| (19) |
 |
|
(11) |
EP 2 213 545 B9 |
| (12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
| (15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see Description |
| (48) |
Corrigendum issued on: |
|
26.09.2012 Bulletin 2012/39 |
| (45) |
Mention of the grant of the patent: |
|
06.06.2012 Bulletin 2012/23 |
| (22) |
Date of filing: 13.06.2008 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/JP2008/060879 |
| (87) |
International publication number: |
|
WO 2009/069328 (04.06.2009 Gazette 2009/23) |
|
| (54) |
TRAIN FORMATION RECOGNITION SYSTEM AND TRAIN FORMATION RECOGNITION APPARATUS
ZUGBILDUNGSERKENNUNGSSYSTEM UND ZUGBILDUNGSERKENNUNGSVORRICHTUNG
SYSTÈME DE RECONNAISSANCE DE FORMATION DE TRAIN ET APPAREIL DE RECONNAISSANCE DE FORMATION
DE TRAIN
|
| (84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL
PT RO SE SI SK TR |
| (30) |
Priority: |
30.11.2007 JP 2007311449
|
| (43) |
Date of publication of application: |
|
04.08.2010 Bulletin 2010/31 |
| (73) |
Proprietor: Mitsubishi Electric Corporation |
|
Tokyo 100-8310 (JP) |
|
| (72) |
Inventors: |
|
- HOMMA, Hidetoshi
Kobe-shi
Hyogo 652-0871 (JP)
- TAKEYAMA, Masayuki
Tokyo 100-8310 (JP)
- MO, Ryuya
Tokyo 100-8310 (JP)
|
| (74) |
Representative: Zech, Stefan Markus et al |
|
Meissner, Bolte & Partner GbR
Postfach 86 06 24 81633 München 81633 München (DE) |
| (56) |
References cited: :
EP-A1- 1 031 488 FR-A1- 2 591 981 JP-A- 1 091 601 JP-A- 6 078 402 JP-A- 2000 302 039 JP-A- 2001 233 202 JP-A- 2006 232 203 US-A1- 2006 180 709
|
EP-A1- 1 065 128 FR-A5- 2 121 297 JP-A- 3 015 203 JP-A- 8 098 303 JP-A- 2001 088 704 JP-A- 2006 148 871 US-A- 6 114 974
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
TECHNICAL FIELD
[0001] The present invention relates to a train configuration recognition system and a train
configuration recognition apparatus that have a function of automatically recognizing
a configuration of a train in which a plurality of railway carriages are joined together.
BACKGROUND ART
[0002] A communication apparatus for railway carriages that has conventionally been known
includes: a configuration controlling unit having an interface that uses a carrier
sense multiple access method; a switching hub that branches a transmission path; and
a switch that disconnects input/output signals to and from the switching hub. The
communication apparatus makes it possible to recognize a configuration of a train
by controlling communications in upstream and downstream directions of the transmission
path by connecting and disconnecting the switch (e.g., Patent Document 1 listed below).
Also
EP 1 031 488 A1 is disclosing such an apparatus.
[0003] In the communication apparatus for railway carriages described in Patent Document
1, failures are avoided by using the switching hub that configures communication apparatuses
so as to have one-to-one communications. In addition, no master communication apparatus
is provided so that it is possible to prevent communication halts within the carriages
and to improve the reliability of the system.
[0004] Patent Document 1: Japanese Patent Application Laid-Open No.
2005-117373
DISCLOSURE OF INVENTION
PROBLEM TO BE SOLVED BY THE INVENTION
[0005] The communication apparatus for railway carriages described in Patent Document 1
uses a method by which the connection relationships among the carriages are detected
by utilizing a transmission function between the communication apparatuses so that
it is possible to recognize the configuration of the train. Thus, a problem arises
where, in the case where a failure has occurred in a communication apparatus, the
transmission path bypasses the carriage in which the communication apparatus having
the failure is installed, and the presence of the carriage therefore becomes obscure.
[0006] To cope with this problem, it is conceivable to utilize regularities in carriage
configurations or in the numbers assigned to the carriages; however, railway carriages
used in, for example, Europe and North America are not necessarily configured in such
a manner that the carriage configurations and the numbers assigned to the carriages
have regularities. Thus, it is not possible to use this idea to solve the problem.
[0007] In view of the circumstances described above, it is an object of the present invention
to provide a train configuration recognition system and a train configuration recognition
apparatus that make it possible to automatically recognize a configuration of a train,
including carriages that are not capable of having communications related to regularities
in the carriage configurations and the numbers assigned to the carriages.
MEANS FOR SOLVING PROBLEM
[0008] To solve the above described problem and to achieve the above described object, a
train configuration recognition system according to claim 1 and a train configuration
recognition apparatus according to claim 9 is described herein.
EFFECT OF THE INVENTION
[0009] The train configuration recognition system according to an aspect of the present
invention includes train end detection switches that are used for detecting ends (i.e.,
the front and the rear ends) of a train and each of which is configured so that a
contact point thereof is closed if carriages are not joined together. At each of two
ends of each of carriage groups, one end and the other end of the corresponding one
of the train end detection switches are respectively connected to one and the other
of a pair of transmission lines that are provided in the train. First and second switches
that are respectively inserted in the pair transmission lines are configured so as
to switch between (a) a state in which a power supply is inserted between the transmission
lines, and also, the pair of transmission lines are segmented and (b) another state
in which the power supply is not inserted. While control is being exercised so that
there is only one location within the train where the power supply is inserted between
the pair of transmission lines, a voltage between the one-end side of a resistor and
a reference end and a voltage between the other-end side of the resistor and the reference
end are measured, the resistor being inserted in at least one of the pair of transmission
lines, so that it is possible to recognize the configuration of the train based on
the measured voltages. Consequently, an advantageous effect is achieved where it is
possible to automatically recognize the configuration of the train, including carriages
that are not capable of having communications related to regularities in the carriage
configurations and the numbers assigned to the carriages.
BRIEF DESCRIPTION OF DRAWINGS
[0010]
FIG. 1 is a drawing of a schematic structure of a train configuration recognition
system according to an embodiment of the present invention.
FIG. 2 is a diagram for illustrating a structure and a connection mode of train configuration
recognition apparatuses according to the embodiment.
FIG. 3 is a diagram of an example of a train configuration used for explaining a principle
of a configuration recognition process.
FIG. 4 is a table of examples of measured voltages and recognition results from the
train configuration illustrated in FIG. 3.
FIG. 5 is a diagram for explaining an operation in the configuration recognition process.
FIG. 6 is a diagram illustrating a state of a circuit in a situation where a conduction
failure has occurred in an automatic coupler.
FIG. 7-1 is a diagram for explaining a measuring operation that is performed in the
case where a conduction failure has occurred in an automatic coupler (steps 21 to
23).
FIG. 7-2 is another diagram for explaining the measuring operation that is performed
in the case where a conduction failure has occurred in an automatic coupler (steps
24 and 25).
FIG. 7-3 is still another diagram for explaining the measuring operation that is performed
in the case where a conduction failure has occurred in an automatic coupler (steps
26 and 27).
FIG. 8 is a diagram illustrating a state of a circuit in a situation where a conduction
failure has occurred in a train end detection switch.
FIG. 9 is a diagram illustrating a state of a circuit in a situation where a failure
has occurred in a constant-current power supply.
FIG. 10 is a diagram illustrating a state of a circuit in a situation where a constant-current
power supply provided at the opposite end of the train is used as a substitution,
in the state illustrated in FIG. 9.
FIG. 11 is a diagram illustrating a state of a circuit in a situation where a failure
has occurred in a voltage detector.
FIG. 12 is a diagram illustrating a state of a circuit in a situation where a wiring
disconnection has occurred in a TCR circuit.
FIG. 13 is a diagram for explaining a measuring operation that is performed in the
case where a wiring disconnection has occurred in a TCR circuit.
EXPLANATIONS OF LETTERS OR NUMERALS
[0011]
- 10:
- train
- 11:
- carriage groups
- 12:
- automatic coupler
- 17, 17a, 17b:
- transmission line
- 20:
- train configuration recognition apparatus
- 21:
- TCR circuit
- 22:
- controlling unit
- 31:
- direct-current voltage source
- 32:
- current source
- 33, 33a, 33b:
- switch
- 34, 34a, 34b:
- resistor
- 35:
- voltage detector
- 41:
- train end detection switch
BEST MODE(S) FOR CARRYING OUT THE INVENTION
[0012] In the following sections, exemplary embodiments of a train configuration recognition
system and a train configuration recognition apparatus according to the present invention
will be explained in detail, with reference to the accompanying drawings. The present
invention is not limited to these exemplary embodiments.
<An overview of a train configuration recognition system>
[0013] First, an overview of a train configuration recognition system in which train configuration
recognition apparatuses are installed will be explained. FIG. 1 is a drawing of a
schematic structure of a train configuration recognition system according to an embodiment
of the present invention. In the example illustrated in FIG. 1, a train 10 includes
a carriage group 11-1 (i.e., married pair #1) and another carriage group 11-2 (i.e.,
married pair #2) in each of which carriages are joined together while two carriages
are used as a unit and that are connected to each other via an automatic coupler 12
that is configured so as to attach and detach the carriage group 11-1 and the group
11-2 easily. A train configuration recognition apparatus (i.e., a Train Configuration
Recognition (TCR) unit) 20 is installed in each of the carriages of the train 10.
The train configuration recognition apparatuses 20 installed in each of the carriages
are connected to one another via transmission lines 17 (transmission lines 17-1 and
17-2). The transmission lines 17 are provided within the carriage groups as conductive
members that form electrical circuits. Also, the transmission lines 17 are connected
to one another via the automatic coupler 12 joining the carriage groups together.
In other words, within the train, the transmission line 17-1 provided in the carriage
group 11-1 is electrically connected to the transmission line 17-2 provided in the
carriage group 11-2, by making use of electrical contact points of the automatic coupler
12, which is a conductive member. In the drawings (including FIG. 1) that are referred
to in the explanation hereinafter, a configuration of a train configured with a plurality
of carriage groups that are joined together while each of the plurality of carriage
groups includes two carriages as a unit is used as an example; however, the train
configuration may be a configuration of a train configured with a plurality of single
carriages that are joined together. Needless to say, it is possible to apply the train
configuration recognition apparatuses according to the present embodiment to such
a train configuration.
<A structure of the train configuration recognition apparatuses>
[0014] Next, a structure and a connection mode of the train configuration recognition apparatuses
will be explained. FIG. 2 is a diagram for illustrating a structure and a connection
mode of the train configuration recognition apparatuses according to the embodiment.
In FIG. 2, a structure that corresponds to one of the carriage groups illustrated
in FIG. 1 is illustrated. In FIG. 2, each of the train configuration recognition apparatuses
20 (20-1 and 20-2) is configured so as to include a train configuration recognition
circuit (i.e., a TCR circuit in the drawing; also, a "TCR circuit" hereinafter) 21
(21-1 or 21-2) that serves as a main circuit of the apparatus and controlling units
22 (22a and 22b) that control an operation of the TCR circuit 21. Provided in each
of the TCR circuits 21 are circuit elements such as a direct-current voltage source
31, a current source 32, switches 33 (33a and 33b), and resistors 34 (34a and 34b)
as well as a functional unit such as a voltage detector 35. These circuit elements
and functional unit are provided in key locations of two transmission lines 17a and
17b that each link together an automatic coupler 12-1 illustrated on the left-hand
side of FIG. 2 and another automatic coupler 12-2 illustrated on the right-hand side
of FIG. 2.
[0015] Between each of the automatic couplers 12 (12-1 and 12-2) and a corresponding one
of the TCR circuits 21 (21-1 and 21-2), a train end detection switch 41 (41-1 or 41-2)
is provided while being connected between the transmission line 17a and the transmission
line 17b. The train end detection switches 41 are switches used for detecting front
and rear ends (hereinafter, the "ends") of the train configuration. Each of the train
end detection switches 41 is configured so that the contact point thereof is in a
closed state while being positioned at an end of the train configuration and so that
the contact point thereof is in an open state in other situations. In the example
illustrated in FIG. 2, of the two carriages (an A-car and a B-car) included in the
carriage group, the train end detection switch 41-1 provided on the A-car side is
on, whereas the train end detection switch 41-2 provided on the B-car side is off.
In other words, the A-car side is positioned at an end of the train configuration.
[0016] It is desirable to configure each of the train end detection switches 41 so as to
be a mechanical switch that operates in conjunction with the corresponding one of
the automatic couplers 12. In terms of the function thereof, it is desirable to configure
each of the train end detection switches 41 so that the contact point thereof is in
an open state while two automatic couplers are connected to each other and so that,
conversely, the contact point thereof is in a closed state while the corresponding
one of the automatic couplers is not connected to another automatic coupler. By configuring
each of the train end detection switches 41 so as to be a mechanical switch as described
above, it is possible to detect the ends of the train configuration without fail.
[0017] In the example illustrated in FIG. 2, the TCR circuit 21-1 provided in the A-car
and the TCR circuit 21-2 provided in the B-car are connected to each other by using
a twisted pair of cables, which has excellent resistance to noises. In this connection,
a twisted pair connection may be realized by twisting such portions of the transmission
lines 17a and 17b that are positioned between the A-car and the B-car, the transmission
lines 17a and 17b being provided between the automatic coupler 12-1 and the automatic
coupler 12-2. Alternatively, another arrangement is acceptable in which the transmission
lines 17a and 17b themselves are configured with a twisted pair of cables. Further,
still another arrangement is also acceptable in which a portion of the A-car and a
portion of the B-car are connected to each other by using a twisted pair cable that
is configured with media that are physically different from each other.
[0018] The controlling units 22 (22a and 22b) control the operation of the corresponding
one of the TCR circuits 21. Also, the controlling units 22 transmit information that
has been processed by the corresponding one of the TCR circuits 21 so that the information
is displayed on a display device or the like (not illustrated). With regard to this
information transmission, it is possible to transmit the information by using a train
communication network (Train Network (not illustrated)) that is different from the
transmission lines 17a and 17b.
<A structure of the TCR circuits>
[0019] Next, a structure of the TCR circuits will be explained. In the TCR circuits 21 illustrated
in FIG. 2, the switch 33a and the resistor 34a are inserted in series in the transmission
line 17a in the stated order, as seen from the automatic coupler 12-1 side. Similarly,
the switch 33b and the resistor 34b are inserted in series in the transmission line
17b in the stated order, as seen from the automatic coupler 12-1 side. Each of the
switches 33a and 33b is a one-circuit two-contact switch that has switch contact points
u1 and u2 and that is controlled by the controlling units 22 or a superordinate controlling
device. The switch contact point u1 of the switch 33a is connected to a terminal on
the positive electrode side (i.e., the side from which the electric current flows
out) of the current source 32, whereas the switch contact point u2 of the switch 33a
is connected to the transmission line 17a on the automatic coupler 12-1 side. Further,
the switch contact point u1 of the switch 33b is connected to a terminal on the negative
electrode side of the direct-current voltage source 31, whereas the switch contact
point u2 of the switch 33b is connected to the transmission line 17b on the automatic
coupler 12-1 side. One end of the resistor 34a is connected to a base point b of the
switch 33a, whereas the other end of the resistor 34a is connected to the transmission
line 17a that is positioned on the opposite side of the automatic coupler 12-1. Further,
one end of the resistor 34b is connected to a base point b of the switch 33b, whereas
the other end is connected to the transmission line 17b that is positioned on the
opposite side of the automatic coupler 12-1.
[0020] With the connections described above, it is possible to structure, within the train,
a plurality of loop circuits by using the train end detection switches, the switches
and the resistors included in the TCR circuits provided in the carriages, and the
transmission lines that connect these circuit elements together. Usually, one loop
that includes all the carriages is structured, as illustrated in FIG. 3.
[0021] In the structure illustrated in FIG. 2, an example is illustrated in which the direct-current
voltage source 31 and the current source 32 are configured so that the positive electrode
side of the direct-current voltage source 31 is connected to the negative electrode
side (i.e., the side from which the electric current flows in) of the current source
32; however, the order may be reversed. In other words, an arrangement is acceptable
in which the positive electrode side of the current source 32 is connected to the
negative electrode side of the direct-current voltage source 31, while the positive
electrode side of the direct-current voltage source 31 is connected to the switch
contact point u1 of the switch 33a, whereas the negative electrode side of the current
source 32 is connected to the switch contact point u1 of the switch 33b.
[0022] Each of the voltage detectors 35 (35-1 and 35-2) is connected between terminals for
the purpose of measuring a voltage (i.e., a first measured voltage: V1) between one
end of the resistor 34a and one end of the resistor 34b as well as a voltage (i.e.,
a second measured voltage: V2) between the other end of the resistor 34a and the other
end of the resistor 34b. As illustrated in FIG. 2, the TCR circuit 21-1 provided in
the A-car and the TCR circuit 21-2 provided in the B-car are configured so that the
circuit structures thereof are line symmetric with respect to an axis that is orthogonal
to a portion of the twisted pair cable. For this reason, the second measured voltage
V2 measured by the voltage detector 35-1 included in the TCR circuit 21-1 is always
equal to the second measured voltage V2 measured by the voltage detector 35-2 included
in the TCR circuit 21-2, except for measurement errors. These measured voltages V1
and V2 are used as pieces of information with which it is possible to recognize the
train configuration. The details of a principle thereof will be explained later.
<A principle of a configuration recognition process>
[0023] Next, a principle of a configuration recognition process by using the TCR circuits
will be explained, with reference to FIGS. 2 and 3. FIG. 3 is a diagram of an example
of a train configuration used for explaining the principle of the configuration recognition
process. Unlike in the example illustrated in FIG. 2, only one of the resistors is
inserted in the transmission line in each of the TCR circuits illustrated in FIG.
3; however, the principle is the same. For example, in the structure illustrated in
FIG. 2, the resistance value of each of the resistors 34a and 34b is configured so
as to be 25 ohms. It is possible to have an equivalent structure by, for example,
configuring the resistance value in the structure illustrated in FIG. 3 so as to satisfy
R=50 ohms.
[0024] Further, in the example illustrated in FIG. 3, a 14-carriage train is configured
with seven carriage groups (i.e., married pairs #1 to #7) that are joined together.
Each of the married pairs #1, #2, #4, and #7 is joined while the carriage group is
oriented in a direction that is opposite from the direction in which the carriage
group is oriented in each of the married pairs #3, #5, and #6. More specifically,
for example, when the married pair #2 is compared with the married pair #3, the A-car
and the B-car are positioned in the opposite order. In other words, the married pair
#2 and the married pair #3 are joined together in such a manner that the respective
B-cars therein are positioned next to each other. Conversely, the married pair #6
and the married pair #7 are joined together in such a manner that the respective A-cars
therein are positioned next to each other. It should be noted, however, that the TCR
circuits according to the present embodiment are capable of recognizing, without any
problems, the manner in which the train is configured, even if the carriage groups
are joined together as described above.
[0025] Next, the state of the train end detection switch and the manner in which the current
source is connected in each of the carriages will be explained. As illustrated in
FIG. 3, the train end detection switches provided in the A-car included in the married
pair #1 and in the B-car included in the married pair #7 are closed, whereas all the
other train end detection switches are open. It should be noted that the train end
detection switch provided in the A-car included in the married pair #1 is not illustrated
in the drawing because the A-car included in the married pair #1 is configured so
as to be, for example, a steering carriage, and also because, in terms of the circuit
structure, the direct-current voltage source 31 and the current source 32 are connected
to the transmission lines by the switches 33a and 33b. For example, in FIG. 2, to
connect the direct-current voltage source 31 and the current source 32 to the transmission
lines 17a and 17b, it is necessary to exercise control so that each of the switches
33a and 33b is switched to the switch contact point u1 side. In this situation, by
the switches 33a and 33b, the train end detection switch 41-1 is disconnected from
such portions of the transmission lines 17a and 17b that are positioned on the right-hand
side of the switches 33a and 33b. As a result, in each of the carriages in which the
direct-current voltage source and the current source are connected between the transmission
lines, the state of the train end detection switch does not have any effect on the
operation of the circuit. As explained here, in each of the carriages while the train
configuration recognition process is being performed, the train end detection switches
provided in the carriages at both ends of the train are closed, whereas the train
end detection switches provided in all the other carriages besides the carriages at
both ends are open. Also, the control is exercised so that the direct-current voltage
source and the current source provided in one of the carriages positioned at both
ends of the train are connected between the transmission lines.
[0026] FIG. 4 is a table of examples of measured voltages and recognition results from the
train configuration illustrated in FIG. 3. In FIG. 4, each of the values listed under
the first measured voltage V1 and the second measured voltage V2 is an absolute value
of the voltage that has been measured by the corresponding one of the voltage detectors.
Each of the values that are placed in the boxes is the voltage value having the larger
absolute value of the two measured voltages. In this situation, the direct-current
voltage value V, the current value I0, and the resistance values R satisfy V=48 volts
DC, I0=50 milliamperes, and R=25 ohms, respectively.
[0027] In FIG. 3, an electric current that satisfies I0=50 milliamperes is flowing in the
circuit. Thus, it is possible to calculate a voltage drop corresponding to one resistor
as I0xR=0.05 amperex25 ohms=1.25 volts. Accordingly, for example, in the B-car included
in the married pair #7, V1=0 volts and V2=1.25 volts are satisfied. After that, for
every resistor being added, the voltage increases by an amount corresponding to the
voltage drop. Accordingly, for example, in the A-car included in the married pair
#7, V1=2.5 volts is satisfied. In this manner, the measured results as illustrated
in FIG. 4 are obtained.
[0028] In addition, in FIG. 4, each of the values illustrated in the farthest right column
of the table is obtained by dividing the value in the box by the value corresponding
to the voltage drop. For example, for the A-car included in the married pair #5, it
is possible to calculate the value as 6.25/1.25=5. As another example, for the B-car
included in the married pair #2, it is possible to calculate the value as 13.75/1.25=11.
It can be observed that these values represent serial numbers identifying the carriages
starting from the B-car included in the married pair #7, which is positioned at the
rear end of the train. To summarize, it is possible to recognize the train configuration
by dividing the larger value of the two absolute values representing the first and
the second measured voltages V1 and V2 that have been measured by each of the voltage
detectors, by the predetermined value (i.e., the value that is determined according
to the direct-current voltage source, the current source, and the resistance values
in the circuit).
<An operation in the configuration recognition process>
[0029] Next, an operation in the configuration recognition process will be explained, with
reference to FIG. 5. FIG. 5 is a diagram for explaining an operation in the configuration
recognition process. An example in which a train is configured with six carriages
is illustrated in FIG. 5. In the explanation below, the direct-current voltage source
31 and the current source 32 will be collectively referred to as a "constant-current
power supply".
[0030] First, a reference carriage in which the constant-current power supply is turned
on (i.e., connected to the transmission lines) is determined. In this process, it
is recognized that a carriage No. uuuu and a carriage No. zzzz are the carriages that
are positioned at the ends of the train, based on the information showing the state
of the train end detection switches each of which is configured so as to be closed
if another carriage is not being joined and so as to be open if another carriage is
being joined. One of the carriages positioned at the two ends of the train is determined
as the reference carriage. It is acceptable to use any method for choosing one of
the two carriages. For example, the one of the carriages having the smaller carriage
number may be determined as the reference carriage (step 11).
[0031] Next, the constant-current power supply is turned on while using the carriage No.
uuuu as the reference carriage, and also, the first measured voltage V1 and the second
measured voltage V2 are measured in each of the carriages (step 12). By dividing the
larger value of the first and the second measured voltages V1 and V2 that have been
measured at step 12 by the predetermined value (i.e., the voltage drop per carriage),
it is recognized, for each of the carriages, in what position the carriage is located
as being counted from the end of the train (e.g., the first carriage from the end,
the second carriage from the end, and so on.) (step 13).
<Operations that are performed in the case where a failure has occurred>
[0032] All the processes described above correspond to operations that are performed in
normal situations. Further, in the case where a failure has occurred in the circuit
or any of the switches or in the case where a wiring disconnection has occurred in
the circuit, it is desirable to be able to back up the configuration recognition function
even if the failure or the abnormality has occurred in one location (hereinafter,
a "single failure"). The train configuration recognition system and the train configuration
recognition apparatuses according to the present embodiment are configured so as to
be fault-tolerant against such single failures. In the explanation below, the following
five items are used as examples of events that can be anticipated as possible failures
or abnormalities. Each of these items will be explained below.
- (1) A conduction failure in any of the automatic couplers
- (2) A conduction failure in any of the train end detection switches
- (3) A failure in any of the constant-current power supplies
- (4) A failure in any of the voltage detectors
- (5) A wiring disconnection in any of the TCR circuits
<An operation that is performed in the case where a failure has occurred: a conduction
failure in any of the automatic couplers>
[0033] FIG. 6 is a diagram illustrating a state of a circuit in a situation where a conduction
failure has occurred in an automatic coupler. In FIG. 6, a conduction failure in the
automatic coupler provided between the married pair #2 and the married pair #3 is
illustrated as an example. In this situation, because the carriage No. xxxx and the
carriage No. yyyy are not electrically connected to each other and because all the
switches between the constant-current power supply and the conduction failure location
are open, no electric current is flowing in the transmission lines. As a result, it
is recognized that the first measured voltages V1 and the second measured voltages
V2 may be organized into a group indicating 48 volts (i.e., Group A) and another group
indicating 0 volts (i.e., Group B). Accordingly, at this stage, it is possible to
determine that some kind of failure has occurred in the boundary portion between Group
A and Group B.
[0034] In this situation, for each of the groups of Group A and Group B, a processing procedure
to detect the positions of the carriages within the group is taken, by sequentially
changing the carriage in which the constant-current power supply is turned on. This
process will be explained below with reference to FIGS. 7-1 to 7-3.
<A position recognition process within Group A>
[0035] In FIG. 7-1, first, the constant-current power supply provided in the carriage No.
vvvv that is positioned adjacent to the carriage No. uuuu is turned on, so that the
measured voltages in that situation are recorded (step 21). In this situation, needless
to say, the constant-current power supply provided in the carriage No. uuuu is not
turned on. The same applies to the processes described below. In other words, only
one constant-current power supply is turned on within each of the groups.
[0036] After that, the constant-current power supply provided in the carriage No. wwww and
the constant-current power supply provided in the carriage No. xxxx are sequentially
turned on (steps 22 and 23). In the present example, when the constant-current power
supply provided in the carriage No. xxxx is turned on, the positions of the four carriages
in Group A are recognized based on the measured voltages that are underlined in FIG.
7-1.
<A position recognition process within Group B>
[0037] A similar process is performed also for Group B. Until the positions of all the carriages
in Group B have been recognized, a command to turn on the constant-current power supply
is issued sequentially to each of the carriages. In the present example, as illustrated
in FIG. 7-2, the constant-current power supplies in the carriage No. yyyy and the
carriage No. zzzz are sequentially turned on in the stated order, so that the measured
voltages are recorded (steps 24 and 25). The positions of the two carriages in Group
B are recognized based on the measured voltages that are underlined in FIG. 7-2. In
the present example, the commands to turn on the constant-current power supplies are
sequentially output, starting from the carriage No. yyyy that is positioned closest
to the conduction failure location; however, another arrangement is acceptable in
which the commands to turn on the constant-current power supplies are sequentially
output, starting from the carriage No. zzzz that is positioned farthest from the conduction
failure location.
<A process to recognize the entire configuration>
[0038] FIG. 7-3 is a drawing illustrating the results from FIGS. 7-1 and 7-2. At step 26,
the configuration of the entirety is recognized. At step 27, the configuration of
the train is recognized. At step 26, within each of the groups, serial numbers (i.e.,
1, 2, and so on) are sequentially assigned to the carriages, starting from the carriage
that is positioned on the opposite side of the position in which the constant-current
power supply was turned on. Thus, by organizing the numbers based on the position
of the constant-current power supply that is turned on at the time of the measurement,
it is possible to recognize the configuration of the entirety.
<An operation that is performed in the case where a failure has occurred: a conduction
failure in any of the train end detection switches>
[0039] FIG. 8 is a diagram illustrating a state of a circuit in a situation where a conduction
failure has occurred in a train end detection switch. In FIG. 8, a situation where
a conduction failure has occurred in a train end detection switch provided in the
married pair #3 is illustrated as an example. In this situation, because all the switches
between the constant-current power supply and the train end detection switch having
the conduction failure are open, no electric current is flowing in the transmission
lines. As a result, all the measured voltages are 48 volts. This state is the same
as the state in a situation where, with a conduction failure in an automatic coupler,
all the measured voltages are organized into Group A so that there is no Group B.
Thus, by using the same method as in the example with a conduction failure in an automatic
coupler, it is possible to recognize the train configuration.
<An operation that is performed in the case where a failure has occurred: a failure
in any of the constant-current power supplies>
[0040] FIG. 9 is a diagram illustrating a state of a circuit in a situation where a failure
has occurred in a constant-current power supply. In FIG. 9, a situation where a failure
has occurred in the constant-current power supply provided in the carriage No. uuuu,
which is used as a reference in the configuration recognition process, is illustrated
as an example. In this situation, the TCR circuit has no power supply so that no electric
current flows in the transmission lines. Also, because no voltage is applied, all
the measured voltages are 0 volts. Thus, as illustrated in FIG. 10, the constant-current
power supply provided in the carriage No. zzzz positioned at the opposite end of the
train is turned on, instead of the constant-current power supply provided in the carriage
No. uuuu. This state is the same as the normal state illustrated in FIG. 5. Thus,
it is possible to recognize the train configuration according to the procedure in
normal situations as described above. It should be noted that, even if a failure has
occurred in the constant-current power supply provided in one of the carriages other
than the carriages positioned at the ends of the train, it is possible to perform
the measuring operation in normal situations, as long as the constant-current power
supply in the carriage positioned at an end of the train is working properly.
<An operation that is performed in the case where a failure has occurred: a failure
in any of the voltage detector>
[0041] FIG. 11 is a diagram illustrating a state of a circuit in a situation where a failure
has occurred in a voltage detector so that it is not possible to perform the measuring
process in at least one of the carriages. In FIG. 11, a situation where a failure
has occurred in the voltage detector provided in the carriage No. wwww, which is one
of intermediate carriages, is illustrated as an example. In this situation, as for
the carriage No. wwww in which the failure has occurred in the voltage detector, because
there is no measurement information thereof, it is not possible to determine the position
thereof based on the information thereof; however, when the positions of the other
carriages have become clear, it is possible to determine the position of the carriage
No. wwww by an elimination method. In other words, it is possible to determine the
position of the carriage in which a failure has occurred in the voltage detector as
the position that is remaining after the positions of all the other carriages have
been determined.
<An operation that is performed in the case where a failure has occurred: a wiring
disconnection in any of the TCR circuits>
[0042] FIG. 12 is a diagram illustrating a state of a circuit in a situation where a wiring
disconnection has occurred in a TCR circuit. In FIG. 12, a situation where a conduction
failure has been caused by a wiring disconnection between the carriage No. wwww and
the carriage No. xxxx in the married pair #2 is illustrated as an example. In this
situation, the state is the same as the state in the example illustrated in FIG. 6
where a conduction failure has occurred in the automatic coupler. Accordingly, the
first measured voltages V1 and the second measured voltages V2 may be organized into
a group indicating 48 volts (i.e., Group A) and another group indicating 0 volts (i.e.,
Group B).
[0043] FIG. 13 is a diagram for explaining a measuring operation that is performed in the
case where a wiring disconnection has occurred in a TCR circuit. In FIG. 13, in Group
A, it is possible to recognize the configuration of the carriage No. uuuu and the
carriage No. vvvv by turning on the constant-current power supply provided in the
carriage No. wwww. Further, in Group B, it is possible to recognize the configuration
of the carriage No. yyyy and the carriage No. zzzz by turning on the constant-current
power supply in the carriage No. yyyy. In this situation, as for the carriage No.
wwww and the carriage No. xxxx that are positioned on one of the sides of the wiring
disconnection location respectively, it is not possible to determine the positions
thereof based on the information thereof; however, like in the example in which a
failure has occurred in a voltage detector, it is possible to determine the positions
of these carriages based on the information regarding the positions of the other carriages.
[0044] As explained above, when the train configuration recognition system and the train
configuration recognition apparatuses according to the present embodiment are used,
it is possible to recognize the positions of the carriages (i.e., the physical position
of each of the carriages indicating the position counted from the front end of the
train such as the first carriage, the second carriage, or the like) even if there
is no regularity in the carriage configuration of a train or in the numbers assigned
to the carriages. In addition, it is possible to recognize the positions of the carriages
that properly respond, without being affected by whether a failure has occurred in
any of the apparatuses. In the case where a failure that has occurred in the apparatuses
is a single failure, it is possible to speculate the positions of the carriages that
do not properly respond, by using the information regarding the positions of the carriages
that properly respond.
[0045] Further, when the train configuration recognition system and the train configuration
recognition apparatuses according to the present embodiment are used, it is possible
to provide the crew members of a train with train configuration information indicating,
for example, which carriage is having a failure or an abnormality, with accuracy and
with high reliability.
[0046] In addition, when the train configuration recognition system and the train configuration
recognition apparatuses according to the present embodiment are used, there is no
need to structure the entirety of the TCR circuits as a dual system. Thus, it is possible
to achieve, without a large increase in the costs, the capability of responding to
a major failure such as a conduction failure between automatic couplers, a conduction
failure in a train end detection switch, a failure in a constant-current power supply,
a failure in a voltage detector, or a wiring disconnection in a TCR circuit.
[0047] Furthermore, according to the present embodiment, the constant-current power supply
is used as the power supply that causes the constant current to flow in the TCR circuits.
Thus, it is possible to supply the constant current to the contact surfaces of the
automatic couplers without being dependent on the number of carriages included in
the train. Consequently, it is possible to keep the contact surfaces of the automatic
couplers in a stable and excellent contact state. In addition, without being dependent
on the number of carriages included in the train, it is possible to supply an electric
current that is substantially constant in a stable and continuous manner.
[0048] In the description of the present embodiment, the power supply that causes the constant
current to flow in the TCR circuits is configured with the constant-current power
supply; however, it is acceptable to use other types of power supplies such as a constant
voltage source, instead of the constant-current power supply.
INDUSTRIAL APPLICABILITY
[0049] As explained above, the communication apparatuses for railway carriages according
to an aspect of the present invention is useful as an invention that makes it possible
to automatically recognize the configuration of a train, without using regularities
in train configurations and in the numbers assigned to the carriages.
1. A train configuration recognition system for recognizing a configuration of a train
(10) configured with a plurality of carriages that are joined together while carriage
groups (11-1, 11-2) each made up of a single carriage or two or more carriages are
used as units, the train configuration recognition system comprising: train end detection
switches (41-1, 41-2) that are respectively provided at two ends of each of the carriage
groups (11-1, 11-2) and each of which is configured so that a contact point thereof
is open if another one of the carriage groups (11-1, 11-2) is joined to a corresponding
one of the two ends and so that the contact point thereof is closed if none of other
carriage groups (11-1, 11-2) is joined to the corresponding one of the two ends; a
pair of transmission lines (17a, 17b) that are provided in the train (10) in such
a manner that, at each of the two ends of each of the carriage groups (11-1, 11-2),
one end of a corresponding one of the train end detection switches (41-1, 41-2) is
connected to one of the pair of transmission lines (17a, 17b), whereas other end of
the corresponding one of the train end detection switches (41-1, 41-2) is connected
to other of the pair of transmission lines (17a, 17b); and train configuration recognition
apparatuses (20-1, 20-2) each of which is provided in a different one of the carriages
and that recognize the configuration of the train (10), wherein one of the train configuration
recognition apparatuses (20-1, 20-2) controls others of the train configuration recognition
apparatuses (20-1, 20-2) within the train (10), and each of the train configuration
recognition apparatuses (20-1, 20-2) includes: a power supply (31, 32) that outputs
a direct current; first and second switches (33a, 33b) that are respectively inserted
in the pair of transmission lines (17a, 17b) and that are configured so as to switch
between (a) a state in which the power supply (31, 32) is inserted between the pair
of transmission lines (17a, 17b), and also, the pair of transmission lines (17a, 17b)
are segmented and (b) another state in which the power supply (31, 32) is not inserted;
a resistor (R1, R2) that is inserted in at least one of the pair of transmission lines
(17a, 17b); a voltage detector (35-1, 35-2) that measures a voltage between the pair
of transmission lines (17a, 17b) at each of both ends of the resistor (R1, R2); and
a controlling unit (22a, 22b) to which the voltages having been measured by the voltage
detector (35-1, 35-2) are input and that recognizes the configuration of the train
(10) and controls the first and the second switches in such a manner that there is
only one location within the train (10) where the power supply (31, 32) is inserted
between the pair of transmission lines (17a, 17b).
2. The train configuration recognition system according to claim 1, wherein the controlling
unit (22a, 22b) exercises control so that the power supply (31, 32) is inserted between
the pair of transmission lines (17a, 17b) in one of such carriages in which the train
end detection switch is closed.
3. The train configuration recognition system according to claim 1, wherein in a case
where an abnormality has been detected in any of measured voltage values that have
been measured by the voltage detectors (35-1, 35-2) provided in the carriages, the
controlling unit (22a, 22b) repeatedly changes a location in which the power supply
(31, 32) is inserted and recognizes the configuration of the train based on the voltages
that have been measured by the voltage detectors (35-1, 35-2) with the repeatedly-changed
insertion locations.
4. The train configuration recognition system according to claim 1, wherein the power
supply (31, 32) is a constant-current power supply (31, 32).
5. The train configuration recognition system according to claim 1, wherein the pair
of transmission lines (17a, 17b) are connected via automatic couplers that realize
the joining between the carriage groups (11-1, 11-2).
6. The train configuration recognition system according to claim 1, wherein the train
end detection switches (41-1, 41-2) are mechanical switches that operate in conjunction
with the automatic couplers.
7. The train configuration recognition system according to claim 1, wherein in a case
where measured voltage values in all the carriages of the train are zero, such a power
supply (31, 32) is turned on that is contained in a carriage group positioned on an
opposite end from the carriage group in which the power supply (31, 32) has so far
been turned on and that is provided in a carriage positioned on a side where no carriage
from other carriage groups (11-1, 11-2) is joined to an end thereof.
8. The train configuration recognition system according to claim 3, wherein the controlling
unit (22a, 22b) identifies a location in which a failure has occurred by comparing
the measured voltage values that have been measured by the voltage detectors (35-1,
35-2) provided in the carriages, and based on a result of the comparing of the measured
voltage values and information regarding the location that has been identified as
where the failure has occurred, the controlling unit (22a, 22b) identifies a cause
of the failure, which is one of following: a conduction failure in any of the automatic
couplers; a conduction failure in any of the train end detection switches (41-1, 41-2);
a failure in any of the power supplies (31, 32); a failure in any of the voltage detectors
(35-1, 35-2); a wiring disconnection in any of the transmission lines (17a, 17b).
9. A train configuration recognition apparatus that is provided in each of a plurality
of carriages and is included in a train configuration recognition system for recognizing
a configuration of a train configured with the plurality of carriages that are joined
together while carriage groups (11-1, 11-2) each made up of a single carriage or two
or more carriages are used as units, the train configuration recognition system including,
at two ends of each of the carriage groups (11-1, 11-2), train end detection switches
(41-1, 41-2) each of which is configured so that a contact point thereof is open if
another one of the carriage groups (11-1, 11-2) is joined to a corresponding one of
the two ends and so that the contact point thereof is closed if none of other carriage
groups (11-1, 11-2) is joined to the corresponding one of the two ends, and the train
configuration recognition apparatus comprising: a power supply (31, 32) that outputs
a direct current; first and second switches (33a, 33b) that are respectively inserted
in a pair of transmission lines (17a, 17b) and that are configured so as to switch
between (a) a state in which the power supply (31, 32) is inserted between the pair
of transmission lines (17a, 17b), and also, the pair of transmission lines (17a, 17b)
are segmented and (b) another state in which the power supply (31, 32) is not inserted,
the pair of transmission lines (17a, 17b) being provided in the train in such a manner
that, at each of the two ends of each of the carriage groups (11-1,11-2), one end
of a corresponding one of the train end detection switches (41-1, 41-2) is connected
to one of the pair of transmission lines (17a, 17b), whereas other end of the corresponding
one of the train end detection switches (41-1, 41-2) is connected to other of the
pair of transmission lines (17a, 17b); a resistor (R1, R2) that is inserted in at
least one of the pair of transmission lines (17a, 17b); a voltage detector (35-1,
35-2) that measures a voltage between the pair of transmission lines (17a, 17b) at
each of both ends of the resistor (R1, R2); and a controlling unit (22a, 22b) to which
the voltages having been measured by the voltage detector (35-1, 35-2) are input and
that recognizes the configuration of the train and controls the first and the second
switches in such a manner that there is only one location within the train where the
power supply (31, 32) is inserted between the pair of transmission lines (17a, 17b),
wherein one of train configuration recognition apparatuses (20-1, 20-2) controls others
of the train configuration recognition apparatuses (20-1, 20-2) within the train.
10. The train configuration recognition apparatus according to claim 9, wherein the controlling
unit (22a, 22b) exercises control so that the power supply (31, 32) is inserted between
the pair of transmission lines (17a, 17b) in one of such carriages in which the train
end detection switch is closed.
11. The train configuration recognition apparatus according to claim 9, wherein in a case
where an abnormality has been detected in any of measured voltage values that have
been measured by the voltage detectors (35-1, 35-2) provided in the carriages, the
controlling unit (22a, 22b) repeatedly changes a location in which the power supply
(31, 32) is inserted and recognizes the configuration of the train based on the voltages
that have been measured by the voltage detectors (35-1, 35-2) with the repeatedly-changed
insertion locations.
12. The train configuration recognition apparatus according to claim 9, wherein the power
supply (31, 32) is a constant-current power supply (31, 32).
13. The train configuration recognition apparatus according to claim 9, wherein the pair
of transmission lines (17a, 17b) are connected via automatic couplers that realize
the joining between the carriage groups (11-1, 11-2).
14. The train configuration recognition apparatus according to claim 9, wherein the train
end detection switches (41-1, 41-2) are mechanical switches that operate in conjunction
with the automatic couplers.
15. The train configuration recognition apparatus according to claim 9, wherein in a case
where measured voltage values in all the carriages of the train are zero, such a power
supply (31, 32) is turned on that is contained in a carriage group positioned on an
opposite end from the carriage group in which the power supply (31, 32) has so far
been turned on and that is provided in a carriage positioned on a side where no carriage
from other carriage groups (11-1, 11-2) is joined to an end thereof.
16. The train configuration recognition apparatus according to claim 11, wherein the controlling
unit (22a, 22b) identifies a location in which a failure has occurred by comparing
the measured voltage values that have been measured by the voltage detectors (35-1,
35-2) provided in the carriages, and based on a result of the comparing of the measured
voltage values and information regarding the location that has been identified as
where the failure has occurred, the controlling unit (22a, 22b) identifies a cause
of the failure, which is one of following:
a conduction failure in any of the automatic couplers; a conduction failure in any
of the train end detection switches (41-1, 41-2); a failure in any of the power supplies
(31, 32); a failure in any of the voltage detectors (35-1, 35-2); a wiring disconnection
in any of the transmission lines (17a, 17b).
1. Zugzusammenstellungserkennungssystem zum Erkennen einer Zusammenstellung eines Zugs
(10), der aus einer Mehrzahl von Waggons zusammengestellt ist, die miteinander verbunden
sind, und dabei Waggongruppen (11-1, 11-2), die sich jeweils aus einem einzelnen Waggon
oder zwei oder mehr Waggons zusammensetzen, als Einheiten verwendet werden, wobei
das Zugzusammenstellungserkennungssystem umfasst:
Zugendeerfassungsschalter (41-1, 41-2), die jeweils an beiden Enden jeder der Waggongruppen
(11-1, 11-2) vorgesehen sind, und wovon jeder so ausgelegt ist, dass ein Kontaktpunkt
davon offen ist, wenn eine andere der Waggongruppen (11-1, 11-2) mit einem entsprechenden
der beiden Enden verbunden ist, und so, dass der Kontaktpunkt davon geschlossen ist,
wenn keine der anderen Waggongruppen (11-1, 11-2) mit dem entsprechenden der beiden
Enden verbunden ist; ein Paar Übertragungsleitungen (17a, 17b), die im Zug (10) auf
eine solche Weise vorgesehen sind, dass an jedem der beiden Enden der Waggongruppen
(11-1, 11-2) ein Ende eines entsprechenden Schalters der Zugendeerfassungsschalter
(41-1, 41-2) an eine Leitung des Paars Übertragungsleitungen (17a, 17b) angeschlossen
ist, wohingegen das andere Ende des entsprechenden Schalters der Zugendeerfassungsschalter
(41-1, 41-2) an die andere Leitung des Paars Übertragungsleitungen (17a, 17b) angeschlossen
ist; und
Zugzusammenstellungserkennungsvorrichtungen (20-1, 20-2), wovon jede in einem anderen
der Waggons vorgesehen ist, und die die Zusammenstellung des Zugs (10) erkennen, wobei
eine der Zugzusammenstellungserkennungsvorrichtungen (20-1, 20-2) die andere der Zugzusammenstellungserkennungsvorrichtungen
(20-1, 20-2) im Zug (10) steuert, und jeder der Zugzusammenstellungserkennungsvorrichtungen
(20-1, 20-2) umfasst: eine Stromversorgung (31, 32), die einen Gleichstrom ausgibt;
erste und zweite Schalter (33a, 33b), die jeweils in das Paar Übertragungsleitungen
(17a, 17b) eingesetzt sind, und die so ausgelegt sind, dass zwischen (a) einem Zustand,
in dem die Stromversorgung (31, 32) zwischen dem Paar Übertragungsleitungen (17a,
17b) zwischengeschaltet ist, und auch das Paar Übertragungsleitungen (17a, 17b) in
Segmente unterteilt ist, und (b) einem anderen Zustand umgeschaltet wird, in dem die
Stromversorgung (31, 32) nicht zwischengeschaltet ist; einen Widerstand (R1, R2),
der in mindestens eine Leitung des Paars Übertragungsleitungen (17a, 17b) eingesetzt
ist; einen Spannungsdetektor (35-1, 35-2), der eine Spannung zwischen dem Paar Übertragungsleitungen
(17a, 17b) an jedem der beiden Enden des Widerstands (R1, R2) misst; und eine Steuereinheit
(22a, 22b), in die die Spannungen, die durch den Spannungsdetektor (35-1, 35-2) gemessen
wurden, eingegeben werden, und die die Zusammenstellung des Zugs (10) erkennt und
die ersten und zweiten Schalter auf eine solche Weise steuert, dass es nur eine Stelle
im Zug (10) gibt, an der die Stromversorgung (31, 32) zwischen das Paar Übertragungsleitungen
(17a, 17b) zwischengeschaltet ist.
2. Zugzusammenstellungserkennungssystem nach Anspruch 1, wobei die Steuereinheit (22a,
22b) eine Steuerung so ausübt, dass die Stromversorgung (31, 32) in einem der Waggons,
bei dem der Zugendeerfassungsschalter geschlossen ist, zwischen das Paar Übertragungsleitungen
(17a, 17b) zwischengeschaltet wird.
3. Zugzusammenstellungserkennungssystem nach Anspruch 1, wobei im Falle, dass eine Normabweichung
in irgendeinem von Spannungsmesswerten, die durch die in den Waggons vorgesehenen
Spannungsdetektoren (35-1, 35-2) gemessen wurden, erfasst wurde, die Steuereinheit
(22a, 22b) wiederholt eine Stelle wechselt, an der die Stromversorgung (31, 32) zwischengeschaltet
wird, und die Zusammenstellung des Zugs auf Grundlage der Spannungen erkennt, die
durch die Spannungsdetektoren (35-1, 35-2) bei den wiederholt gewechselten Zwischenschaltungsstellen
gemessen wurden.
4. Zugzusammenstellungserkennungssystem nach Anspruch 1, wobei es sich bei der Stromversorgung
(31, 32) um eine Konstantstromversorgung (31, 32) handelt.
5. Zugzusammenstellungserkennungssystem nach Anspruch 1, wobei das Paar Übertragungsleitungen
(17a, 17b) über automatische Koppler angeschlossen sind, die die Verbindung zwischen
den Waggongruppen (11-1, 11-2) herstellen.
6. Zugzusammenstellungserkennungssystem nach Anspruch 1, wobei es sich bei den Zugendeerfassungsschaltern
(41-1, 41-2) um mechanische Schalter handelt, die in Zusammenwirkung mit den automatischen
Kopplern arbeiten.
7. Zugzusammenstellungserkennungssystem nach Anspruch 1, wobei in einem Fall, dass Spannungsmesswerte
in allen Waggons des Zugs null betragen, eine solche Stromversorgung (31, 32) eingeschaltet
wird, die in einer Waggongruppe enthalten ist, die sich an einem Ende befindet, das
der Waggongruppe entgegengesetzt ist, in der die Stromversorgung (31, 32) bis dahin
eingeschaltet war, und die in einem Waggon vorgesehen ist, der sich auf einer Seite
befindet, auf der kein Waggon aus anderen Waggongruppen (11-1, 11-2) mit einem Ende
von diesem verbunden ist.
8. Zugzusammenstellungserkennungssystem nach Anspruch 3, wobei die Steuereinheit (22a,
22b) eine Stelle identifiziert, an der ein Fehler aufgetreten ist, indem sie die Spannungsmesswerte
vergleicht, die durch die in den Waggons vorgesehenen Spannungsdetektoren (35-1, 35-2)
gemessen wurden, und die Steuereinheit (22a, 22b) auf Grundlage eines Ergebnisses
des Vergleichs der Spannungsmesswerte und Information hinsichtlich der Stelle, die
als die Stelle identifiziert wurde, wo der Fehler aufgetreten ist, eine Ursache des
Fehlers identifiziert, bei dem es sich um einen der folgenden Fehler handelt: einen
Leitungsfehler in einem der automatischen Koppler; einen Leitungsfehler in einem der
Zugendeerfassungsschalter (41-1, 41-2); einen Fehler in einer der Stromversorgungen
(31, 32); einen Fehler in einem der Spannungsdetektoren (35-1, 35-2); eine Leitungsunterbrechung
in einer der Übertragungsleitungen (17a, 17b).
9. Zugzusammenstellungserkennungsvorrichtung, die in jedem von einer Mehrzahl von Waggons
vorgesehen und in einem Zugzusammenstellungserkennungssystem zum Erkennen einer Zusammenstellung
eines Zugs enthalten ist, der aus einer Mehrzahl von Waggons zusammengestellt ist,
die miteinander verbunden sind, und dabei Waggongruppen (11-1, 11-2), die sich jeweils
aus einem einzelnen Waggon oder zwei oder mehr Waggons zusammensetzen, als Einheiten
verwendet werden, wobei das Zugzusammenstellungserkennungssystem an beiden Enden jeder
der Waggongruppen (11-1, 11-2) Zugendeerfassungsschalter (41-1, 41-2) umfasst, wovon
jeder so ausgelegt ist, dass ein Kontaktpunkt davon offen ist, wenn eine andere der
Waggongruppen (11-1, 11-2) mit einem entsprechenden der beiden Enden verbunden ist,
und so, dass der Kontaktpunkt davon geschlossen ist, wenn keine der anderen Waggongruppen
(11-1, 11-2) mit dem entsprechenden der beiden Enden verbunden ist, und wobei die
Zugzusammenstellungserkennungsvorrichtung umfasst: eine Stromversorgung (31, 32),
die einen Gleichstrom ausgibt; erste und zweite Schalter (33a, 33b), die jeweils in
ein Paar Übertragungsleitungen (17a, 17b) eingesetzt sind, und die so ausgelegt sind,
dass zwischen (a) einem Zustand, in dem die Stromversorgung (31, 32) zwischen das
Paar Übertragungsleitungen (17a, 17b) zwischengeschaltet ist, und auch das Paar Übertragungsleitungen
(17a, 17b) in Segmente unterteilt ist, und (b) einem anderen Zustand umgeschaltet
wird, in dem die Stromversorgung (31, 32) nicht zwischengeschaltet ist, wobei das
Paar Übertragungsleitungen (17a, 17b) im Zug auf eine solche Weise vorgesehen ist,
das an jedem der beiden Enden jeder der Waggongruppen (11-1, 11-2) ein Ende eines
entsprechenden Schalters der Zugendeerfassungsschalter (41-1, 41-2) an eine Leitung
des Paars Übertragungsleitungen (17a, 17b) angeschlossen ist, wohingegen das andere
Ende des entsprechenden Schalters der Zugendeerfassungsschalter (41-1, 41-2) an die
andere Leitung des Paars Übertragungsleitungen (17a, 17b) angeschlossen ist; einen
Widerstand (R1, R2), der in mindestens eine Leitung des Paars Übertragungsleitungen
(17a, 17b) eingesetzt ist; einen Spannungsdetektor (35-1, 35-2), der eine Spannung
zwischen dem Paar Übertragungsleitungen (17a, 17b) an jedem der beiden Enden des Widerstands
(R1, R2) misst; und eine Steuereinheit (22a, 22b), in die die Spannungen, die durch
den Spannungsdetektor (35-1, 35-2) gemessen wurden, eingegeben werden, und die die
Zusammenstellung des Zugs erkennt und die ersten und zweiten Schalter auf eine solche
Weise steuert, dass es nur eine Stelle im Zug gibt, an der die Stromversorgung (31,
32) zwischen das Paar Übertragungsleitungen (17a, 17b) zwischengeschaltet ist, wobei
eine der Zugzusammenstellungserkennungsvorrichtungen (20-1, 20-2) die andere der Zugzusammenstellungserkennungsvorrichtungen
(20-1, 20-2) im Zug steuert.
10. Zugzusammenstellungserkennungsvorrichtung nach Anspruch 9, wobei die Steuereinheit
(22a, 22b) eine Steuerung so ausübt, dass die Stromversorgung (31, 32) in einem der
Waggons, bei dem der Zugendeerfassungsschalter geschlossen ist, zwischen das Paar
Übertragungsleitungen (17a, 17b) zwischengeschaltet wird.
11. Zugzusammenstellungserkennungsvorrichtung nach Anspruch 9, wobei im Falle, dass eine
Normabweichung in irgendeinem von Spannungsmesswerten, die durch die in den Waggons
vorgesehenen Spannungsdetektoren (35-1, 35-2) gemessen wurden, erfasst wurde, die
Steuereinheit (22a, 22b) wiederholt eine Stelle wechselt, an der die Stromversorgung
(31, 32) zwischengeschaltet wird, und die Zusammenstellung des Zugs auf Grundlage
der Spannungen erkennt, die durch die Spannungsdetektoren (35-1, 35-2) bei den wiederholt
gewechselten Zwischenschaltungsstellen gemessen wurden.
12. Zugzusammenstellungserkennungsvorrichtung nach Anspruch 9, wobei es sich bei der Stromversorgung
(31, 32) um eine Konstantstromversorgung (31, 32) handelt.
13. Zugzusammenstellungserkennungsvorrichtung nach Anspruch 9, wobei das Paar Übertragungsleitungen
(17a, 17b) über automatische Koppler angeschlossen sind, die die Verbindung zwischen
den Waggongruppen (11-1, 11-2) herstellen.
14. Zugzusammenstellungserkennungsvorrichtung nach Anspruch 9, wobei es sich bei den Zugendeerfassungsschaltern
(41-1, 41-2) um mechanische Schalter handelt, die in Zusammenwirkung mit den automatischen
Kopplern arbeiten.
15. Zugzusammenstellungserkennungsvorrichtung nach Anspruch 9, wobei in einem Fall, dass
Spannungsmesswerte in allen Waggons des Zugs null betragen, eine solche Stromversorgung
(31, 32) eingeschaltet wird, die in einer Waggongruppe enthalten ist, die sich an
einem Ende befindet, das der Waggongruppe entgegengesetzt ist, in der die Stromversorgung
(31, 32) bis dahin eingeschaltet war, und die in einem Waggon vorgesehen ist, der
sich auf einer Seite befindet, auf der kein Waggon aus anderen Waggongruppen (11-1,
11-2) mit einem Ende von diesem verbunden ist.
16. Zugzusammenstellungserkennungsvorrichtung nach Anspruch 11, wobei die Steuereinheit
(22a, 22b) eine Stelle identifiziert, an der ein Fehler aufgetreten ist, indem sie
die Spannungsmesswerte vergleicht, die durch die in den Waggons vorgesehenen Spannungsdetektoren
(35-1, 35-2) gemessen wurden, und die Steuereinheit (22a, 22b) auf Grundlage eines
Ergebnisses des Vergleichs der Spannungsmesswerte und Information hinsichtlich der
Stelle, die als die Stelle identifiziert wurde, wo der Fehler aufgetreten ist, eine
Ursache des Fehlers identifiziert, bei dem es sich um einen der folgenden Fehler handelt:
einen Leitungsfehler in einem der automatischen Koppler; einen Leitungsfehler in einem
der Zugendeerfassungsschalter (41-1, 41-2); einen Fehler in einer der Stromversorgungen
(31, 32); einen Fehler in einem der Spannungsdetektoren (35-1, 35-2); eine Leitungsunterbrechung
in einer der Übertragungsleitungen (17a, 17b).
1. Système de reconnaissance de formation de train destiné à reconnaître une formation
d'un train (10) formé d'une pluralité de voitures qui sont assemblées les unes aux
autres, des groupes de voitures (11-1, 11-2) composés chacun d'une seule voiture ou
de deux voitures ou plus étant utilisés comme unités, le système de reconnaissance
de formation de train comprenant : des interrupteurs de détection d'extrémité de train
(41-1, 41-2) qui sont disposés respectivement à deux extrémités de chacun des groupes
de voitures (11-1, 11-2) et dont chacun est configuré de telle sorte qu'un point de
contact de celui-ci soit ouvert si un autre des groupes de voitures (11-1, 11-2) est
assemblé à l'une correspondante des deux extrémités et de telle sorte que le point
de contact de celui-ci soit fermé si aucun des autres groupes de voitures (11-1, 11-2)
n'est assemblé à l'une correspondante des deux extrémités ; une paire de lignes de
transmission (17a, 17b) qui sont disposées dans le train (10) de telle manière que,
à chacune des deux extrémités de chacun des groupes de voitures (11-1, 11-2), une
extrémité de l'un correspondant des interrupteurs de détection d'extrémité de train
(41-1, 41-2) soit connectée à une ligne de transmission de la paire de lignes de transmission
(17a, 17b), tandis que l'autre extrémité de l'un correspondant des interrupteurs de
détection d'extrémité de train (41-1, 41-2) est connectée à l'autre ligne de transmission
de la paire de lignes de transmission (17a, 17b) ; et des appareils de reconnaissance
de formation de train (20-1, 20-2), chacun étant disposé dans une voiture différente,
et qui reconnaissent la formation du train (10), l'un des appareils de reconnaissance
de formation de train (20-1, 20-2) commandant l'autre des appareils de reconnaissance
de formation de train (20-1, 20-2) au sein du train (10), et chacun des appareils
de reconnaissance de formation de train (20-1, 20-2) inclut : une alimentation électrique
(31, 32) qui délivre un courant direct ; des premiers et deuxièmes interrupteurs (33a,
33b) qui sont respectivement insérés dans la paire de lignes de transmission (17a,
17b) et qui sont configurés de façon à commuter entre (a) un état dans lequel l'alimentation
électrique (31, 32) est insérée entre la paire de lignes de transmission (17a, 17b)
ainsi que dans lequel la paire de lignes de transmission (17a, 17b) est segmentée,
et (b) un autre état dans lequel l'alimentation électrique (31, 32) n'est pas insérée
; une résistance (R1, R2) qui est insérée dans au moins une ligne de transmission
de la paire de lignes de transmission (17a, 17b) ; un détecteur de tension (35-1,
35-2) qui mesure une tension entre la paire de lignes de transmission (17a, 17b) à
chacune des deux extrémités de la résistance (R1, R2) ; et une unité de commande (22a,
22b) dans laquelle les tensions ayant été mesurées par le détecteur de tension (35-1,
35-2) sont entrées et qui reconnaît la formation du train (10) et commande les premiers
et les deuxièmes interrupteurs de telle manière qu'il y ait un seul emplacement au
sein du train (10) où l'alimentation électrique (31, 32) est insérée entre la paire
de lignes de transmission (17a, 17b).
2. Le système de reconnaissance de formation de train selon la revendication 1, où l'unité
de commande (22a, 22b) exerce une commande de telle sorte que l'alimentation électrique
(31, 32) soit insérée entre la paire de lignes de transmission (17a, 17b) dans l'une
des voitures dans lesquelles l'interrupteur de détection d'extrémité de train est
fermé.
3. Le système de reconnaissance de formation de train selon la revendication 1, où, dans
le cas où une anomalie a été détectée dans l'une quelconque des valeurs de tension
qui ont été mesurées par les détecteurs de tension (35-1, 35-2) disposés dans les
voitures, l'unité de commande (22a, 22b) modifie de manière répétée un emplacement
dans lequel l'alimentation électrique (31, 32) est insérée et reconnaît la formation
du train sur la base des tensions qui ont été mesurées par les détecteurs de tension
(35-1, 35-2) avec les emplacements d'insertion modifiés de manière répétée.
4. Le système de reconnaissance de formation de train selon la revendication 1, où l'alimentation
électrique (31, 32) est une alimentation électrique à courant constant (31, 32).
5. Le système de reconnaissance de formation de train selon la revendication 1, où la
paire de lignes de transmission (17a, 17b) est connectée via des coupleurs automatiques
qui réalisent l'assemblage entre les groupes de voitures (11-1, 11-2).
6. Le système de reconnaissance de formation de train selon la revendication 1, où les
interrupteurs de détection d'extrémité de train (41-1, 41-2) sont des interrupteurs
mécaniques qui fonctionnent en association avec les coupleurs automatiques.
7. Le système de reconnaissance de formation de train selon la revendication 1, où, dans
le cas où des valeurs de tension mesurées dans toutes les voitures du train sont égales
à zéro, on active l'alimentation électrique (31, 32) qui est contenue dans un groupe
de voitures positionné à une extrémité opposée au groupe de voitures dans lequel l'alimentation
électrique (31, 32) était activée jusque-là et qui est disposée dans une voiture positionnée
d'un côté où aucune voiture d'autres groupes de voitures (11-1, 11-2) n'est assemblée
à une extrémité de ceux-ci.
8. Le système de reconnaissance de formation de train selon la revendication 3, où l'unité
de commande (22a, 22b) identifie un emplacement dans lequel un défaut est survenu
en comparant les valeurs de tension qui ont été mesurées par les détecteurs de tension
(35-1, 35-2) disposés dans les voitures, et sur la base d'un résultat de la comparaison
des valeurs de tension mesurées et d'informations concernant l'emplacement qui a été
identifié comme celui où le défaut est survenu, l'unité de commande (22a, 22b) identifie
une cause du défaut, qui est l'une des causes suivantes : un défaut de conduction
dans l'un quelconque des coupleurs automatiques ; un défaut de conduction dans l'un
quelconque des interrupteurs de détection d'extrémité de train (41-1, 41-2) ; un défaut
dans l'une quelconque des alimentations électriques (31, 32) ; un défaut dans l'un
quelconque des détecteurs de tension (35-1, 35-2) ; une déconnexion de câblage dans
l'une quelconque des lignes de transmission (17a, 17b).
9. Appareil de reconnaissance de formation de train qui est disposé dans chacune d'une
pluralité de voitures et est inclus dans un système de reconnaissance de formation
de train en vue de reconnaître une formation d'un train formé de la pluralité de voitures
qui sont assemblées les unes aux autres, des groupes de voitures (11-1, 11-2) composés
chacun d'une seule voiture ou de deux voitures ou plus étant utilisés comme unités,
le système de reconnaissance de formation de train comprenant, à deux extrémités de
chacun des groupes de voitures (11-1, 11-2), des interrupteurs de détection d'extrémité
de train (41-1, 41-2) dont chacun est configuré de telle sorte qu'un point de contact
de celui-ci soit ouvert si un autre des groupes de voitures (11-1, 11-2) est assemblé
à l'une correspondante des deux extrémités et de telle sorte que le point de contact
de celui-ci soit fermé si aucun des autres groupes de voitures (11-1, 11-2) n'est
assemblé à l'une correspondante des deux extrémités, et l'appareil de reconnaissance
de formation de train comprenant : une alimentation électrique (31, 32) qui délivre
un courant direct ; des premiers et deuxièmes interrupteurs (33a, 33b) qui sont respectivement
insérés dans une paire de lignes de transmission (17a, 17b) et qui sont configurés
de façon à commuter entre (a) un état dans lequel l'alimentation électrique (31, 32)
est insérée entre la paire de lignes de transmission (17a, 17b) ainsi que dans lequel
la paire de lignes de transmission (17a, 17b) est segmentée, et (b) un autre état
dans lequel l'alimentation électrique (31, 32) n'est pas insérée, la paire de lignes
de transmission (17a, 17b) étant disposée dans le train de telle manière que, à chacune
des deux extrémités de chacun des groupes de voitures (11-1, 11-2), une extrémité
de l'un correspondant des interrupteurs de détection d'extrémité de train (41-1, 41-2)
soit connectée à une ligne de transmission de la paire de lignes de transmission (17a,
17b), tandis que l'autre extrémité de l'un correspondant des interrupteurs de détection
d'extrémité de train (41-1, 41-2) est connectée à l'autre ligne de transmission de
la paire de lignes de transmission (17a, 17b) ; une résistance (R1, R2) qui est insérée
dans au moins une ligne de transmission de la paire de lignes de transmission (17a,
17b) ; un détecteur de tension (35-1, 35-2) qui mesure une tension entre la paire
de lignes de transmission (17a, 17b) à chacune des deux extrémités de la résistance
(R1, R2) ; et une unité de commande (22a, 22b) dans laquelle les tensions ayant été
mesurées par le détecteur de tension (35-1, 35-2) sont entrées et qui reconnaît la
formation du train et commande les premiers et les deuxièmes interrupteurs de telle
manière qu'il y ait un seul emplacement au sein du train où l'alimentation électrique
(31, 32) est insérée entre la paire de lignes de transmission (17a, 17b), l'un des
appareils de reconnaissance de formation de train (20-1, 20-2) commandant l'autre
des appareils de reconnaissance de formation de train (20-1, 20-2) au sein du train.
10. L'appareil de reconnaissance de formation de train selon la revendication 9, où l'unité
de commande (22a, 22b) exerce une commande de telle sorte que l'alimentation électrique
(31, 32) soit insérée entre la paire de lignes de transmission (17a, 17b) dans l'une
des voitures dans lesquelles l'interrupteur de détection d'extrémité de train est
fermé.
11. L'appareil de reconnaissance de formation de train selon la revendication 9, où, dans
le cas où une anomalie a été détectée dans l'une quelconque des valeurs de tension
qui ont été mesurées par les détecteurs de tension (35-1, 35-2) disposés dans les
voitures, l'unité de commande (22a, 22b) modifie de manière répétée un emplacement
dans lequel l'alimentation électrique (31, 32) est insérée et reconnaît la formation
du train sur la base des tensions qui ont été mesurées par les détecteurs de tension
(35-1, 35-2) avec les emplacements d'insertion modifiés de manière répétée.
12. L'appareil de reconnaissance de formation de train selon la revendication 9, où l'alimentation
électrique (31, 32) est une alimentation électrique à courant constant (31, 32).
13. L'appareil de reconnaissance de formation de train selon la revendication 9, où la
paire de lignes de transmission (17a, 17b) est connectée via des coupleurs automatiques
qui réalisent l'assemblage entre les groupes de voitures (11-1, 11-2).
14. L'appareil de reconnaissance de formation de train selon la revendication 9, où les
interrupteurs de détection d'extrémité de train (41-1, 41-2) sont des interrupteurs
mécaniques qui fonctionnent en association avec les coupleurs automatiques.
15. L'appareil de reconnaissance de formation de train selon la revendication 9, où, dans
le cas où des valeurs de tension mesurées dans toutes les voitures du train sont égales
à zéro, on active l'alimentation électrique (31, 32) qui est contenue dans un groupe
de voitures positionné à une extrémité opposée au groupe de voitures dans lequel l'alimentation
électrique (31, 32) était activée jusque-là et qui est disposée dans une voiture positionnée
d'un côté où aucune voiture d'autres groupes de voitures (11-1, 11-2) n'est assemblée
à une extrémité de ceux-ci.
16. L'appareil de reconnaissance de formation de train selon la revendication 11, où l'unité
de commande (22a, 22b) identifie un emplacement dans lequel un défaut est survenu
en comparant les valeurs de tension qui ont été mesurées par les détecteurs de tension
(35-1, 35-2) disposés dans les voitures, et sur la base d'un résultat de la comparaison
des valeurs de tension mesurées et d'informations concernant l'emplacement qui a été
identifié comme celui où le défaut est survenu, l'unité de commande (22a, 22b) identifie
une cause du défaut, qui est l'une des causes suivantes : un défaut de conduction
dans l'un quelconque des coupleurs automatiques ; un défaut de conduction dans l'un
quelconque des interrupteurs de détection d'extrémité de train (41-1, 41-2) ; un défaut
dans l'une quelconque des alimentations électriques (31, 32) ; un défaut dans l'un
quelconque des détecteurs de tension (35-1, 35-2) ; une déconnexion de câblage dans
l'une quelconque des lignes de transmission (17a, 17b).
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description