

(11) EP 2 210 971 A8

CORRECTED EUROPEAN PATENT APPLICATION

(15) Correction information:

(12)

Corrected version no 1 (W1 A1)

Corrections, see

Bibliography INID code(s) 71

(48) Corrigendum issued on:

27.10.2010 Bulletin 2010/43

(43) Date of publication:

28.07.2010 Bulletin 2010/30

(21) Application number: 09425018.0

(22) Date of filing: 26.01.2009

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Designated Extension States:

AL BA RS

(71) Applicants:

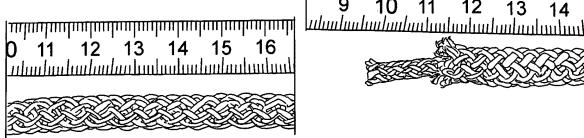
- Politecnico di Milano 20133 Milano (IT)
- Stazione Sperimentale per la Seta 20133 Milano (IT)
- (72) Inventors:
 - Freddi, Giuliano 20133 Milano (IT)

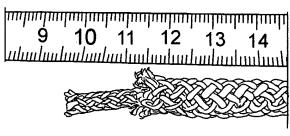
(51) Int Cl.:

D04B 1/22 (2006.01)

A61L 27/18 (2006.01)

- Tanzi, Maria Cristina 20133 Milano (IT)
- Fare', Silvia
 20133 Milano (IT)
- Alessandrino, Antonio 20133 Milano (IT)
- Calimani, Roberto 20129 Milano (IT)
- (74) Representative: Long, Giorgio et al Jacobacci & Partners S.p.A. Via Senato 8 20121 Milano (IT)
- (54) Silk fibroin textile structures as biomimetic prosthetics for the regeneration of tissues and ligaments


(57) The invention concerns a silk fibroin weave structure comprising a concentric tubular outer sheath and an inner core, wherein said sheath is a woven fabric with interlaced loop and said core is a woven fabric with interlaced loop or is braided using a braiding machine.


The silk fibroin used to weave the structure of the invention is a silk yarn with a linear density comprised of between approx. 40 den and approx. 640 den, preferably, the linear density is approx. 80 den or approx. 320 den.

The core of the structure has a mean pore area com-

prised of between 0.001 and 2.000 mm^2 , while the outer sheath has a mean pore area comprised of between 0.005 and 15.000 mm^2

The structure of the invention is used for the in vivo or *in vitro* regeneration of ligaments, particularly the anterior cruciate ligament, tendons, muscles and blood vessels. Furthermore, the structure promotes *in vivo* and *in vitro* cell adhesion and proliferation.

A

В

Fig. 3