TECHNICAL FIELD
[0001] The present invention relates to a surface lighting unit employed in a surface lighting
light source device, to a surface lighting light source device, and to a surface lighting
device for use in LCD backlight devices, illumination boards, and automotive or vehicle
display devices, for example.
BACKGROUND ART
[0002] Use of light emitting diodes (LEDs) as light sources for display devices, lighting
devices, and the like is discussed because LEDs consume less electricity and generate
less heat. However, LEDs have high directionality, and thus require ingenuity in order
to provide uniform light distribution on a wide plane.
[0003] For example, Patent Document 1 discloses a configuration including a light guide
body having a light incident end surface on which light from a light source is incident
and a light emitting surface through which the guided light is emitted. Local lens
lines provided to the light guide body are formed in different directions from the
direction of the peak light of the maximum strength light of the brightness distribution
at the incident position of the light incident end surface, whereby unevenness in
brightness is eliminated.
[0004] Patent Document 2 discloses a configuration including a lamp housing having an opening
on one end and having a light source accommodation portion whose inner wall is a light
reflective surface, a light emitting diode provided in the light source accommodation
portion, and a display plate provided in front of the opening. Light from the light
emitting diode is diffused and reflected to be uniformized.
[0005] Patent Document 3 discloses that repeated reflections on fine reflection parts in
a diffusion layer provided on the radiating surface of light and on a reflector provided
on the periphery of an LED provide uniform light.
[0006] Patent Document 4 discloses that directional light emitted from an LED (in particular,
intense light directly above the LED) is reflected on a reflective part provided on
the radiating surface back toward the LED, whereby the direction of the light is changed
to decrease the light intensity from the LED and to provide uniform light.
[0007] According to Patent Document 1, the LED light source lies laterally to the radiation
direction in order to equalize highly directional light emitted from the LED, which
requires a large space.
[0008] Patent Document 2 requires a certain width in the radiation direction of the LED.
In addition, as the fact that the light scattered by an inner diffusion film is absorbed
by a base plate shows, for example, Patent Document 2 has no technological thought
for using all the light emitted from the LED.
[0009] According to Patent Document 3, while the radiating surface and the footprint portion
on the periphery of the LED are provided with reflective plates, the side surfaces
have no reflective plates. It is therefore impossible to cause multireflection of
light to use all the light emitted from the LED and provide uniform illumination light
in the space surrounding the LED.
[0010] Patent Document 4 is directed to provide uniform illumination through controlling
of a path along which light emitted from the LED travels, and employs the reflective
part on the radiating surface to change the path of the light. This, however, reduces
light intensity, and it is impossible to provide uniform light through multireflection.
Patent Document 1: Japanese Patent Application Publication No.
2002-343124
Patent Document 2: Japanese Patent Application Publication No.
2003-186427
Patent Document 3: Japanese Patent Application Publication No.
2005-284283
Patent Document 4: Japanese Patent Application Publication No.
2006-12818
DISCLOSURE OF INVENTION
[0011] An object of the present invention is to provide a surface lighting light source
device and a surface lighting device that use light from a light source at high efficiency
and provide uniform illumination light on a plane that is spaced apart by a certain
distance from a radiating surface without increasing the width of the light in the
radial direction. Another object of the present invention is to provide, for practical
manufacturing, such a surface lighting light source device and a surface lighting
device that can be manufactured easily.
[0012] To achieve the object, the present invention is configured as follows.
According to an aspect of the present invention, a surface lighting unit of the present
invention includes: a footprint portion, sidewall portions, and an optical reflector
having openings and spaced apart by a certain distance from the footprint portion.
The openings substantially satisfy the formula:

where A is an opening ratio, that is, a ratio of the area of the openings in a preset
region to the area of the preset region, b and c are constants, and x is a distance
from the center of the optical reflector. The openings include a concentric circular
non-through hole(s) provided to the center of the optical reflector, a concentric
arcuate hole(s) provided outward thereof, and a plurality of round holes provided
further outward thereof.
[0013] Preferably, the round holes are arranged in a closed-packed lattice in a plan view,
and the round holes that are adjacent to the arcuate hole are arranged in a hexagon,
and the arcuate hole that is farthest from the center of the optical reflector is
arranged on straight lines joining the round holes corresponding to the vertexes of
the hexagon and the center.
[0014] Preferably, the sidewall portions have sidewall holes communicating with some of
the openings.
According to another aspect of the present invention, a surface lighting light source
device of the present invention includes the surface lighting unit and a light source
arranged substantially at the center of the footprint portion.
[0015] According to still another aspect of the present invention, in a surface lighting
device of the present invention, the surface lighting light source device is plurally
arranged in a matrix.
The present invention uses light from the light source at high efficiency and provides
uniform illumination light on a plane that is spaced apart by a certain distance from
the optical reflector. Further, the present invention enables easy manufacturing for
practical manufacturing.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016]
Fig. 1A is a plan view of a surface lighting unit according to a first embodiment
of the present invention.
Fig. 1B is a side view of the surface lighting unit according to the first embodiment
of the present invention.
Fig. 2 is a chart illustrating the curve of the opening ratio of an optical reflector.
Fig. 3 is a chart illustrating the opening ratio of a round-hole portion.
Fig. 4 is a chart illustrating the opening ratio of an arcuate-hole portion.
Fig. 5 is an unfolded view of the surface lighting unit according to the first embodiment
of the present invention.
Fig. 6 is a sectional view of a surface lighting light source device employing the
surface lighting unit according to the first embodiment of the present invention.
Fig. 7 is a plan view of a surface lighting device according to the first embodiment
of the present invention.
Fig. 8 is a partial sectional view of the surface lighting device according to the
first embodiment of the present invention.
Fig. 9 is an unfolded view of a surface lighting unit according to a second embodiment
of the present invention.
Fig. 10 is an unfolded view of a surface lighting unit according to a third embodiment
of the present invention.
BEST MODE(S) FOR CARRYING OUT THE INVENTION
[0017] Fig. 1A is a plan view of a surface lighting unit according to an embodiment of the
present invention.
Fig. 1B is a side view of the surface lighting unit according to the embodiment of
the present invention.
This surface lighting unit 10 according to the first embodiment of the present invention
includes: a casing 13 having a footprint portion 11 and sidewall portions 12
1, 12
2, 12
3, 12
4 standing from the footprint portion 11; and an optical reflector 14 spaced apart
by a certain distance in the radiation direction of light from the footprint portion
11.
[0018] In other words, the surface lighting unit 10 is formed in a box shape as a whole.
Inner surfaces of the footprint portion 11 and of the sidewall portions 12
1, 12
2, 12
3, 12
4 are reflective surfaces having the function to reflect light thereon. The surface
of the optical reflector 14 that faces the footprint portion is also a reflective
surface.
[0019] In the present embodiment, the size of the surface lighting unit 10 is a cuboid of
10 cm x 10 cm x 1.5 cm (height), for example. However, the size of the surface lighting
unit 10 is not limited thereto.
[0020] Low light absorbent materials are used as material of the surface lighting unit 10.
Specific examples include an ultrafinely foamed optical reflector, a substance obtained
by emulsifying particulates of titanium white, and particulates of polytetrafluoroethylene
(polyfluorocarbon), and a combination of these substances.
[0021] A surface lighting light source device employing the surface lighting unit 10 is
configured by arranging a light source at the center of the footprint portion of the
surface lighting unit 10. The surface lighting light source device will be described
in greater detail later.
The optical reflector 14 has openings 15, such as grooves or holes, for adjusting
the reflection of light (or the transmittance of light) emitted from the light source.
The openings 15 are formed by cutting the optical reflector 14 with a cutting plotter
or the like.
[0022] The geometry of the openings 15 will now be described.
Around the center of the optical reflector 14, a plurality of concentric circular
non-through holes (half cuts) 16 centering on the center O of the optical reflector
14 are provided. The non-through holes 16 are grooves that are substantially half
as deep as the optical reflector 14. The non-through holes 16 are used, with the optical
reflector 14 incorporated in a surface lighting light source device, for adjusting
the transmittance of light emitted from the light source of the surface lighting light
source device to provide uniform illumination light. The cross section of the non-through
holes 16 can be V-shaped, cornered-U-shaped, or any other suitable shape.
[0023] On the outer side of the non-through holes 16, a large number of concentric, non-continuous,
and annular (circular-ring-shaped) narrow holes 17 are formed. The annular narrow
holes 17 are formed in non-continuous annular patterns by connecting parts 18, i.e.,
in a plurality of arcuate patterns. The reason for making the annular holes non-continuous
is that continuous annular holes detach the portion located on the center side of
the narrow holes 17 from the optical reflector 14.
[0024] On the outer side of the narrow holes 17, a large number of concentric, non-continuous,
and annular (circular-ring-shaped) holes 19 are formed in the same manner. The width
of the annular holes 19 is larger than that of the narrow holes 17. Like the narrow
holes 17, the annular holes 19 for providing uniform light are formed in non-continuous
annular patterns by the connecting parts 18, i.e., in a plurality of arcuate patterns.
The reason for making the annular holes non-continuous is that continuous annular
holes detach the portion located on the center side of the holes 19 from the optical
reflector 14.
[0025] On the outer side of the circular-ring-shaped holes 19, a large number of circular
holes (round holes) 20
1, 20
2, ... 20
n are arranged in a closed-packed lattice in a plan view.
With the round holes 20 arranged in a closed-packed lattice and the annular holes
19 arranged on the center side of the optical reflector 14, the round holes 20 that
are adjacent to the holes 19 are arranged in a hexagon ABCDEF indicated by the dotted
line.
[0026] The respective vertexes of the hexagon ABCDEF indicated by the dotted line correspond
to round holes 20
A, 20
B, 20
C, 20
D, 20
E, 20
F.
The holes 19 that are farthest from the center O of the optical reflector 14 are arranged
on the straight lines joining the vertexes of the hexagon ABCDEF and the center O.
In other words, no connecting parts 18 are located on the straight lines joining the
vertexes of the hexagon ABCDEF and the center O.
[0027] For example, one hole 19
1 of the holes 19 that are farthest from the center O is located on the straight line
joining the vertex A and the center O.
Arranging the hole 19
1 that is farthest from the center O on the straight line joining the vertex A and
the center O makes the gap between the vertex A and the hole 19
1 narrow. This makes it easy for light through the round hole 20
A and the hole 19
1 to be incident on the upper portion between the vertex A and the hole 19
1, which provides uniform illumination. In the same manner, the corresponding holes
19 are arranged near the other vertexes B, C, D, E, F.
[0028] Light emitted from the light source reflects at least once on the footprint portion
11, the sidewall portions 12, or the optical reflector 14 and passes through the openings
15. In other words, no light emitted from the light source directly passes through
the openings 15. This configuration can provide uniform illumination light. In addition,
light emitted from the light source can be used at high efficiency through reflection.
[0029] If light emitted from the light source directly passes through the openings 15, the
flux of light that has passed the optical reflector 14 is too intense to make the
distribution of light uniform at positions spaced apart by a certain distance in the
radial direction of the light.
[0030] The round holes 20
1, 20
2, ... 20
n included in the openings 15 have uneven diameters. Their diameters vary depending
on the distance from the center of the optical reflector 14 that lies facing the light
source. The degree of variation will be described later with reference to Fig. 2.
[0031] The sidewall portions 12
1, 12
2, 12
3, 12
4 of the surface lighting unit 10 have holes 21 (sidewall holes) communicating with
the round holes 20 of the optical reflector 14.
Assuming that an opening ratio A is a ratio (the area of the openings in a preset
region / reference area) of the area of the openings in the preset region to the area
of the preset region (reference area), the openings 15, such as the arcuate holes
and round holes, are formed to satisfy the formula:
[0032] 
where A is the opening ratio, x is a distance from the center O of the optical reflector
14, and b and c are constants.
[0033] As illustrated in Fig. 2, a so-called quadratic curve is plotted with the horizontal
axis indicating the distance x and the vertical axis indicating the opening ratio
A. The opening ratio A being 1 means full opening.
Referring to Fig. 2, b is 0.000375 and c is 0.04 according to the present embodiment.
Consequently, the opening ratio A is 0.04 if x is 0.
[0034] Referring to Fig. 2, as the distance from the center O of the optical reflector 14,
which lies facing the light source, increases outward, the opening ratio A increases
in proportion to the square of the distance. By making the center of the optical reflector
14, which is closer to the light source and is illuminated with intense light, have
a small opening ratio and making peripheral regions illuminated with less intense
light have a large opening ratio, uniform illumination can be provided. More specifically,
the size (diameter) of the round holes 20 is designed to increase as the distance
from the center O of the optical reflector 14 increases outward as illustrated in
Fig. 1A.
[0035] According to the present embodiment, because the opening ratio A increases depending
on the distance from the center O of the optical reflector 14, which lies facing the
light source, uniform illumination light can be provided on a plane that is spaced
apart by a certain distance (e.g., 5 mm) from the surface of the optical reflector
14 in the radial direction of the light.
[0036] The definition of the opening ratio A by the formula helps set the size of the openings
15 quantitatively. This facilitates the processing of the openings 15.
The openings 15 are formed sufficiently as long as they satisfy the relationship represented
by Formula (1); therefore, the openings 15 can be composed of round holes 20 alone.
In this case, the round holes 20 that are around the center of the optical reflector
14 have a smaller diameter. However, if a cutting plotter is used for forming round
holes, round holes having a diameter at or below a certain threshold cannot be formed
at all or cannot be properly formed, resulting in distorted round holes, with the
cutting plotter.
[0037] In the present embodiment, therefore, the openings around the center of the optical
reflector 14 are composed of arcuate holes, which facilitates forming of the openings.
With the surface lighting unit according to the present embodiment, the openings can
be easily formed in forming the openings with a cutting plotter.
[0038] The relationship between the opening ratio A and the parameters of the holes will
now be described.
Fig. 3 is an enlarged chart illustrating part of the round holes 20 in a peripheral
region of the optical reflector 14 in Fig. 1A.
[0039] Round holes 22, 23, 24 are so arranged that an equilateral triangle is plotted by
joining their centers.
The round holes 22, 23, 24 each have a diameter d. With the centers 22
0 and 23
0 of the round holes 22 and 23, respectively, serving as vertexes, and with a line
drawn through the center 24
0 of the round hole 24 serving as a side, a rectangle GHIJ is referred to as a certain
region to define the opening ratio.
[0040] Supposing s denotes the distance between the centers of the round holes 22 and 23,
the area of the rectangle GHIJ is calculated by:
[0041] 
The openings are calculated as a total of the semicircle and quarter sectors with
diagonal lines. Therefore, the area of the openings equals the area of a circle having
a radius d, and represented by:
[0042] 
Therefore, the opening ratio A is calculated by:
[0043] 
and the diameter d is calculated by:
[0044] 
The opening ratio A of the openings 15 of the optical reflector 14 is determined by
Formula (1) mentioned above, and the diameter d of the round holes at the corresponding
position is determined based on the determined opening ratio A and Formula (5).
[0045] Fig. 4 is an enlarged chart illustrating the non-continuous annular holes (arcuate
holes) 19 of the optical reflector 14.
Note that s denotes the width of the holes, α denotes the angle between two arcuate
holes 19
1, 19
2, and β denotes the angle of each arcuate hole 19
1, 19
2.
[0046] A certain region is defined as an arc KLMN covering the arcuate holes 19
1, 19
2 and having a width 2s and an angle α.
The opening ratio A is calculated by:
[0047] 
and the angle β of the arcuate holes is represented by:
[0048] 
The opening ratio A of the openings 15 of the optical reflector 14 is determined by
Formula (1) mentioned above, and the angle β of the arcuate holes at the corresponding
position is determined based on the determined opening ratio A and Formula (7).
[0049] As for openings that are non-through holes, the area of the openings is calculated
by multiplying the area of the non-through holes by 0.5.
Fig. 5 is an unfolded view of the surface lighting light source unit according to
the first embodiment of the present invention.
[0050] In the description below, as elements having the same reference numerals in the drawings
are identical elements or elements exerting similar effects, the descriptions thereof
may be omitted.
The surface lighting unit 10 according to the first embodiment includes, as described
above, the footprint portion 11 and the sidewall portions 12
1, 12
2, 12
3, 12
4 all of which constitute the casing 13, and the optical reflector 14.
[0051] The surface lighting unit 10 is formed of a single plate, by folding the plate along
the boundaries of the footprint portion 11, the sidewall portions 12
1, 12
2, 12
3, 12
4, and the optical reflector 14 to make the surface lighting unit 10. In other words,
the surface lighting unit 10 in an unfolded state is on a single continuous plate.
[0052] The footprint portion 11 has a notch 25 forming a hole to place a light source substantially
at the center of the footprint portion 11.
The surface lighting unit 10 according to the present embodiment is formed by folding
a single plate punched out in a prescribed shape. The surface lighting unit 10 according
to the present embodiment can therefore be manufactured easily and at a low cost.
[0053] Fig. 6 is a sectional view of a surface lighting light source device employing the
surface lighting light source unit according to the first embodiment of the present
invention.
This surface lighting light source device 30 according to the present embodiment is
configured by placing a group of light source 26 composed of a single element or an
assembly of plural elements emitting light (e.g., LED) in a hole formed substantially
at the center of the footprint portion 11 of the surface lighting unit 10.
[0054] The scope of the light source 26 includes not only elements that emit light from
themselves such as LEDs or laser diodes (LDs), but also light guided by light guiding
wires or the like. The light source 26 also includes not only point-light sources,
such as LEDs and filament bulbs, but also linear light sources such as cold cathode
tubes. Also, the light source 26 includes not only the case of a single light emitting
element, but also cases in which a plurality of light emitting elements are arranged
closely to one another as an assembly. Further, the light source 26 includes cases
in which light emitting elements of the light's three primary colors of red, blue,
and green are closely arranged.
[0055] Light emitted from the light source 26 reflects at least once on the footprint portion
11, the sidewall portions 12, or the optical reflector 14 and passes through the openings
15. The light is diffused and uniform illumination light can be provided as a result.
[0056] Fig. 7 is a plan view of a surface lighting device employing the surface lighting
light source unit according to the first embodiment of the present invention.
This surface lighting device 40 employing the surface lighting unit 30 is configured
by arranging the surface lighting light source device 30 described above plurally
in a matrix.
[0057] With the surface lighting device 30, a surface lighting device having a desired size
can be configured by changing the number of surface lighting light source devices
30 employed. According to the present embodiment, three-by-three nine surface lighting
light source devices 30 are employed to make the surface lighting device 40.
[0058] Fig. 8 is a partial sectional view of the surface lighting device employing the surface
lighting light source unit according to the first embodiment of the present invention.
The surface lighting device 40 is configured by arranging surface lighting light source
devices 30 each employing the surface lighting light source unit 10 plurally in a
matrix. Fig. 8 is an enlarged sectional view of a boundary region of two surface lighting
light source devices 30.
[0059] In conventional surface lighting devices, point A above a boundary region of surface
lighting light source devices is a place on which light is hardly incident due to
sidewall portions and thus the place remains dark. Consequently, uniform illumination
is not available.
By contrast, in the surface lighting light source unit 10 according to the present
embodiment, the sidewall portions 12
1, 12
2, 12
3, 12
4 have the holes 21 (sidewall holes) communicating with the round holes 20 of the optical
reflector 14. Thanks to the light that has passed through the sidewall holes 21, sufficient
light is provided above the sidewall portions 12
1, 12
2, 12
3, 12
4, and thoroughly uniform illumination light can be provided.
[0060] Fig. 9 is an unfolded view of a surface lighting light source unit according to a
second embodiment of the present invention.
This surface lighting unit 50 according to the second embodiment includes, like the
first surface lighting light source unit, a footprint portion 51 and sidewall portions
52
1, 52
2, 52
3, 52
4 all of which constitute a casing 53, and an optical reflector 54. The footprint portion
51 has a notch 62 for forming a hole to place a light source substantially at the
center thereof.
[0061] The surface lighting unit 50 is formed of a single plate, by folding the plate along
the boundaries of the footprint portion 51, the sidewall portions 52
1, 52
2, 52
3, 52
4, and the optical reflector 54 to make the surface lighting unit 50 in a cube.
[0062] The surface lighting unit 50 according to the second embodiment differs from the
surface lighting light source unit 10 according to the first embodiment in the patterns
of openings 55 of the optical reflector 54.
The openings 55 include non-through holes 56, narrow holes 57, holes 59, and round
holes 60.
[0063] Around the center of the optical reflector 54, a plurality of concentric circular
non-through holes 56 centering on the center O of the optical reflector 54 are provided.
On the outer side of the non-through holes 56, a large number of concentric, non-continuous,
and annular (circular-ring-shaped) narrow holes 57 are formed. The annular narrow
holes 57 are formed in non-continuous annular patterns by connecting parts 58, i.e.,
in a plurality of arcuate patterns.
[0064] Between the narrow holes 57, a large number of concentric, non-continuous, and annular
(circular-ring-shaped) holes 59 are formed in the same manner. The width of the circular-ring-shaped
holes 59 is larger than that of the narrow holes 57. Like the narrow holes 57, the
circular-ring-shaped holes 59 are formed in non-continuous annular patterns by the
connecting parts 58, i.e., in a plurality of arcuate patterns.
[0065] On the outer side of the circular-ring-shaped holes 59, a large number of round holes
(through holes) 60
1, 60
2, ... 60
n are arranged axisymmetrically about the center O of the optical reflector 54.
Further, the sidewall portions 52
1, 52
2, 52
3, 52
4 of the surface lighting unit 50 have holes 61 (sidewall holes) communicating with
the round holes 60 of the optical reflector 54.
[0066] Fig. 10 is an unfolded view of a surface lighting unit according to a third embodiment
of the present invention.
This surface lighting unit 70 according to the third embodiment includes, like the
first surface lighting light source unit, a footprint portion 71 and sidewall portions
72
1, 72
2, 72
3, 72
4 all of which constitute a casing 73, and an optical reflector 74. The footprint portion
71 has a notch 82 for forming a hole to place a light source substantially at the
center thereof.
[0067] The surface lighting unit 70 is formed of a single plate, by folding the plate along
the boundaries of the footprint portion 71, the sidewall portions 72
1, 72
2, 72
3, 72
4, and the optical reflector 74 to make the surface lighting unit 70 in a cube.
[0068] The surface lighting unit 70 according to the third embodiment differs from the surface
lighting unit 10 according to the first embodiment in the patterns of openings 75
of the optical reflector 74.
The openings 75 include non-through holes 76, narrow holes 77, holes 79, and rounds
80.
[0069] Around the center of the optical reflector 74, a plurality of concentric circular
non-through holes 76 centering on the center O of the optical reflector 74 are provided.
On the outer side of the non-through holes 76, a large number of concentric, non-continuous,
and annular (circular-ring-shaped) narrow holes 77 are formed. The annular narrow
holes 77 are formed in non-continuous annular patterns by connecting parts 78, i.e.,
in a plurality of arcuate patterns.
[0070] On the outer side of the narrow holes 77, a large number of concentric, non-continuous,
and annular (circular-ring-shaped) holes 79 are formed in the same manner. The width
of the circular-ring-shaped holes 79 is larger than that of the narrow holes 77. Like
the narrow holes 77, the circular-ring-shaped holes 79 are formed in non-continuous
annular patterns by the connecting parts 78, i.e., in a plurality of arcuate patterns.
[0071] On the outer side of the circular-ring-shaped holes 79, a large number of round holes
(through holes) 80
1, 80
2, ... 80
n are arranged radially about the center O of the optical reflector 74.
While the embodiments of the present invention have been described, it should be noted
that the present invention is not limited thereto, and various configurations can
be employed without departing from the scope of the invention.