l'état liquide sortant de l'évaporateur 7. L'accumulateur 8 permet également une séparation d'une phase gazeuse et d'une phase liquide du fluide réfrigérant sortant de l'évaporateur 7.

[0037] L'échangeur de chaleur interne 5 et l'accumulateur 8 sont associés en un dispositif combiné 12 formant un ensemble monobloc assurant conjointement les fonctions de l'échangeur de chaleur interne 5 et de l'accumulateur 8. Le caractère combiné dudit dispositif 12 permet à l'échangeur de chaleur interne 5 et à l'accumulateur 8 d'être installés simultanément sur la boucle de climatisation 1, ces derniers formant un ensemble intégré. Ceci a aussi pour effet de se dispenser d'une conduite installée dans le compartiment moteur entre la sortie de l'accumulateur 8 et l'entrée de la branche « basse pression » 10 de l'échangeur de chaleur interne 5.

[0038] Le dispositif combiné 12 comporte une entrée « haute pression » 13 à travers laquelle le fluide réfrigérant en provenance du refroidisseur de gaz 4 est admis à l'intérieur du dispositif combiné 12. Le dispositif combiné 12 comporte aussi une sortie « haute pression » 14 à travers laquelle le fluide réfrigérant à haute pression est évacué hors du dispositif combiné 12 vers l'organe de détente 6. L'entrée « haute pression » 13 et la sortie « haute pression » 14 sont reliées l'une à l'autre par l'intermédiaire de la branche « haute pression » 9.

[0039] Le dispositif combiné 12 comporte aussi une entrée « basse pression » 15 à travers laquelle le fluide réfrigérant en provenance de l'évaporateur 7 est admis à l'intérieur du dispositif combiné 12. Le dispositif combiné 12 comporte enfin une sortie « basse pression » 16 à travers laquelle le fluide réfrigérant à basse pression est évacué hors du dispositif combiné 12 vers le compresseur 3. L'entrée « basse pression » 15 et la sortie « basse pression » 16 sont reliées l'une à l'autre notamment par l'intermédiaire de la branche « basse pression » 10 ainsi que par une zone de séparation 41 et une zone d'accumulation 18 que comporte le dispositif combiné 12.

[0040] Sur les fig.2 et fig.3, le dispositif combiné 12 comprend une enceinte étanche 17 qui loge l'échangeur de chaleur interne 5, la zone de séparation 41 entre la phase gazeuse et la phase liquide du fluide réfrigérant sortant de l'évaporateur 7 ainsi que la zone d'accumulation 18 du fluide réfrigérant à l'état liquide en provenance de l'évaporateur 7, ou plus particulièrement en provenance de la zone de séparation 41.

25

30

40

[0041] Ladite zone de séparation 41 présente préférentiellement une structure cyclonique dans le sens où l'entrée « basse pression » 15 est décalée par rapport à un axe d'extension longitudinale Δ du dispositif combiné 12 pour permettre une admission tangentielle du fluide réfrigérant en provenance de l'évaporateur 7 à l'intérieur de ladite zone de séparation 41. Ces dispositions visent à favoriser la séparation entre la phase gazeuse et la phase liquide.

[0042] La zone d'accumulation 18 est délimitée par une paroi inférieure 42 contre laquelle le fluide réfrigérant à l'état liquide en provenance de l'évaporateur 7 vient s'accumuler par gravité. L'entrée « basse pression » 15 étant, en position d'utilisation du dispositif combiné 12 sur la boucle de climatisation 1 et/ou en position de fonctionnement du dispositif combiné 12 seul, placée au-dessus de la paroi inférieure 42, le fluide réfrigérant à l'état liquide chute naturellement par gravité depuis l'entrée « basse pression » 15 vers la paroi inférieure 42 pour finalement reposer contre cette dernière.

[0043] La paroi inférieure 42 est préférentiellement perpendiculaire à l'axe d'extension longitudinale ∆ du dispositif combiné 12. La paroi inférieure 42 est en contact avec, et est prolongé par au moins une paroi latérale 43 qui s'étend parallèlement à l'axe d'extension longitudinale Δ du dispositif combiné 12. La paroi latérale 43 est par exemple conformée en un cylindre dont un axe de symétrie \(\Delta' \) est confondu avec l'axe d'extension longitudinale Δ du dispositif combiné 12. La paroi latérale 43 délimite une ouverture supérieure 26 qui est obturée par un couvercle supérieur 25. Il en ressort que la paroi inférieure 42, la paroi latérale 43 et le couvercle supérieur 25 enveloppent la zone d'accumulation 18 et la zone de séparation 41. Autrement dit, la zone d'accumulation 18 et la zone de séparation 41 sont conjointement confinées entre la paroi inférieure 42, la paroi latérale 43 et le couvercle supérieur 25.

[0044] La zone de séparation 41 est contigüe audit couvercle supérieur 25, en étant positionnée directement en-dessous de ce dernier. Ainsi, la zone d'accumulation 18 est placée entre la zone de séparation 41 et la paroi inférieure 42. Une plaque 44 est interposée entre la zone de séparation 41 et la zone d'accumulation 18, un espace 45 étant ménagé entre un bord 46 de la plaque 44 et la paroi latérale 43 délimitant latéralement la zone d'accumulation 18.

[0045] Selon la présente invention, la paroi inférieure 42, qui délimite en partie basse la zone d'accumulation 18, est disposée au-dessus de l'échangeur de chaleur interne 5. A l'encontre des habitudes prises dans le domaine, les concepteurs de la présente invention ont fait le choix de disposer la paroi inférieure 42 de la zone d'accumulation 18, et donc a fortiori la zone d'accumulation 18 elle-même, en surplomb de l'échangeur de chaleur interne 5, alors qu'en raison du fait que le fluide réfrigérant à l'état liquide en provenance de l'évaporateur 7 se concentre par gravité à l'intérieur de la zone d'accumulation 18, un dispositif combiné selon l'art antérieur

comporte une zone d'accumulation placée en-dessous de l'échangeur de chaleur interne. Les termes « audessus », « en-dessous », « surplomb », « inférieur » et « supérieur » sont à comprendre en position d'utilisation du dispositif combiné 12. Cette position d'utilisation peut aisément s'apprécier de part l'installation du dispositif combiné 12 selon l'invention dans la boucle de climatisation 1 du véhicule. Cette position d'utilisation peut néanmoins tout aussi aisément s'apprécier avec le dispositif combiné 12 seul, c'est-à-dire indépendamment de son installation dans la boucle de climatisation 1, pour autant que son fonctionnement apparaisse réaliste. Dans ce cas, et à partir de l'identification aisée de la paroi inférieure 42 de la zone d'accumulation 18, la présente invention se caractérise par le fait que l'échangeur de chaleur interne 5 est disposé en-dessous de ladite paroi inférieure 42, qui est recouverte et baignée par le fluide réfrigérant à l'état liquide, en position d'utilisation et/ou en position de fonctionnement du dispositif combiné 12. [0046] L'homme du métier étant apte non seulement à identifier la zone d'accumulation 18 d'un dispositif combiné 12 mais aussi à reconnaître le couvercle supérieur 25 qui délimite la zone d'accumulation 18 et qui est pourvu de l'entrée « basse pression » 15 de fluide réfrigérant, le même homme du métier discerne aisément la paroi inférieure 42, qui est opposée au couvercle supérieur 25, et constate que selon la présente invention, la paroi inférieure 42 recouvre l'échangeur de chaleur interne par rapport à un axe vertical g symbolisant la gravité terrestre, cet axe vertical g étant sensiblement parallèle audit axe d'extension longitudinale Δ et audit axe de symétrie

[0047] La zone d'accumulation 18 surplombant ou placée au-dessus de l'échangeur de chaleur interne 5 s'entend comme étant plus haute que l'échangeur de chaleur interne 5, selon l'axe vertical g correspondant à la gravité. [0048] De manière avantageuse, cette disposition de la zone d'accumulation 18 plus élevée que l'échangeur de chaleur interne 5 s'entend comme directement audessus de l'échangeur de chaleur interne 5, c'est-à-dire contenu dans un volume délimité par la paroi latérale 43 du dispositif combiné 12 selon l'invention et au-dessus de ce dernier.

[0049] Ces dispositions sont telles que des composants internes délimitant un chemin de circulation « basse pression » 36 et un chemin de circulation « haute pression » 35, en particulier des canalisations propres à transporter le fluide réfrigérant, sont réduites au maximum, pour éviter un surpoids et un encombrement excessif. De telles canalisations sont aussi rectilignes ce qui diminue les pertes de charge à l'intérieur du dispositif combiné 12 selon l'invention. Plus particulièrement, les dits chemins 35,36 ne comportent aucun conduit coudé fortement préjudiciable à un écoulement régulier et homogène du fluide réfrigérant. Par exemple, un chemin de circulation « haute pression » 35 traverse le dispositif combiné 12 parallèlement à l'axe d'extension longitudinale Δ de ce dernier d'une extrémité à l'autre (en dehors

25

40

45

de la branche « haute pression » 9 de l'échangeur de chaleur interne 5). Enfin, dans le cas courant où le fluide réfrigérant comporte de l'huile pour améliorer la pérennité du compresseur 3, le fait que la zone d'accumulation 18 surplombe l'échangeur de chaleur interne 5 facilite la réintégration d'huile par gravité à l'intérieur de la branche « basse pression » 10 de l'échangeur de chaleur interne 5

[0050] L'échangeur de chaleur interne 5 est par exemple constitué d'un tube plat enroulé sur lui-même, préférentiellement autour de l'axe d'extension longitudinale Δ du dispositif combiné 12, le tube plat logeant des microcanaux pour le passage du fluide réfrigérant à haute pression, un espace interstitiel étant ménagé entre des spires du tube plat enroulé pour permettre un passage entre ces spires du fluide réfrigérant à basse pression.

[0051] L'échangeur de chaleur interne 5 est par exemple encore constitué de deux tubes plats enroulés autour de l'axe d'extension longitudinale Δ du dispositif combiné 12 de manière à ce que les spires respectives formées par lesdits tubes soient imbriquées l'une dans l'autre. Dans une autre variante, l'échangeur de chaleur interne 5 comporte trois tubes plats enroulés en spiral, le premier tube placé entre les deux autres tubes ou pris en sandwich entre ces deux tubes est le tube participant au circuit haute pression alors que les deux autres tubes sont parcourus par le fluide réfrigérant à basse pression.

[0052] Le couvercle supérieur 25 constitue une forme préférée de réalisation d'une cloison supérieure 19 de l'enceinte 17. De même, un couvercle inférieur 27 constitue une forme préférée de réalisation d'une cloison inférieure 20 de l'enceinte 17, ledit couvercle inférieur 27 équipant une ouverture inférieure 28 de l'enceinte 17.

[0053] La cloison supérieure 19 et la cloison inférieure 20 sont opposées l'une à l'autre, c'est-à-dire disposées à deux extrémités opposées de l'enceinte 17, cette dernière étant préférentiellement de forme cylindrique et allongée. La cloison supérieure 19 est équipée de l'entrée « basse pression » 15 du fluide réfrigérant à l'intérieur du dispositif combiné 12 et de la sortie « haute pression » 14 du fluide réfrigérant hors du dispositif combiné 12. La cloison inférieure 20 est équipée de l'entrée « haute pression » 13 du fluide réfrigérant à l'intérieur du dispositif combiné 12 et de la sortie « basse pression » 16 du fluide réfrigérant hors du dispositif combiné 12.

[0054] Selon la forme préférée de réalisation décrite ci-dessus, le couvercle supérieur 25 est équipé de l'entrée « basse pression » 15 du fluide réfrigérant à l'intérieur du dispositif combiné 12 et de la sortie « haute pression » 14 du fluide réfrigérant hors du dispositif combiné 12 tandis que le couvercle inférieur 27 est équipée de l'entrée « haute pression » 13 du fluide réfrigérant à l'intérieur du dispositif combiné 12 et de la sortie « basse pression » 16 du fluide réfrigérant hors du dispositif combiné 12.

[0055] Ces dispositions sont telles que le dispositif combiné 12 est susceptible d'être relié fluidiquement à la boucle de climatisation 1 par l'intermédiaire des cloi-

sons supérieure 19 et inférieure 20, et selon ladite forme préférée de réalisation par l'intermédiaire des couvercles supérieur 25 et inférieur 27. Il en résulte que les liaisons entre le dispositif combiné 12 et d'une part le compresseur 3 et d'autre part le refroidisseur de gaz 4 sont réalisées par l'intermédiaire de conduites branchées sur le couvercle inférieur 27 tandis que les liaisons entre le dispositif combiné 12 et d'une part l'évaporateur 7 et d'autre part l'organe de détente 6 sont réalisées par l'intermédiaire de conduites branchées sur le couvercle supérieur 25. De telles dispositions facilitent l'intégration du dispositif combiné 12 sur la boucle de climatisation 1, et par conséquent son intégration dans le compartiment moteur du véhicule automobile.

[0056] L'entrée « haute pression » 13 et la sortie « basse pression » 16 sont ménagées de manière diamétralement opposées l'une à l'autre par rapport à l'axe d'extension longitudinale Δ du dispositif combiné 12. Plus particulièrement, l'entrée « haute pression » 13, la sortie « basse pression » 16, l'entrée « basse pression » 15 et la sortie « haute pression » 14 sont contenues dans un même plan P d'extension longitudinale du dispositif combiné 12, tel que le plan des figures 2 et 3. Le placement diamétralement opposé permet de dégager un maximum de place pour loger les connecteurs des conduites de la boucle de climatisation.

[0057] Selon une première variante de réalisation illustrée sur la fig.2, l'enceinte 17 prend la forme d'un tube 29 cylindrique et allongé selon l'axe d'extension longitudinale Δ, c'est-à-dire dont la longueur est plus importante que son diamètre. Le tube 29 loge une cloison de séparation 30 de la zone d'accumulation 18 et de l'échangeur de chaleur interne 5. Dans ce cas, la cloison de séparation 30 constitue la paroi inférieure 42 c'est à dire un fond de réception du fluide réfrigérant à l'état liquide au-dessus de laquelle ce dernier s'accumule. Cette cloison de séparation 30 est montée étanche à l'intérieur du tube 29 de manière à interdire tout écoulement du fluide réfrigérant depuis la zone d'accumulation 18 vers l'échangeur de chaleur interne 5 sous l'effet de la gravité.

[0058] Selon une deuxième variante de réalisation illustrée sur la fig.3, l'enceinte 17 comprend un réceptacle supérieur 31 et un réceptacle inférieur 32 qui sont associés tête-bêche l'un à l'autre par l'intermédiaire de leur fond respectif 33,34. Dans ce cas, le fond 33 du réceptacle supérieur 31 constitue la paroi inférieure 42 de réception du fluide réfrigérant à l'état liquide au-dessus de laquelle ce dernier s'accumule. Le fond 33 du réceptacle supérieur 31 surplombe l'échangeur de chaleur interne 5. L'avantage d'une telle solution réside dans la faculté de fabriquer un réceptacle supérieur 31 et un réceptacle inférieur 32 identiques de sorte à standardiser les pièces utilisées dans le dispositif combiné 12 selon l'invention. [0059] Un dispositif de récupération 37 d'une huile véhiculée par le fluide réfrigérant équipe le chemin de circulation « basse pression » 36 pour faciliter la réintégration d'huile en amont de la branche « basse pression » 10 de l'échangeur de chaleur interne 5.

15

20

25

30

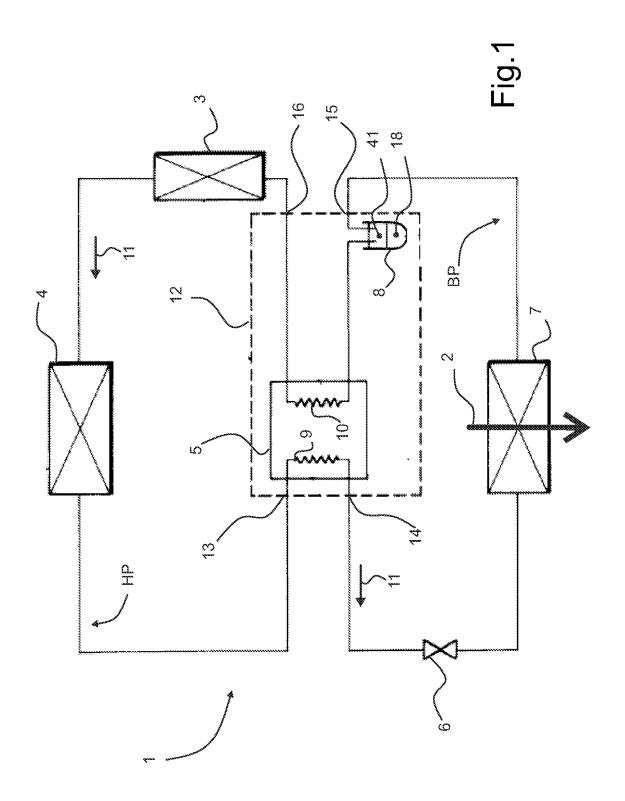
35

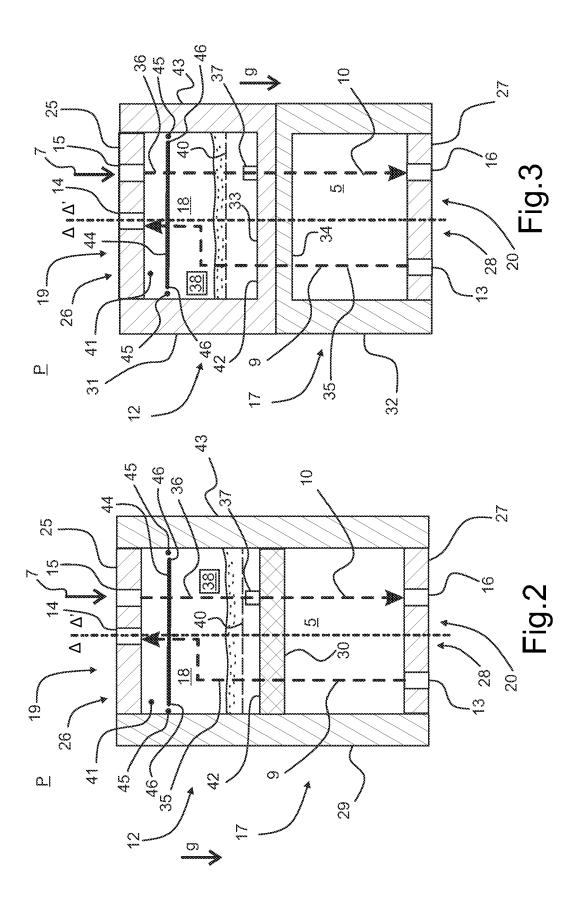
45

50

55

[0060] La zone d'accumulation 18 est en outre pourvue d'un matériau dessicant 38 pour assécher le fluide réfrigérant à basse pression. La zone d'accumulation est par exemple encore pourvue d'un filtre à huile 40 pour retenir des impuretés véhiculées par cette dernière.


Revendications


- Dispositif combiné (12) comprenant une enceinte (17) logeant au moins un échangeur de chaleur interne (5) et une zone d'accumulation (18), ladite zone d'accumulation (18) étant délimitée par au moins une paroi inférieure (42), <u>caractérisé</u> en ce que la paroi inférieure (42) est au-dessus de l'échangeur de chaleur interne (5).
- 2. Dispositif combiné (12) selon la revendication précédente, caractérisé en ce que l'enceinte (17) comporte une cloison supérieure (19) et une cloison inférieure (20) opposée l'une à l'autre, la cloison supérieure (19) étant équipée d'une entrée « basse pression» (15) et d'une sortie « haute pression » (14) tandis que la cloison inférieure (20) est équipée d'une entrée « haute pression» (13) et d'une sortie « basse pression» (16), l'entrée « basse pression » (15) étant reliée à la sortie « basse pression » (16) par l'intermédiaire d'un chemin de circulation « basse pression » (36) qui traverse le dispositif combiné (12), l'entrée « haute pression» (13) étant reliée à la sortie « haute pression » (14) par l'intermédiaire d'un chemin de circulation « haute pression » (37) qui traverse le dispositif combiné (12)
- 3. Dispositif combiné (12) selon l'une quelconque des revendications précédentes, caractérisé en ce que la cloison supérieure (19) est agencée en un couvercle supérieur (25) d'obturation d'une ouverture supérieure (26) que comporte l'enceinte (17), tandis que la cloison inférieure (20) est agencée en un couvercle inférieur (27) d'obturation d'une ouverture inférieure (28) que comporte également l'enceinte (17).
- 4. Dispositif combiné (12) selon les revendications 2 et 3, caractérisé en ce que le couvercle supérieur (25) est équipé de ladite entrée « basse pression » (15) et de ladite sortie « haute pression » (14) tandis que le couvercle inférieur (27) est équipé de ladite entrée « haute pression » (13) et de la sortie « basse pression » (16).
- 5. Dispositif combiné (12) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'enceinte (17) est un tube (29) logeant une cloison de séparation (30) de ladite zone d'accumulation (18) et de l'échangeur de chaleur interne (5), la cloison de séparation (30) constituant ladite paroi infé-

rieure (42).

- 6. Dispositif combiné (12) selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'enceinte (17) est un réceptacle supérieur (31) et un réceptacle inférieur (32) associés tête-bêche l'un à l'autre par l'intermédiaire de leurs fonds respectifs (33,34), un fond (33) du réceptacle supérieur (31) constitue ladite paroi inférieure (42).
- 7. Dispositif combiné (12) selon l'une quelconque des revendications 3 à 6, caractérisé en ce que l'enceinte (17) loge également une zone de séparation (41) qui jouxte le couvercle supérieur (25).
- 8. Dispositif combiné (12) selon la revendication 7, caractérisé en ce que la zone d'accumulation (18) est interposée entre la zone de séparation (41) et la paroi inférieure (42).
- 9. Dispositif combiné (12) selon l'une quelconque des revendications 2 à 6, caractérisé en ce qu'une plaque (44) est interposée entre la zone de séparation (41) et la zone d'accumulation (18).
- **10.** Dispositif combiné (12) selon la revendication 7, caractérisé en ce qu'un espace (45) est ménagé entre un bord (46) de la plaque (44) et au moins une paroi latérale (43) délimitant la zone d'accumulation (18).
- 11. Dispositif combiné (12) selon l'une quelconque des revendications précédentes, caractérisé l'échangeur de chaleur interne (5) comprend au moins un tube plat enroulé sur lui-même.
- 12. Boucle de climatisation (1) comprenant un dispositif combiné (12) selon l'une quelconque des revendications précédentes.
- 40 13. Boucle de climatisation (1) selon la revendication 12, caractérisée en ce qu'en position d'utilisation du dispositif combiné (12) sur la boucle de climatisation (1), la zone d'accumulation (18) est au-dessus de l'échangeur de chaleur interne (5).
 - 14. Boucle de climatisation (1) selon l'une quelconque des revendications 12 out 13, caractérisée en ce que la paroi inférieure (42) constitue une paroi de réception d'un fluide réfrigérant à l'état liquide en provenance d'un évaporateur (7) que comporte ladite boucle (1).
 - 15. Boucle de climatisation (1) selon l'une quelconque des revendications 12 à 14 prise en combinaison avec la revendication 2, caractérisée en ce que ledit chemin de circulation « basse pression » (36) est constitutif d'une ligne « basse pression » <u>BP</u> de la boucle de climatisation (1) tandis que ledit chemin

de circulation « haute pression » (37) est constitutif d'une ligne « haute pression » \underline{HP} de la boucle de climatisation (1).

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 09 17 7775

Catégorie	Citation du document avec des parties pertin	ndication, en cas de besoin, entes	Revendication concernée	CLASSEMENT DE LA DEMANDE (IPC)
Х	GB 934 490 A (DENCO 21 août 1963 (1963- * le document en en	08-21)	1-15	INV. F25B40/00
х	WO 2004/054827 A (D [DE]; HARM KLAUS [D 1 juillet 2004 (200 * page 6, alinéa 7 figures *	E])	1	
A	JP 10 300284 A (SAN 13 novembre 1998 (1 * abrégé; figures *	DEN CORP) 998-11-13)	1-15	
A	JP 2005 299949 A (Z CONTR CORP) 27 octo * abrégé; figures *	EXEL VALEO CLIMATE bre 2005 (2005-10-27)	1-15	
A	JP 53 063768 A (TOK 7 juin 1978 (1978-0 * figures *		1-15	DOMAINES TECHNIQUE: RECHERCHES (IPC)
•	ésent rapport a été établi pour tou	tes les revendications Date d'achèvement de la recherche		Examinateur
	Munich	13 janvier 2010	e Rit	ter, Christoph
CATEGORIE DES DOCUMENTS CITES X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrière-plan technologique O : divulgation non-éorite P : document intercalaire		E : document de date de dépôt avec un D : cité dans la de L : cité pour d'au	T : théorie ou principe à la base de l'invention E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant	

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 09 17 7775

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

13-01-2010

Document brevet cité au rapport de recherche	e	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
GB 934490	A	21-08-1963	AUCUN	
WO 2004054827	A	01-07-2004	BR 0317360 A DE 10258618 B3 EP 1572479 A1 ES 2265605 T3 JP 2006509678 T KR 20050092015 A MX PA05006460 A US 2006168991 A1	08-11-20 24-06-20 14-09-20 16-02-20 23-03-20 16-09-20 08-09-20 03-08-20
JP 10300284	А	13-11-1998	AUCUN	
JP 2005299949	Α	27-10-2005	AUCUN	
JP 53063768	Α	07-06-1978	AUCUN	

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

EPO FORM P0460

EP 2 199 707 A1

RÉFÉRENCES CITÉES DANS LA DESCRIPTION

Cette liste de références citées par le demandeur vise uniquement à aider le lecteur et ne fait pas partie du document de brevet européen. Même si le plus grand soin a été accordé à sa conception, des erreurs ou des omissions ne peuvent être exclues et l'OEB décline toute responsabilité à cet égard.

Documents brevets cités dans la description

• JP 10019421 B [0007] [0012]