[0001] This invention relates to acidified cocoa nibs comprising high levels of polyphenols,
as well as refiner or expeller flakes, cocoa liquor, cocoa cake, and cocoa powder
obtainable from the nibs and a process for the production of treated cocoa-derived
material.
[0002] Cocoa products are often treated with a solution of alkalising agent e.g. a hydroxide
or carbonate of sodium or potassium with the object of obtaining a product with a
less astringent and richer taste and a deeper and more attractive colour. There is
a desire amongst some consumers for cocoa products that have a different colour. The
use of coloured cocoa products can restrict the use of artificial food colourings
or allow the use of less colouring material, for example.
[0003] In order to obtain cocoa powders with different colours, alkalisation of cocoa products
such as cocoa seeds, cocoa beans and cocoa nibs has been used as described in, for
example,
GB 1 243 909,
US 2,380,158 US 4,435,436,
US 4,704,292,
US 4,784,866 and
US 5,009,917. Roasting is also described in
US 4,704,292 and
GB 2 416 106.
[0004] US 5,114,730 discloses a method of making dark cocoa powder from cocoa powder in a water slurry
at a temperature below 200°F in less than about 60 minutes and spray drying the final
product.
[0005] US 2,957,769 describes the extraction of a fermented unroasted cocoa material and the treatment
of both the extract and the residual material.
[0006] US 2,965,490 discloses the hydrolysis of unfermented cocoa to produce chocolate flavour.
US 2003/0129276 describes a treated cocoa liquor for making chocolate crumb.
US 2005/0031762 discloses the production of a low fat cocoa extract by adding acetic acid to fresh
seeds and/or underfermented seeds.
[0007] US 2,512,663 describes the treatment of roasted cocoa nibs to produce flavour or essence constituents
from the cocoa-bearing material.
[0008] US 2007/0254068 discloses a method of producing a cocoa beverage containing beneficial cocoa polyphenols.
Such polyphenols are also described in
US 7,115,656.
[0009] GB 345,250 discloses the recovery and purification of alkaloids from cocoa products.
[0011] WO 98/09533 discloses cocoa components, edible products having enhanced polyphenol content, methods
of making the same and medical uses.
[0012] US 20080268097 describes cocoa ingredients having enhanced levels of stilbene compounds and methods
of producing them.
[0014] US 2001/0007693 describes food products, including confectioneries and chocolates, having conserved
concentrations of polyphenols, and in particular cocoa polyphenols.
[0015] US 2,835,585 discloses specified cacao products and a process for producing the same, particularly
to a water-soluble flavor concentrate having the full-bodied chocolate flavor and
aroma and to a process for obtaining the same.
[0016] WO 02/063974 describes a process for the production of enzymatically-treated unfermented cocoa
liquor comprising acid treatment of the cocoa liquor followed by protease treatment.
[0017] WO 2009/067533 forms part of the state of the art under Article 54(3) EPC and discloses acidified
red cocoa products and ingredients, such as acidified red cocoa bean nibs, red cocoa
liquor and red cocoa powder.
[0018] There remains a need for coloured cocoa-derived materials which can be produced conveniently
and efficiently. Preferably such materials can provide health benefits and/or have
properties suitable for use in a low pH environment, such as for example as colouring
in yoghurt. Such materials may avoid the disadvantages associated with alkalisation
and/or roasting.
[0019] In a first aspect, the invention provides a process according to Claim 1.
[0020] Further embodiments are set out in Claims 2 to 11.
[0021] In a second aspect, the invention provides a process according to Claim 12.
[0022] Further embodiments are set out in Claims 13 and 14.
[0023] The cocoa-derived material may be in the form of a powder and having an L* value
of from about 40 to 45, a C* value of from about 28 to 33, an h° value of from about
17 to 25 and optionally an a* to b* ratio of from about 2.2 to 3.1. Alternatively,
the L* value is from about 40 to 57, the C* value is from about 18 to 40, an h° value
of from about 7 to 40 and optionally an a* to b* ratio of from about 1 to 8.
[0024] Alternatively, the cocoa-derived material may be in the form of a powder and having
an L* value of from about 47 to 57, a C* value of less than about 18, preferably from
about 10 to 17, an h° value of from about 20 to about 50, preferably from about 25
to 40 or 25 to 30, and optionally an a* to b* ratio of less than about 2.3, preferably
from about 1 to 2.1.
[0025] It has been found that the colour parameters can be varied depending on the acidification
reaction conditions.
[0026] The cocoa-derived material is acidified and comprises at least 20 mg/g of polyphenols,
preferably more than 30 mg/g of polyphenols, most preferably from 40 to 60 mg/g of
polyphenols. The cocoa-derived material is an optionally defatted material. The cocoa-derived
material is preferably as defined below.
[0027] The cocoa-derived material may be as defined below and is preferably selected from
cocoa nibs, flakes, such as refiner flakes or expeller flakes, cocoa cakes, cocoa
powder, cocoa liquor, more preferably, selected from flakes, cocoa powder and cocoa
liquor. The cocoa-derived material is red or purple after treating.
[0028] The term "cocoa-derived material" as used herein includes cocoa nib, refiner flakes,
expeller flakes, cocoa cakes, cocoa powder, cocoa liquor and sweetened or unsweetened
chocolate, milk chocolate or white chocolate. These are all terms well-known to a
person skilled in the art (see
Chocolate, Cocoa, and Confectionery: Science and Technology by Bernard W. Minifie
Springer; 3 edition (December 15, 1988)). The term "nib" refers to the cocoa bean without the shell and may comprise 54%
fat and 46% non-fat solids on a dry weight basis. The term "cocoa liquor" refers to
ground cocoa nibs and it can be separated into cocoa butter and cocoa solids. The
term "cocoa flakes" refers to cocoa liquor in the form of solid flakes; they typically
have a fat content of 54%. The term "expeller flakes" refers to flakes produced from
an expeller press. The fat content of the expeller flakes is typically less than 20
wt.%.
[0029] Cocoa butter is the fat component of chocolate liquor, whereas the remaining part
of the chocolate liquor is cocoa solids or cocoa mass. What remains after the removal
of the cocoa butter through pressing are cocoa cakes, disks with a thickness of, for
example, approximately five centimetres. These cakes can be broken up and ground into
a fine cocoa powder. The term "cocoa cake" refers to the cocoa solids or cocoa mass
remaining after extraction of fat by pressing; it can be pulverized to form cocoa
powder and so can be considered to be a compressed form of cocoa powder. Cocoa powder
refers to cocoa solids with, for example, a total of from 0.5 to 26 wt.% of fat where
the fat is cocoa butter. Typically, cocoa powders comprise 20 to 22 wt.% fat. Defatted
cocoa powders can be produced which comprise reduced (10 to 12 wt.% fat) or substantially
no cocoa butter or cocoa fat.
[0030] The process of making chocolate is described in
Industrial Chocolate Manufacture and Use, edited by S T Beckett (3rd Edition, 1999,
Blackwell Science). Chocolate is generally obtained by mixing sugar and cocoa butter with cocoa liquor
or cocoa nibs, followed by refining, conching and tempering. Milk chocolate is prepared
in a similar way but with the addition of milk. White chocolate is prepared in a similar
way to milk chocolate but without the addition of cocoa liquor.
Figure 1 shows the variation in colour parameters L* and h° with the length of time
of the process according to the present invention, for a defatted cocoa liquor as
powder.
Figure 2 shows the variation in colour parameters L* and C* with the length of time
of the process according to the present invention, for a defatted cocoa liquor as
powder.
Figure 3 shows the variation in colour parameters and polyphenol content with the
length of time of the process according to the present invention, for a defatted cocoa
liquor as powder.
Figure 4 shows the variation in colour parameters L* and h° with the length of time
of the process according to the present invention, for a cocoa liquor melted and liquid
and an external colour at 40°C.
Figure 5 shows the variation in colour parameters L* and C* with the length of time
of the process according to the present invention, for a cocoa liquor melted and liquid
and an external colour at 40°C.
Figure 6 shows the variation in colour parameters and polyphenol content with the
length of time of the process according to the present invention, for a cocoa liquor.
Figure 7 shows a coloured yoghurt produced using a cocoa powder produced according
to the invention.
Figure 8 shows a suitable mold for a cooked candy.
Figure 9 shows a cooked candy disk for colorimetric analysis.
Figure 10 shows cooked candies made with acidified cocoa powder (bottom three candies)
and non-acidified cocoa powder (top six candies). The colours of the candies made
with acidified cocoa powder are varying shades of red. The colours of the candies
made with non-acidified cocoa powder are black to brown in appearance.
Figure 11 shows the powders produced by the trials in Example 9.
Figure 12 shows the powders produced by the trials in Example 10.
Figure 13 shows the powder produced by the scale-up in Example 11.
Figure 14 shows the cocoa liquor from LB02 in Example 11.
Figure 15 shows the apparatus used for Example 12.
Figure 16 shows the powders obtained from Example 12.
Figures 17 and 18 show a preferred process for producing powders according to the
invention.
[0031] The present invention can be considered to recognise that cocoa-based materials having
a suitable combination of bacterial content, polyphenols content and colour can be
produced.
[0032] The present invention can be considered to relate, at least in part, to the finding
that red or purple cocoa-derived materials can be produced from cocoa nibs obtained
from cocoa beans or seeds which have a higher polyphenol content than a fermented
cocoa bean or seed, using an acid having a suitable pK
a. In addition, the present invention recognises that if the acidic conditions used
to produce the red or purple cocoa-derived materials are controlled, in particular
if the pH, water content, temperature and length of reaction are controlled, then
the level of polyphenols present in a cocoa bean or seed can be preserved to a particular
degree in the cocoa-derived material and particular colours can be produced.
[0033] The cocoa beans or seeds used in the present invention, as defined in any of the
embodiments herein, may be any variety from Theobroma cacao, for example, Forastero,
Criollo, or Trinitario, obtained from any suitable source such as, for example, the
Ivory Coast, Brazil, Nigeria, Cameroon, Indonesia and Ghana. It is preferred, however,
that the beans or seeds are unfermented and dried, preferably in the sun, or cocoa
beans called "lavados" beans, such as from Brazil. These "lavados" beans are beans
which are unfermented and washed.
[0034] The colour of cocoa powders can be specified by means of colour coordinates. A frequently
used system has been developed by R. S. Hunter. In this system, the colour coordinates
are denoted by the characters L*, a* and b*, C* and h°. These colour coordinates are
described more fully in
Hunter, R. S., The Measurement of Appearance, John Wiley and Sons, New York, 1975. The value of the colour coordinates can be determined with an appropriate measuring
system.
[0035] The L*-coordinate can assume values between 0 (black) and 100 (white). The closer
L* gets to zero, the darker the cocoa. A high value of the a*-coordinate indicates
a pronounced red component in the colour of the cocoa powder; a high value of the
b*-coordinate points to the presence of a lot of yellow. So far as the red is concerned,
the higher the ratio a*:b*, the more red the colour of the cocoa. C* refers to the
saturation of colour and h° = arctg b*/a*, is the hue value far from a standard cocoa
powder.
[0036] The L-, a- and b- values of cocoa powder may be determined, for example, with the
Hunterlab Digital Colour Difference Meter, type D 25 D 2 A.
[0037] A method for colour measurement, as described in
US 5,009,917, involves suspending cocoa powder at a 2.5% by weight level in an aqueous gelatin
solution. The solution contains 5.0% gelatin and 0.06% of titanium dioxide which is
used as a whitener in order to raise the L value of the suspension to a level where
it is easier to differentiate similarly-coloured samples. The suspension is placed
in a petri dish and quickly cooled to 60°F (15.6°C) to form a solid gelatin disk.
Each sample is measured four times through the bottom of the dish using a colorimeter
with the well-known Hunter L, a, b scale.
[0038] According to the present invention, the colour of the cocoa-derived material is preferably
measured as follows. The cocoa-derived material, preferably cocoa liquor, comprising
polyphenols is preferably defatted with, for example, petroleum-ether, followed by
washing and centrifugation. By "defatted", we preferably mean that less than 5 wt.%,
more preferably less than 1 wt.% fat is present, such as about 0 wt.% fat; preferably
a powder is formed. After drying at room temperature, each sample is placed in a petri
dish and measured four times through the bottom of the dish using a colorimeter with
the well-known Hunter L*, a*, b* scale. The colorimeter used is the Minolta CM-2002
spectrophotometer. The conditions for colour measurement are: CIELAB III: D65, Obs:
10°, 3 flashes, mode: SCE and external colour at 20°C.
[0039] The term "red", as defined herein, preferably means that the cocoa-derived material,
as defined above, when in the form of a powder (optionally after having been defatted),
has an L* value of from about 39 to 48, preferably from about 40 to 45, more preferably
from about 40 to 43, most preferably from about 40 to 42, an a* to b* ratio of greater
than about 1.6, such as greater than about 1.8, more preferably greater than about
2.0, such as from about 2.2 to 3.2, most preferably from about 2.4 to 3.1, a C* value
of greater than about 22, such as greater than about 25, preferably from about 25
to 34, more preferably from about 28 to 33, such as from about 30 to 33, and a h°
value of from about 16 to 32, preferably from about 17 to 30, more preferably from
about 17 to 25, as measured according to the above method.
[0040] Alternatively, the term "red" preferably means that the L* value is from about 40
to 57, preferably from about 42 to 52 more preferably from about 44 to 48, the C*
value is from about 18 to 40, preferably from about 25 to 35, more preferably greater
than 18 or 30, an h° value of from about 7 to 40, preferably from 10 to 35, more preferably
greater than 7, and optionally an a* to b* ratio of from about 1 to 8, preferably
from 3 to 6, more preferably from 4 to 5.
[0041] The term "purple", as defined herein, preferably means that the cocoa-derived material,
as defined above, when in the form of a powder (optionally after having been defatted),
has an L* value of greater than 46, preferably from about 47 to 57, more preferably
from about 48 to 56, most preferably from about 50 to 56, such as from 52 to 56, optionally
an a* to b* ratio of less than about 2.3, such as less than about 1.8, more preferably
from about 1 to 2.1, such as from 1.5 to 2.1, a C* value of less than or about 18,
preferably from about 10 to about 17, such as from 11 to 15, and a h° value of from
about 20 to about 50, preferably from about 25 to 40 or 25 to 30, as measured according
to the above method.
[0042] The terms "red" and "purple" may also be considered to encompass other shades of
these colours in substantially the same wavelength, such as pink, mauve, violet and
parme.
[0043] In one embodiment of the invention, the optionally defatted cocoa-derived material,
such as a defatted cocoa liquor, in the form of a powder, has an L* value of from
about 40 to 45, a C* value of from about 28 to 33, an h° value of from about 17 to
25 and optionally an a* to b* ratio of from about 2.2 to 3.1.
[0044] In another embodiment of the invention, as defined in any of the aspects herein,
the optionally defatted cocoa-derived material, such as a defatted cocoa liquor in
the form of a powder, has an L* value of from about 41 to 42, a C* value of from about
32 to 33, an h° value of from about 17 to 19 and optionally an a* to b* ratio of from
about 2.8 to 3.1, as measured according to the above method.
[0045] In one embodiment of the invention, as defined in any of the aspects herein, the
term "purple" preferably means an L* value of from about 48 to 56, optionally an a*
to b* ratio of from about 1 to 2.1, such as from 1.5 to 2.1, a C* value of from about
10 to about 17, such as from 11 to 15, and a h° value of from about 25 to 40 or 25
to 30, as measured according to the above method.
[0046] The terms "red" or "purple" in relation to cocoa-nibs, refiner or expeller flakes,
cocoa liquor and cocoa cake preferably refers to material which can be obtained from,
or which produces, cocoa liquor which when defatted has the defined L* values, C*
values, h° values and a* to b* ratios, as measured by the specified method above.
[0047] Alternatively, the terms "red" or "purple" as used herein refer to cocoa-derived
material which has been acidified, or treated with an acid, such as according to the
process of the invention as defined in any embodiment herein. In this embodiment,
the acid produces a colour change. The terms "red" and "purple" may or may not be
synonymous with "acidified" or "treated with acid".
[0048] In a preferred embodiment of the invention, the external colour of chocolate is measured
with spectrocolorimeter optionally after tempering, according to the method of the
invention.
[0049] The acidified cocoa-derived materials as defined herein are red or purple, such as
defined above.
[0050] Acidified red or purple cocoa nibs are cocoa nibs which were not initially red or
purple but which have been subjected to an acid for a sufficient amount of time to
become red or purple, preferably as defined above. The nibs are preferably dried.
In one embodiment, the moisture or water content of the nibs may be less than 15 wt.%,
such as less than 10 wt.%, preferably less than 5 wt.%, for example from 1 to 4 wt%.
[0052] By "polyphenol" we mean the well-known group of chemical substances that are found
in plants, characterised by the presence more than one phenol group per molecule.
Polyphenols are often present as monomers, dimers, trimers and other oligomers. Flavonoids
are a subset of polyphenol. Cocoa contains polyphenols such as catechin, epicatechin,
gallocatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, procyanidins,
prodelphinidins, and propelargonidine. Preferred polyphenols include catechin, epicatechin,
procyanidins A2, B1 to B5, and C-1. Polyphenols with a molecular weight of less than
3000 are preferred.
[0053] Cocoa has been described as being rich in a particular subgroup of flavonoids named
flavanols (flavan-3-ols). The flavanols are present as the monomers epicatechin and
catechin or as oligomers of epicatechin and/or catechin called procyanidins. Epicatechin,
catechin and the procyanidins, such as, for example, procyanidins B1, B2 and B3, are
the predominant class of polyphenols in cocoa and in any embodiment of the invention,
the term "polyphenols" is intended to include or mean these compounds.
[0055] The amount of polyphenols is provided as the epicatechin equivalent in mg/g in the
present invention unless stated otherwise.
[0056] In one embodiment of the invention, the acidified, red or purple cocoa nibs produced
by the the invention preferably comprise at least 3 wt.%, preferably about 5 wt.%
based on the total weight of the nibs of polyphenols which are naturally present in
the untreated, unfermented parent cocoa seeds or cocoa beans obtained directly from
the pod. The amount of polyphenols, as measured by the Folin-Ciocalteu method in epicatechin
equivalent, may be from 0 to 15 wt.%, preferably from 2 to 10 wt.%. The amount of
polyphenols remaining in the cocoa nibs may be varied by controlling the conditions
of acidification and can be measured using routine techniques.
[0057] The red or purple cocoa nibs produced by the invention preferably comprise about
50 mg of polyphenols per gram of nibs.
[0058] Acidified cocoa-derived materials, other than cocoa nibs, preferably comprise the
amount of polyphenols set out above for cocoa nibs (by wt.% or gram of material).
[0059] The acidified cocoa nibs produced by the invention are acidified cocoa nibs from
cocoa seeds or cocoa beans that have a higher polyphenol content than a fermented
cocoa bean. The fermented cocoa bean for comparison may be the parent cocoa bean or
seed. The cocoa nibs which have the higher polyphenol content are underfermented or
unfermented cocoa beans or seeds. Unfermented and underfermented cocoa beans or seeds
have a higher polyphenol content than fermented beans. Preferably, the cocoa beans
or seeds are unfermented.
[0060] In one embodiment of the invention, the unfermented cocoa beans or seeds are beans
or seeds which are obtained directly from cocoa pods and which have not been subjected
to processing other than separation from the pulp.
[0061] In another embodiment of the invention, the unfermented cocoa beans or seeds are
cocoa beans or seeds which have been depodded and have not been subjected to processing
other than washing with, for example, water and optionally drying in the sun.
[0062] Cocoa beans or seeds which have been fermented can be distinguished from unfermented
cocoa beans on the basis of their colour. Thus, fully fermented cocoa beans are predominantly
brown. Unfermented cocoa beans or seeds are predominantly slaty and may have blue,
purple or violet parts on their surface. It will be understood by a person skilled
in the art that the cocoa materials derived from these beans will not be coloured,
that is products obtained from the beans will not be coloured in the absence of the
process of the invention.
[0063] Underfermented beans are beans which have been fermented for up to 3 days. These
beans are usually purple, blue and/or violet and may also be slaty, but not predominantly.
It will be understood by a person skilled in the art that the cocoa materials derived
from these beans will not be coloured, that is products obtained from the beans will
not be coloured in the absence of the process of the invention.
[0064] By "fermented beans" it is intended to mean beans which have been fermented for more
than 3 days, such as between 3 and 7 days. The term "fermented beans" also includes
beans which have been overfermented i.e., fermented for more than 7 days, for example
up to 15 days.
[0065] Other cocoa-derived materials to be produced according to the invention are preferably
derived from the cocoa beans or seeds described above. Thus, for example, cocoa powder
or cocoa liquor derived from unfermented or underfermented cocoa beans or seeds (i.e.
unfermented or underfermented cocoa powder or cocoa liquor) which have not previously
been treated with an acid may be treated with an acid as described herein. Red or
purple cocoa liquor may be produced. The acid treated cocoa liquor may then be used
in the production of chocolate, in particular red or purple chocolate.
[0066] The acidified nibs produced by the invention are preferably further processed to
produce red or purple cocoa refiner flakes or expeller flakes. The refiner or expeller
flakes may be produced from the nibs using any means which does not substantially
affect the polyphenol content of the flakes. It is preferred, for example, to avoid
heating during the production of flakes, for example as in a pin mill. The flakes
of the invention may, for example, be produced using a 3 roll refiner or other equivalent
means or expeller, such as an expeller press well known in the art.
[0067] In one embodiment of the invention, a red or purple cocoa liquor is preferably obtained
from the acidified cocoa nibs of the invention or by direct treatment of cocoa liquor
with acid as defined herein. The cocoa liquor is typically a viscous pasty substance
which can be used as the basic ingredient for chocolate. Preferably, the red or purple
cocoa liquor is obtained by grinding the acidified cocoa nibs at a low temperature
using, for example, a triple stone mill, or a 3, 4 or 5 rolls refiner. The temperature
of the mill or refiner is preferably from 10 to 60°C, more preferably from 20 to 40°C,
measured as the temperature set on the refiner or mill. Alternatively, the red or
purple cocoa liquor may be obtained by gentle melting of the refiner flakes or expeller
flakes of the invention. Thus, the refiner or expeller flakes may be melted at a temperature
of from 40 to 60°C, preferably from 42 to 50°C.
[0068] Alternatively, cocoa liquor, or a composition comprising cocoa liquor such as chocolate,
obtained from beans or seeds which have a higher polyphenol content than fermented
cocoa beans (such as unfermented or underfermented cocoa beans or seeds) may be acidified
or treated with an acid as described herein. In a preferred embodiment, the cocoa
liquor may be acidified directly in the conche. In one embodiment, the cocoa liquor
is red or purple, preferably as defined herein.
[0069] The red or purple cocoa liquor can be further processed by extraction and/or pressing
or expelling to separate the cocoa butter and the cocoa powder. Thus, red or purple
cocoa cake and cocoa powder can be obtained from the acidified cocoa nibs of the invention.
Preferably the pressing is carried out at a temperature of from about 70 to 100°C,
such as about 80°C. The red or purple cocoa cake or expeller flakes obtained by pressing
or expelling can be ground to produce the cocoa powder according to known means.
[0070] Defatted cocoa powder may be prepared by a defatting treatment with a supercritical
fluid. The supercritical fluid may comprise any solvent which will not leave a toxic
residue. While cocoa powders defatted with solvents other than CO
2 may be used, such as hexane and propane, CO
2 is preferred. The latter is a substance present in ambient air, as well as body tissues
and fluids. Hence it is ideal for food processing.
[0071] The red or purple refiner flakes, red or purple cocoa liquor and red or purple cocoa
powder produced by the invention are acidified i.e., they are obtained or derived
from acidified cocoa nibs or other suitable cocoa-derived material.
[0072] The red or purple cocoa powder produced by the invention preferably has a pH within
the range of 2 to 8. More preferably, the pH of the cocoa powder is less than 7, such
as, for example, from 2 to 5. The red or purple cocoa powder produced by the invention
may therefore be compatible with an acidic environment such as that found in yoghurt.
[0073] The cocoa refiner or expeller flakes and/or the cocoa liquor and/or the cocoa cake
and/or the cocoa powder, which are red or purple, produced according to the invention
may be incorporated into any one of food products, such as confectionery products,
bakery products and dairy products in place of and/or in addition to traditional flakes,
liquor, cake or powder. The amount of flakes, liquor, cake or cocoa powder according
to the invention, incorporated into the food, confectionery, bakery or dairy products
may, for example, be from 1 wt.% to 50 wt.% based on the total weight of the product,
such as from 5 to 30 wt.%, more preferably from 10 to 20 wt.%.
[0074] In a preferred embodiment of the invention, the amount of flakes, liquor, cake or
cocoa powder used is sufficient to impart a red or purple colour to the product.
[0075] In one embodiment of the invention, the food product is a liquid e.g., a beverage
or a solid which is packaged or labelled for use as a foodstuff. The food product
may be savoury i.e., comprise meat and/or fish and/or vegetables and/or eggs and/or
dairy products and/or be sweet i.e., comprise sugar and/or butter and/or fruit.
[0076] In one embodiment of the invention, the confectionery product is selected from the
group consisting of cooked candies, chocolate, chocolate-like products, fat continuous
fillings and water-based fillings. The chocolate or chocolate-like product is preferably
red or purple.
[0077] Chocolate-like products are materials in which at least a part of the cocoa butter
in chocolate is replaced by another fat, such as butterfat or a vegetable fat such
as a cocoa butter equivalent (CBE).
[0078] A preferred process for producing a chocolate or chocolate-like product comprises
the steps of:
- (i) combining refiner flakes according to the invention or cocoa liquor produced according
to the invention, which is red or purple, with sugar or a sugar substitute; and
- (ii) adding cocoa butter or a cocoa butter replacement to produce a chocolate or chocolate-like
product.
[0079] Examples of cocoa butter replacements include, cocoa butter equivalents, butter fat
or fractions thereof, palm oil or fractions thereof, coconut or fractions thereof,
palm kernel oil or fractions thereof, liquid vegetable oils, interesterified mixtures
of the above fats or fractions or hardened components thereof, or mixtures thereof
[0080] The chocolate or chocolate-like product is preferably red or purple.
[0081] When refiner or expeller flakes are used in the process, it is preferred that they
are melted gently, for example at a temperature of from 40 to 50°C, more preferably
from 42 to 48 °C in order to obtain a paste. The cocoa liquor may also be heated,
if necessary, to produce a paste. The paste/cocoa liquor may be fatted or defatted.
The paste/cocoa liquor is combined with sugar or a sugar substitute. Suitable examples
of sugar substitutes include sweeteners, fructooligosaccharides and polyols, such
as, for example, fructose, lactose and dextrose. The weight ratio of paste/cocoa liquor
to sugar or sugar substitute is preferably from 3:1 to 1:3, more preferably from 2:1
to 1:2, such as about 1:1.
[0082] The mixture of paste/cocoa liquor and sugar or sugar substitute may be refined, preferably
after combination with the cocoa butter or replacement, using any of the known techniques
in the art. It is preferred that the refining conditions are selected such that any
red or purple colour is maintained.
[0083] The cocoa butter, which may be obtained from any source, but preferably is cocoa
butter obtained from red or purple cocoa liquor according to the invention, may be
added to the mixture in order to liquefy it and achieve a total fat content of, for
example, less than 60 wt.%, preferably from 30 to 40 wt.%, based on the total weight
of the chocolate or chocolate-like product.
[0084] Flavourings may optionally be added to the chocolate or chocolate-like material.
Suitable flavourings include natural vanilla or those indicated below.
[0085] The process for producing chocolate preferably also comprises the steps of conching,
tempering and optionally molding. The chocolate may be produced according to the well-known
methods in the art.
[0086] Suitable dairy products include, for example, milk. The milk is preferably obtained
from cows. The milk may alternatively be soya milk. In addition, the milk may be low-fat,
skimmed or powdered milk. Other dairy products include ice-cream, such as low-fat
and low-sugar ice-cream, cream, yoghurt, and dessert. Bakery products include, for
example, breads, cakes and biscuits.
[0087] In a preferred embodiment, the confectionery product comprises a fat continuous filling.
This filling typically comprises solid particles (preferably in the form of fine particles)
dispersed in a fat phase. The filling may be a reduced fat and/or a reduced sucrose
filling.
[0088] The filling comprises one or more cocoa based materials. The cocoa based materials
may be selected from the group consisting of cocoa powder (preferably defatted cocoa
powder), chocolate powder, cocoa mass, cocoa liquor and mixtures thereof produced
according to the invention. In a particular embodiment, the filling comprises from
5 to 40% by weight of cocoa powder (preferably defatted cocoa powder), more preferably
from 10 to 30% by weight or from 12 to 23% by weight, most preferably from 15 to 20%
by weight of cocoa powder (preferably defatted cocoa powder).
[0089] The filling may constitute from 30 to 85% by weight of the confectionery product,
preferably from 45 to 80% by weight, such as from 55 to 75% by weight of the confectionery
product.
[0090] The confectionery product, such as chocolate, optionally comprises one or more flavourings.
Suitable flavourings include, but are not limited to, fruit, nut, and vanilla flavourings,
fruit powder and pieces, nuts, vanilla, herbs, herb flavourings, caramel and caramel
flavourings, spices and extracts from flowers, such as rose. Those skilled in the
art are familiar with numerous flavourings that can be selected for use in this invention.
[0091] The red or purple cocoa powder produced according to the invention can also be used
as a natural colouring or flavouring agent, such as, for example, in food, confectionery,
baking or dairy products and so reduce the need for artificial colourings. The powder
may be used as a colouring or flavouring agent in the domestic or industrial kitchen.
The powder may be sprinkled over foods, confectionery, baking or dairy products or
be used in beverages. The powder may be packaged in sachets, for multiple or single
use, for example.
[0092] The confectionery products may each take any suitable form. For example, they may
each (separately) be packaged and sold as a block or bar.
[0093] The confectionery product may take any suitable form. In a preferred embodiment,
the confectionery product is chocolate. The confectionery products are preferably
bite-sized and generally weigh from 2 to 40g, such as from 3 to 20g. The confectionery
products are typically packaged and sold in a box, generally comprising more than
one confectionery product.
[0094] The confectionery product may comprise one or more food additives such as biscuit,
nuts (whole or pieces), crispies, sponge, wafer or fruit, such as cherries, ginger
and raisins or other dried fruit. These are typically embedded in the product. Optionally,
the confectionery product is dusted with additives (as above) or flavourings such
as cocoa powder and/or sugar.
[0095] The present invention provides a process for producing red or purple cocoa-derived
material, comprising the steps of:
- (i) treating cocoa nibs obtained from cocoa beans or seeds which have a higher polyphenol
content than fermented cocoa beans with an acid to form red or purple nibs;
- (ii) optionally expelling the nibs to form flakes and/or
- (iii) optionally extruding the flakes and/or
- (iv) optionally treating the flakes to produce red or purple cocoa powder,
wherein the red or purple cocoa-derived material comprises at least 20mg/g polyphenols,
wherein the beans or seeds are unfermented or underfermented, wherein the cocoa beans
or seeds have been predried and/or heated to produce the cocoa nibs and wherein the
process does not comprise the addition of an enzyme.
[0096] The nibs may be dried such that the moisture or water content of the nibs is preferably
less than 15 wt.%, such as less than 10 wt.%, preferably less than 5 wt.%, for example
from 1 to 4 wt.%. The treated nibs are preferably dried by being extruded so as to
reduce the moisture level and optionally microbial content. The temperature in the
extruder may suitably be from 50 to 200°C, preferably from 70 to 150°C, such as from
90 to 130°C. The temperature within the extruder may also vary within these ranges.
It has been found that such conditions can provide dried flakes which are coloured
and have an acceptable microbial count and polyphenol content.
[0097] The treatment in step (i) may, for example, comprise soaking or immersion of the
nibs and/or spraying of the nibs with an acid/acidic solution and/or washing the nibs
with an acid/acidic solution. The nibs may be added to an acid/acidic solution or
vice versa.
[0098] The red or purple cocoa nibs produced according to the above process preferably comprise
at least 3 wt.%, preferably about 5 wt.% based on the total weight of the nibs of
polyphenols which are naturally present in the untreated, unfermented parent cocoa
seeds or cocoa beans obtained directly from the pod. The amount of polyphenols, as
measured by the Folin-Ciocalteu method in epicatechin equivalent, may be from 0 to
15 wt.%, preferably from 2 to 10 wt.%. The amount of polyphenols remaining in the
cocoa nibs may be varied by controlling the conditions of acidification and can be
measured using routine techniques. The acidity can be measured using routine techniques,
for example with a pH meter.
[0099] The cocoa nibs used in the process of the invention or obtainable by the process
of the invention are not obtained from fermented cocoa beans, nor are they already
red or purple.
[0100] The cocoa nibs or other cocoa-derived materials used in the process of present invention
or obtainable by the process of the invention are not roasted or treated with alkali
prior to acid treatment. Preferably, the cocoa nibs used to obtain red or purple cocoa
nibs are untreated, other than by washing with water, drying, size reduction, or limited
fermentation, prior to treatment with acid. In particular, the process of the present
invention preferably does not comprise any step of alkalisation or roasting i.e.,
before and after acidification.
[0101] The cocoa nibs are obtained from cocoa beans or seeds that have a higher polyphenol
content than a fermented cocoa bean. The fermented cocoa bean for comparison may be
the parent cocoa bean or seed. The cocoa nibs which have the higher polyphenol content
are obtained from underfermented and/or unfermented cocoa beans. Unfermented and underfermented
cocoa beans, and their nibs, have a higher polyphenol content than fermented beans,
and their nibs, and can be distinguished from fermented beans as explained above.
[0102] In one embodiment, the invention provides a process for producing red or purple cocoa-derived
material according to claim 12.
[0103] The cocoa-derived material produced is preferably chocolate or chocolate-like product
or a precursor thereof, and the treated material is preferably cocoa liquor or a composition
comprising cocoa liquor, unfermented or underfermented, optionally acidified directly
in the conche which optionally comprises other components. The cocoa liquor may be
acticoa™ cocoa liquor. The term "conch" or "conche" preferably refers to a composition
comprising cocoa liquor. The conch may also comprise other components such as those
typically used for making chocolate. Preferably, the conch has been, is being or will
be treated with acid or has been, is being or will be subjected to the process of
conching.
[0104] In one embodiment of the invention, the conching process or process of or comprising
conching is continuous or batchwise, preferably continuous.
[0105] In a preferred embodiment of the invention, the cocoa liquor or conch is treated
with acid during conching.
[0106] The amount of polyphenols in the treated cocoa-derived material may be as described
above for cocoa nibs. The acid treatment may be the same as for cocoa nibs.
[0107] The term "cocoa-derived material" is defined above and includes cocoa nibs, refiner
or expeller flakes, cocoa liquor, cocoa cake, cocoa powder and chocolate. Clearly,
where refiner or expeller flakes, cocoa liquor and chocolate are produced, additional
steps, other than those defined above will be involved in order to obtain the specific
product.
[0108] In one embodiment of the process, the cocoa-derived material is refiner or expeller
flakes and the process preferably further comprises the step of:
(iii) breaking the nibs to form flakes, preferably as defined above for obtaining
refiner flakes or expeller flakes.
[0109] In another embodiment of the process, the cocoa-derived material is cocoa liquor
and the process preferably further comprises the step of:
(iv) treating the nibs to form a cocoa liquor, preferably as defined above for obtaining
cocoa liquor.
[0110] In one embodiment of the process, the cocoa-derived material is red or purple chocolate
or chocolate-like material and the process preferably further comprises the steps
of:
(iv) treating the nibs to form a cocoa liquor preferably as defined above for obtaining
cocoa liquor; and
(v) combining the cocoa liquor with cocoa butter or a replacement fat to form a red
or purple chocolate product or chocolate-like product.
[0111] Additionally the process for producing red or purple chocolate may comprise the steps
of conching, tempering and molding.
[0112] As described above, in one embodiment the process of the present invention comprises
acidification or treatment with an acid of a cocoa liquor, which has not previously
been treated with an acid, preferably directly or when present in the conche. The
cocoa liquor is unfermented or underfermented. In one embodiment, the cocoa liquor
is acticoa™ cocoa liquor.
[0113] In a preferred embodiment, the cocoa liquor, or a composition comprising the cocoa
liquor such as chocolate or chocolate-like product, is treated with acid, preferably
after the step of refining, and preferably before, during or after the process of
conching, such as during conching. The acid may be added at any stage of the conching
process. The treatment with acid may be as defined in any of the embodiments herein.
Preferably the acid is citric acid, optionally in the form of citric acid such as
powder or crystals.
[0114] In one embodiment of the invention, the conching time is preferably from 1 to 5 hours,
such as from 2 to 4 hours. The temperature of the conching may be carried out from
40 to 80°C, such as from 50 to 70°C. The acid, such as citric acid, may be added in
an amount of from 0.1 to 2 wt.% based on the weight of the composition to be treated.
The composition to be treated may comprise other components typically used to produce
chocolate, in addition to cocoa liquor. Water may optionally be added in an amount
of 0.1 to 5 wt.%, preferably 1 to 2 wt.% based on the weight of the composition.
[0115] The process may produce red or purple chocolate. The chocolate preferably produced
according to the process, without defatting, preferably comprises an L* value of from
about 20 to 25, a C* value of from about 10 to 20, such as from 12 to 18, an h° value
of less than about 1, preferably from about 0.5 to 0.8, and optionally an a* to b*
ratio of from 0.5 to 2.0, such as from 0.9 to 1.6.
[0116] The red or purple cocoa nibs produced according to the process of the invention comprise
at least 20 mg/g of polyphenols, preferably more than 30 mg/g of polyphenols, most
preferably from 40 to 60 mg/g of polyphenols, measured as the epicatechin equivalent.
[0117] The acid for use in treating the cocoa nibs, or other cocoa-derived material such
as cocoa powder and cocoa liquor, may be any acid which has a suitable pK
s to produce the red or purple cocoa nibs or other treated cocoa-derived material.
The acid may be a mineral acid, such as, for example, hydrochloric acid, phosphoric
acid or sulphuric acid, or may be an organic acid, such as, for example, one or more
of citric acid, lactic acid, tartaric acid, ascorbic acid and acetic acid. In a preferred
embodiment of the invention, the acid is a food-grade acceptable acid. Optionally,
the acid may be added to the cocoa-derived material, such as cocoa nibs, cocoa powder
or cocoa liquor in the form of a solid, such as, for example, a powder. A suitable
example of a powder could be, for example, citric acid or tartaric acid.
[0118] The acid used in the process is preferably a mineral acid, more preferably a food-grade
mineral acid, such as phosphoric acid.
[0119] In one embodiment of the invention, the acid comprises one or more of phosphoric
acid, lactic acid, citric acid, ascorbic acid or acetic acid. Preferably, the acid
is phosphoric acid.
[0120] Typically in the process of the invention, the acid is in the form of an acidic aqueous
solution, obtained by combining the acid and water, for example, and this is used
for treating the cocoa nibs. The acid/acidic solution preferably does not comprise
an alcohol such as ethanol. The acid/acidic solution may preferably comprise from
0.5 wt.% to 20 wt.% acid, more preferably from 1 to 10 wt.%, most preferably from
2 to 5 wt.% acid based on the weight of the solution.
[0121] In a preferred embodiment of the invention, the cocoa nibs are soaked or treated
in an acidic solution. The nibs are treated, preferably in an aqueous solution, preferably
at a pH of less than 6, more preferably at a pH of from about 1 to 4, such as from
2 to 3. Not all of the nibs may be submerged in the solution, but substantially all
is preferred (such as, for example, greater than 70 wt.%, 80 wt.% or 90 wt.%). The
nibs may be treated with the acid/acidic solution under agitation, for example by
a magnetic stirrer or rod.
[0122] In one embodiment of the invention, the cocoa nibs are obtained from cocoa beans
or seeds, such as Lavados beans, which are substantially unfermented. The beans are
preferably not roasted since this can reduce the colouring potential. The preferred
pH range for the acid treatment is from 2 to 4 and the particularly preferred acid
is citric acid. The treated nibs are preferably dried by being extruded so as to reduce
the moisture level and microbial content. The temperature in the extruder may suitably
be from 50 to 200°C, preferably from 70 to 150°C, such as from 90 to 130°C. It has
been found that such conditions can provide dried flakes which are coloured, contain
levels of polyphenols as defined herein and have an acceptable microbial count.
[0123] In one embodiment of the invention, the production of red cocoa-derived material
(preferably comprising a C* value of greater than about 18) may be obtained using
a pH of less than 4, such as from 2 to 3.5, more preferably from 2 to 3.
[0124] In another embodiment of the invention, the production of purple cocoa-derived material
(preferably comprising a C* value of less than about 18) may be obtained using a pH
of greater than 4, such as from 4.2 to 6.6, more preferably from 4.5 to 6.0, particularly
from 4.5 to 5.6.
[0125] The amount of water, such as in the aqueous solution, is preferably from about 1
to 1000 wt.% based on the weight of the cocoa-derived material, such as cocoa nibs,
cocoa powder or cocoa liquor, more preferably from about 25 to 500 wt.%, particularly
from about 100 to 300 wt.%.
[0126] In one embodiment of the invention, the nibs or other cocoa-derived material are
treated with the acid for a period of up to about 24 hours, preferably up to 12 hours.
The nibs may be treated with the acid for a period of from about 2 to 8 hours, preferably
from about 3 to 6 hours. A period of from about 4 to 5 hours is particularly preferred.
The soaking time may, however, be a few minutes, for example at least 5 minutes. Other
preferred reaction times are from 20 to 60 minutes.
[0127] Without wishing to be bound by theory, it is believed that the reaction between the
acid and the polyphenols in the cocoa nibs produces the redness or purpleness. The
reaction can be instantaneous, although leaving the reaction mixture for longer can
produce changes in the colour of the nib, such that the red deepens eventually to
russet/bordeaux.
[0128] The nibs are preferably treated at a temperature of less than or about 50°C, most
preferably at a temperature of from 5 to 30°C.
[0129] In a preferred embodiment of the invention, the cocoa nibs or other cocoa-derived
material are treated with an acidic aqueous solution, preferably having a pH of from
1 to 3, for a period of from about 3 to 6 hours at a temperature of from 5 to 30°C.
It has been unexpectedly found that controlling the reaction conditions in this way
produces red cocoa nibs from nibs obtained from unfermented or underfermented cocoa
beans and can also operate so as to substantially preserve the level of polyphenols
present in the cocoa nibs.
[0130] In another embodiment of the process, the drying of the red or purple nibs in (ii)
is carried out at a temperature such that the level of polyphenols in the nibs is
substantially conserved (for example, greater than 80 wt.%, such as greater than 90
wt.% remains). The drying is preferably carried out at an ambient air temperature
of less than about 115°C, more preferably at a temperature of from 40 to 100 °C. such
as from 60 to 80°C. The drying may be carried out using an infra-red heater such as
that available from Micronizing Company, UK., or using an extruder device for drying
and reducing the microbial content.
[0131] Optionally, the nibs may be dried in a tornado drier, (preferably at about 105°C
for about 5 minutes.
[0132] In a preferred embodiment of the invention, the cocoa nibs are not roasted. The term
"roasted" will be understood by a person skilled in the art.
[0133] The process of the invention is a non-enzymatic process, that is the process does
not comprise the addition of an enzyme.
[0134] In a preferred embodiment of the invention, the treating of the nibs with an acid
is carried out when the nibs are in an expeller press. The temperature of the nibs
is preferably below 40°C. Expeller presses are well known for extracting oil from
raw materials. Preferably, the process of the invention comprises treating the nibs
with an acid, wherein the nibs are in an expeller press. The process may be a continuous
or batch process. Preferably, it is a continuous process. The nibs are preferably
red or purple.
[0135] The nibs may be treated with the acid, as defined herein, in any part of an expeller
apparatus, such as before flakes are formed. For example, the nibs may be acidified
in a heating zone, such as a mixing heater, before pressing and preferably before
inserting into a worm press. The amount of acid, such as citric acid, is preferably
from about 1 to 20 wt.%, more preferably from 1.5 to 10 wt.% based on the weight of
the nibs. The amount of water is preferably from about 1 to 20 wt.% based on the weight
of the nibs, more preferably from about 2 to 10 wt.%. In a preferred embodiment, the
nibs are treated with a 1 to 10%, such as from 3 to 7%, solution of acid, such as
citric acid, in water. The nibs may be reacted with the acid for up to 24 hours, more
preferably from 1 to 12 hours, such as from 2 to 4 hours.
[0136] In a preferred embodiment of the invention, the acid is in an aqueous solution at
a concentration of acid of 2 to 20 %. The pH of the solution may be less than 5, such
as less than 4 and preferably from 3 to 4, for red flakes (a C* value of greater than
about 18) and above 4 for purple flakes (a C* value of less than about 18).
[0137] In one embodiment, the nibs, optionally treated with acid as described above, may
be fed into a press such as a worm press. The heater/feeding screw flow is preferably
from 30 to 200 kg nibs/h, more preferably from 40 to 110 kg nibs/h. Following pressing,
the nibs can be separated into expeller flakes and cocoa butter. The pressure in the
expeller may be from 0 to 100 bar, more preferably from about 20 to 80 bar, such as
about 75 bar. The temperature in the press is preferably below the melting range for
flakes and is preferably less than or about 40°C. The speed of the press is preferably
from 10 to 100 kg flakes/h, more preferably from 20 to 80 kg flakes/h.
[0138] The expeller flakes, optionally red or purple, may have a fat content of less than
20 wt.%, preferably less than 18 wt.%, such as less than 10 wt%. The moisture content
of the expeller flake may be less than 15 wt.%, such as less than 11 wt.%, for example,
from 5 to 11 wt. %.
[0139] The cocoa butter obtained may be further processed, for example by filtration and/or
cetrifugation and/or sedimentation.
[0140] Coloured, red or purple, flakes are produced according to the process. In a preferred
embodiment, the flakes have preferably been extruded and optionally sterilized. By
"sterilized" we mean that the microbial content of the flakes after extrusion is less
than the microbial content before extrusion. The microbial content may be reduced
by greater than 90%, such as greater than 95%, for example, up to 99.99% following
extrusion. The moisture content of the flakes may also be reduced by greater than
90%, such as greater than 95%, for example, up to 99.99% following extrusion.
[0141] The flakes obtained according to the invention, preferably from an expeller, may
also be further processed. Thus, the flakes are preferably subjected to nibbling and/or
extruding such as defined above. The extruded flakes may then be formed into red or
purple cocoa powder by, for example, milling to form the powder and optionally sieving.
The powder may be packaged and/or palettized to form packed red or purple cocoa powder.
[0142] In one embodiment, the flow in the extruder is from 100 to 300 kg flakes, optionally
nibbled/h more preferably from 150 to 250 kg/h. The extruder may contain 10 to 20%,
such as 15%, water. The temperature may vary within the extruder. Thus, in an initial
stage the temperature may be lower, such as less than 100°C than one or more later
stages, which may be greater than 100°C i.e. the temperature may be ramped.
[0143] The drying of the nibs as described in any of the above embodiments of the invention
is preferably carried out for a period of at least 2 hours, more preferably for at
least 4 hours, most preferably for a period of about 12 hours. In the case of extrusion,
drying may only be required for a few minutes, for example, from 5 to 20 minutes.
[0144] Preferably, the cocoa nibs used in the process of the invention are obtained from
washed unfermented cocoa seeds, such as those processed in Brazil and known as "lavados"
beans.
[0145] The process of the invention, as described in any of the above embodiments, further
comprises predrying and/or heating of cocoa beans or seeds, prior to acid treatment,
to produce cocoa nibs. In particular, the conditions of the predrying and/or heating
are preferably controlled in order to avoid damaging the natural polyphenols. The
heating and/or predrying may assist in winnowing i.e., removing the shells from the
cocoa beans.
[0146] In one embodiment of the invention, an additional step is carried out which comprises
reducing the size of the cocoa nibs by mechanical means before treatment with the
acid or acidic solution. For example, the nibs may be ground using a three roll refiner
in order to expedite reaction and/or drying of the nibs following reaction. The temperature
of the cooling jacket of the refiner is preferably set to 10 to 20°C.
[0147] The listing or discussion of an apparently prior-published document in this specification
should not necessarily be taken as an acknowledgement that the document is part of
the state of the art or is common general knowledge.
[0148] The following non-limiting examples illustrate the invention and do not limit its
scope in any way. In the examples and throughout this specification, all percentages,
parts and ratios are by weight unless indicated otherwise. It will be appreciated
that the various percentage amounts of the different components that are present in
the products of the invention, including any optional components, will add up to 100%.
Examples
Example 1:
[0149] Unfermented cocoa seeds from Brazil were washed after depodding and dried. The depodded
beans were then treated by predrying/heating (the conditions were such as to avoid
damage of the natural pool of polyphenols in the beans) to ease removal of the shells.
[0150] After winnowing, 100 g nibs were soaked in a 3 wt.% phosphoric acid solution in water
(200g of water and 6 ml of phosphoric acid). No ethanol was used in the solution.
[0151] The nibs were soaked in the acidic solution for a period of up to 24 hours at ambient
temperature. The colour of the nibs changed with the degree of soaking. Up to 24 hours
the nibs have a reddish colour, comparable to raspberry red. If the reaction is allowed
to continue, then the colour can become bordeaux / russet / red claret.
[0152] The nibs were then separated from the soaking solution by sieving and dried in a
heating cabinet at a temperature of 100 to 110°C for several hours. During the drying
step, the colour of the nibs changed from reddish to russet.
[0153] The nibs were then broken up on a three roll refiner (to avoid heating as in a pin
mill). The end result was refiner flakes, not a liquor. The refiner flakes can be
used to make chocolate, as set out below.
Example 2:
[0154] The refiner flakes produced according to Example 1 were melted gently at 45°C to
obtain a more or less liquid paste i.e., red cocoa liquor.
[0155] The cocoa liquor was mixed with sugar in a 50:50 weight ratio. This mixture was refined
and liquefied by the addition of cocoa butter in order to increase the total fat content
to 35% and produce red chocolate.
[0156] Natural vanilla was then added to the chocolate in order to mask the bitter taste.
[0157] The result of the taste test was: very fruity and pleasant.
Example 3:
Determination of total Polyphenols in a chocolate or cocoa sample in epicatechin equivalent
[0158] The Folin-Ciocalteu reagent is a mixture of phosphotungstic acid (H
3PW
13O
40) and phosphomolybdic acid (H
3Pmo
12O
40). Polyphenols are reduced by oxido-reduction to give a mix of blue oxides of tungsten
(W
8O
23) and molybdenum (MoO
23). The intensity of the coloration is measured at 760nm.
EQUIPMENT
[0159]
- Flask of 50 mL
- Centrifugation tubes
- pyrex Tubes Ø 18mm
- automatic Pipettes of 1000 and 5000 µL
- Beakers of 50 and 100 mL
- 1 water bath (50°C)
- 1 spectrophotometer (760 nm)
- Sieve 200µm
REAGENTS
[0160]
- Folin-Ciocalteu (diluted to 10-1)
- sodium carbonate solution at 75 g/L
- epicatechin (sigma reference: E-1753)
PROTOCOL
[0161] 5 grams of chocolate or cocoa sample are weighed. The fat is extracted with petroleum
ether by centrifugation. The defatted part is sieved with a 200µm sieve. 50 mg of
the defatted extract is placed in a 50 ml flask and diluted with distilled water to
provide solution A. The extract is dissolved using ultrasonic energy for 2 minutes.
[0162] 0.5 ml of solution A is placed in a pyrex tube and 4.5 ml of distilled water added
to provide solution B. 0.5 ml of solution B is placed in a pyrex tube and 2.5 ml of
the Folin-Ciocalteu solution are added to provide solution C. After 3 minutes, 2 ml
of sodium carbonate solution is added to solution C to provide solution D. Solution
D is then heated in a water bath at 50°C for 5 minutes. After 5 minutes, the tube
is placed in an ice bath to stop the reaction. The absorbance of the solution is measured
at 760 nm.
RESULTS
[0163]
| Polyphenol Concentration, P, (in mol/L) P = UVabs/38741,8* |
Epicatechin content, Q, (in mg) Q = P/6,897.10-7** |
Polyphenols content, PT, in epicatechin equivalent (in %) PT = Q*(100 - MG)/m |
*: Standard line (see the method of standardisation below)
**: epicatechin equivalence coefficient
MG: Fat content in the sample (%)
m: Weight of the sample dried and defatted (≈ 50 mg) |
Method Standardisation
[0164] The standards used for the Folin-Ciocalteu method are: Solution at 100mg/L and 5
daughter solutions at 0, 5, 10, 15 and 20 mg/L.
[0165] An example is in the following table:
| Mother solution of epicatechin 102.8 mg/L (concentration correct after weighing) |
| Volume of mother solution in mL |
0 |
0.5 |
1 |
1.5 |
2 |
| Volume of water in mL |
10 |
9.5 |
9 |
8.5 |
8 |
| [epicatechin] in mol/L |
0 |
1.77E-06 |
3.55E-06 |
5.32E-06 |
7.09E-06 |
| % in polyphenols |
0 |
10.28 |
20.56 |
30.84 |
41.12 |
| mepicatechin |
25,7 |
Mg |
|
| PMepicatechin |
290 |
g/mol |
[0166] The first dilution described in the protocol for this standard line is not used.
The polyphenol content of cocoa-derived material produced according to the process
of the invention is provided in Table 1.

Example 4:
HPLC measurement of polyphenol content
[0167] The majority of the polyphenols contained in cocoa beans are from the flavonoid family:
C6-C3-C6. The monomers that are commonly present include (-)-epicatechin and (+)-catechin.
[0168] The polyphenols contained in cocoa seeds include:
- 37% Flavan-3-ols (Epicatechins - Catechins)
- 4% Anthocyanes
- 58% Proanthocyanidins (or Procyanidins) or flavanol oligomers
[0169] The cocoa seed is a reservoir of epicatechin (it constitutes about 35% of the total
polyphenol content).
PRINCIPLE
[0170] Epicatechin, catechin and the Procyanidins B1, B2, B3 can be analysed by HPLC using
a fluorescence detector.
[0171] Before the HPLC analysis, epicatechin, catechin and the procyanidins are extracted
from the cocoa with a solution of acidified water/actonitrile.
MATERIALS
[0172]
Ultrasonic bath
HPLC machine
Fluorescence detector
Column : Kromasil C18, 5µm, 250x4.6mm
Disposable syringe 2ml
Filter syringe RC (regenerated Cellulose), 0.45µm, diameter 25mm 25 and 50 ml flasks
Vials 2 ml
Sieve 200 µm
REAGENTS
[0173]
Acetonitrile HPLC grade
Water HPLC grade
Glacial acetic acid
Standard of Epicatechin : Sigma reference E1753-1G
Standard of Catechin: Sigma reference C0567
Standard of Procyanidin B1 : Sigma reference 19542, 1mg
Standard of Procyanidin B2 : Sigma reference 42157, 1 mg
Standard of Procyanidin B3 : Sigma reference P1066-1VL, 1mg
METHOD
Preparation of solvent for extraction
[0174] 90 % water HPLC grade was acidified to pH =2.5 (2% glacial acetic acid) and combined
with 10% acetonitrile HPLC grade.
Preparation of sample
[0175] About 5 g of fatty product was weighed. The fatty material in the product was extracted
by adding hexane (to determine MG: the percentage of fatty material in the sample)
to the cocoa followed by centrifugation and dephasing. The defatted extract was then
sieved. 200 mg of the sieved extract was weighed into a 50 ml flask.
[0176] The extract was dissolved in the extraction solvent in the ultrasonic bath for about
10 minutes and the extraction solvent used to make up the volume. The solution was
filtered with a 0.45 µm filter syringe and placed in a vial.
Preparation of standards
[0177] Weigh into a 25 ml flask, 5 to 6 mg of epicatechin, 2 to 3 mg of catechin, 1.5 to
2 mg of Procyanidin B1, 2mg of Procyanidin B2 and 1 mg of Procyanidin B3. Dissolve
in the ultrasonic bath for several minutes using the extraction solvent to dissolve
and make up the volume. Carry out a dilution to 10
-1. Filter with a 0.45µm filter syringe and put in a vial.
Chromatography conditions
[0178]
- Column : Kromasil C18 ; 5µm ; 250x4.6 mm
- Detection by Fluorescence : Excitation = 274 nm ; Emission = 322 nm
- Mobile phase :
- A : HPLC grade water acidified to a pH of 2.5
- B : Acetonitrile HPLC grade
- Delivery of mobile phase : 1 mL/min.
- loop injection 10 µl
- Gradient:
| Time |
A |
B |
| 0 minute |
90 % |
10 % |
| 25 minutes |
90 % |
10 % |
EXPRESSION OF RESULTS
[0179] Example in the case of epicatechin :
Aet is the area of the epicatechin standard
Aech is the area of the epicatechin sample
A is the concentration of epicatechin in the standard in mg/l
B is the concentration of epicatechin in the sample in mg/l
m is the weight of the defatted sieved extract
MG is the percentage of the fatty material in the product
INTERPRETATION OF
RESULTS
[0180] 
Concentration of epicatechin in the extract in mg/g : E = B / (m /1000)
[0181] In the case of a fatty product (cocoa-derived material) :

Example 5:
Colour measurement for cocoa-derived material
[0182] A cocoa liquor obtained according to the invention, as indicated below, comprising
polyphenols was defatted with petroleum-ether followed by three washing steps and
centrifugation. After drying at room temperature, each powder sample was placed in
a petri dish and measured four times through the bottom of the dish using a colorimeter
with the well-known Hunter L*, a*, b* scale. The colorimeter used was the Minolta
CM-2002 spectrophotometer. The conditions for colour measurement were: CIELAB III:
D65, Obs : 10°, 3 flashes, mode: SCE and external colour at 20°C.
[0183] The progress of a process carried out according to the invention is shown in Table
2 in terms of colour parameters and polyphenol content for a fully defatted cocoa
liquor in the form of a powder, as measured according to the above method. The reaction
was carried out using a mixer to acidify the nibs and was carried out on lab scale
(1/2kgs) except for the process mixer (pilot plant, 15kgs).
Table 2
| Time of reaction in hours |
L* |
a* |
b* |
a*/b* |
C* |
h° |
% of polyphenols in the defatted cocoa liquor |
| 0.25 |
47.18 |
19.92 |
10.78 |
1.85 |
22.65 |
28.42 |
10.60 |
| 0.5 |
47.1 |
21.44 |
9.98 |
2.15 |
23.65 |
24.96 |
11.86 |
| 1 |
47.75 |
19.92 |
12.34 |
1.61 |
23.43 |
31.78 |
9.06 |
| 2 |
45.28 |
22.08 |
12.9 |
1.71 |
25.57 |
30.29 |
10.00 |
| 3 |
44.08 |
25.83 |
11.55 |
2.24 |
28.29 |
24.08 |
9.65 |
| 4 |
41.72 |
31.11 |
10.1 |
3.08 |
32.71 |
17.98 |
12.42 |
| 5 |
42.61 |
31.08 |
10.44 |
2.98 |
32.78 |
18.57 |
12.31 |
| 6 |
44.42 |
27.46 |
12.05 |
2.28 |
29.99 |
23.69 |
10.36 |
| 7 |
40.54 |
29.43 |
11.87 |
2.48 |
31.73 |
21.96 |
10.05 |
| 24 |
43.12 |
28.24 |
12.03 |
2.35 |
30.7 |
23.07 |
10.57 |
| |
|
|
|
|
| Process Mixer (pilot/15 kgs) |
44.61 |
21.77 |
10.62 |
2.05 |
24.22 |
26 |
11.20 |
[0184] For comparison, the progress of a process carried out according to the invention
is shown in Table 3 in terms of colour parameters for a cocoa liquor melted and liquid.

Example 6:
Yoghurt
[0185] A coloured yoghurt product was made by adding 1wt. %, based on the total weight of
the yoghurt, of the cocoa powder obtained from nibs soaked for 4 hours under the conditions
described in Example 1 to a commercially available natural yoghurt (i.e., which is
uncoloured).
[0186] The result of adding the red cocoa powder to the yoghurt was to provide the yoghurt
with a pleasing red hue (see Figure 6).
Example 7 :
Cooked Candies
[0187] A red cooked candy can be produced from:
50.00g of isomalt
1.72g of cocoa powder which has been acidified using 8.66% of ortho-phosphoric acid
5.00g of a solution of ethanol-water (70-30%).
1.13g citric acid.
[0188] The citric acid was dissolved in the mixture of ethanol and water. In order to limit
loss of the product it was preferred to weigh the mixture of ethanol and water in
a beaker containing citric acid. The acidified cocoa powder was then dissolved in
the mixture of citric acid, ethanol and water to form a homogeneous solution with
stirring (Mixture 1).
[0189] It may be necessary to combine a mixture of acidified cocoa powder, alcohol and water
(Mixture 2) with the isomaltol (as produced below) within 30 seconds in order to prevent
oxidation and change in colour.
[0190] The isomaltol was heated in a pan at thermostat 2 for 1 minute 30 seconds, thermostat
3 for 3 minutes and thermostat 4 for 4 minutes. The isomalt was completely melted
and colourless at this stage. This was followed by further heating at thermostat 1
for about 6 minutes. The isomalt was approaching crystallization. At this moment Mixture
1 was added to prevent evaporation of the alcohol and spraying of the powder around
the vessel.
[0191] After Mixture 1 was added to the heated isomalt, heating was continued at thermostat
2 for a further 50 seconds.
[0192] Mixture 1 was stirred with the heated isomalt to form a homogeneous mixture.
[0193] Aroma was then added - 40 drops of aroma with a pasteur pipette. The mixture containing
the aroma was heated at thermostat 3 for a further 1 minute to make the mixture as
homogenous as possible.
[0194] The mixture was then placed into a suitable mold. To obtain precise colour measurements
using spectrocolorimetry, it is preferred to use a mold which produces disc-like products
(see Figures 8 and 9).
[0195] Figure 10 shows the different colours for candies that it is possible to obtain using
different cocoa powders. The following powders were used to produce the cooked candies
in Figure 10, according to the method set out above.
- Powder Black Pearl (1)
- Powder PZ 044 (2)
- Powder DRT (sic) (3)
- Powder N 102 C (SACO) (4)
- Powder of Madagascar (5)
- Powder of Java (6)
- Powder acidified type Roland-Garros (7)
- Powder acidified type rose bonbon (8)
- Powder acidified type rose (9)
Example 8:
[0196] "Red" cocoa powder was produced according to Example 1 using the following conditions.
These conditions were particularly preferred for producing "red" powder.
- 5% acid phosphoric
- 200% water
- soaking 4 hours
- drying 24h at 60°C
[0197] All trials were carried out in small box (50x60x40) with 2 kilograms of lavados cocoa
nibs.
Example 9
Effect of reaction parameters on colour parameters and polyphenol content
A: Matrix of the trials
[0198] The 4 parameters studied were coded in 2 values (+1 for the high value, -1 for the
low value)
| A= Concentration of Phosphoric Acid |
+1 = 10% |
-1 = 1% |
0 = 5,5% |
| B= % H2O |
+1 = 200% |
-1 = 25% |
0 = 112,5% |
| C= Reaction time (min) |
+1 = 300 |
-1 = 20 |
0 = 160 |
| D= Temperature °C |
+1 = 50°C |
-1 = 20°C |
0 = 35°C |
[0199] 0 is the middle value to verify the repeatability of this process
[0200] The drying step was exactly the same for all trials and centre points (19h in air
oven)
Matrix of Trials
| |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
| A |
B |
c |
D |
A.B |
A.C |
A.D |
B.C |
B.D |
C.D |
A.B.C |
A.B.D |
B.C.D |
A.C.D |
A.B.C.D |
| Trial n°1 |
-1 |
-1 |
-1 |
-1 |
1 |
1 |
1 |
1 |
1 |
1 |
-1 |
-1 |
-1 |
-1 |
1 |
| Trial n°2 |
+1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
1 |
1 |
1 |
1 |
1 |
-1 |
1 |
-1 |
| Trial n°3 |
-1 |
+1 |
-1 |
-1 |
-1 |
1 |
1 |
-1 |
-1 |
1 |
1 |
1 |
1 |
-1 |
-1 |
| Trial n°4 |
+1 |
+1 |
-1 |
-1 |
1 |
-1 |
-1 |
-1 |
-1 |
1 |
-1 |
-1 |
1 |
1 |
1 |
| Trial n°5 |
-1 |
-1 |
+1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
1 |
-1 |
| Trial n°6 |
+1 |
-1 |
+1 |
-1 |
-1 |
1 |
-1 |
-1 |
1 |
-1 |
-1 |
1 |
1 |
-1 |
1 |
| Trial n°7 |
-1 |
+1 |
+1 |
-1 |
-1 |
-1 |
1 |
1 |
-1 |
-1 |
-1 |
1 |
-1 |
1 |
1 |
| Trial n°8 |
+1 |
+1 |
+1 |
-1 |
1 |
1 |
-1 |
1 |
-1 |
-1 |
1 |
-1 |
-1 |
-1 |
-1 |
| Trial n°9 |
-1 |
-1 |
-1 |
+1 |
1 |
1 |
-1 |
1 |
-1 |
-1 |
-1 |
1 |
1 |
1 |
-1 |
| Trial n°10 |
+1 |
-1 |
-1 |
+1 |
-1 |
-1 |
1 |
1 |
-1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
| Trial n°11 |
-1 |
+1 |
-1 |
+1 |
-1 |
1 |
-1 |
-1 |
1 |
-1 |
1 |
-1 |
-1 |
1 |
1 |
| Trial n°12 |
+1 |
+1 |
-1 |
+1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
-1 |
1 |
-1 |
-1 |
-1 |
| Trial n°13 |
-1 |
-1 |
+1 |
+1 |
1 |
-1 |
-1 |
-1 |
-1 |
1 |
1 |
1 |
-1 |
-1 |
1 |
| Trial n°14 |
+1 |
-1 |
+1 |
+1 |
-1 |
1 |
1 |
-1 |
-1 |
1 |
-1 |
-1 |
-1 |
1 |
-1 |
| Trial n°15 |
-1 |
+1 |
+1 |
+1 |
-1 |
-1 |
-1 |
1 |
1 |
1 |
-1 |
-1 |
1 |
-1 |
-1 |
| Trial n°16 |
+1 |
+1 |
+1 |
+1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
| |
| Center 1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
| Center 2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
| Center 3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
| Center 4 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
B: Calculation of the effects (=H)
1- Example
[0201]
| Number of trials |
Factor 1 (coded value) |
Factor 2 (coded value) |
Résults of the measurement |
| 1 |
-1 |
-1 |
A |
| 2 |
+1 |
-1 |
B |
| 3 |
-1 |
+1 |
C |
| 4 |
+1 |
+1 |
D |
| 5 |
0 |
0 |
E |
| 6 |
0 |
0 |
F |
| 7 |
0 |
0 |
G |

[0202] With these centre points (trials with the middle values), we calculate the standard
deviation (σ) of this experiment.
[0203] So we are able to calculate the confidence interval (CI). (CI is the interval, in
which the value of the effect will be with a probability of 95%)
n = number of trials (center point not included)
t = value for a risk of 5% and the degree of freedom is N-1, where N is the number
of centre trials (see Table below)

2- Interpretation of the effects
[0204] When the confidence interval contains zero, the value of the effect is not very different
from zero. We could then say that this effect is negligible and the parameter will
not have any significant influence.
[0205] When the value of the effect is negative, the parameter has a negative influence
on the measured value. If we increase the value of this parameter, the measured value,
such as pH and colour will decrease.
[0206] When the value of the effect is positive, the parameter has a positive influence
on the measured value. If we increase the value of this parameter, the measured value,
such as pH and colour will increase.
C: Results of the measurments
[0207]

[0208] Polyphenol contents are provided in % of epicatechin on dried and defatted cocoa
according to Folin's method (see Example 4). The samples obtained are shown in Figure
11. The trials witch a C* value less than 18 are preferably considered to be non-limiting
examples of purple. The trials with a C* value greater than 18 are preferably considered
to be non-limiting examples of red.
[0209] All followed colours of these products are measured on dry and defatted material.

D: Analysis of the effects (H)
1- Confidence intervals and interpretations, an example: ashes value
[0210]

[0211] In this case, the quantity of acid has a positive influence on the ash content. Thus,
the more acid we use, the more ashes we will find in the final product.
[0212] On the contrary, the percentage of water has a negative influence on the ash content.
The more water we include, the less ashes we will find.
[0213] For the parameters "Time" and "Temperature", zero is included in the confidence interval.
These parameters did not have a significant influence on the ash content.
[0214] The table below provides a review of the confidence intervals and significance of
the effects

2- Review of the effects
[0215]

[0216] Parameter with two signs has more influence (positive or negative) than parameter
with only one sign.
3- Interactions between the parameters
[0217]

Example 10:
Use of a weak acid
[0218] To study the impact of different acids, we used the parameters of the trial n°9 (one
of the trials which can be considered to produce purple cocoa powder) and a centre
point. The powders produced are shown in Figure 12.
1- Parameters
Raw material: Lavados brazil cocoa beans
[0219]
| |
Acid |
Water |
Time |
T°C |
| Trial n°9 |
-1 |
-1 |
-1 |
+1 |
| Center 1 |
0 |
0 |
0 |
0 |
Trial 9:
- Acid : citric acid or tartaric acid
- Water: 25%
- Time: 20 min
- Temperature: 50°C
Centre
- Acid: citric or tartaric acid
- Water: 112.5%
- Time: 160 min
- Temperature: 35°C
2- Results
[0220]
| |
pH |
L* |
C* |
h° |
a* |
b* |
Polyphenols |
Fat (%) |
Ashes (%) |
Moisture (%) |
| Trial n°9 Tartaric acid |
4,59 |
52,28 |
13,83 |
29,88 |
11,98 |
6,90 |
12,25 |
46,56 |
5,84 |
1,84 |
| Trial n°9 Citric acid |
4,79 |
52,79 |
12,31 |
28,75 |
10,80 |
5,92 |
13,90 |
43,19 |
5,47 |
1,74 |
| |
| Trial n°9 Phosphoric acid |
4,59 |
52,72 |
14,47 |
25,50 |
13,06 |
6,23 |
12,37 |
47,79 |
7,62 |
3,04 |
| |
| CP Tartaric acid |
3,45 |
45,87 |
29,96 |
9,61 |
29,54 |
5,00 |
9,50 |
47,15 |
5,36 |
1,84 |
| CP Citric acid |
4,22 |
46,72 |
24,00 |
12,96 |
23,39 |
5,37 |
10,72 |
43,71 |
4,97 |
1,45 |
| |
| CP Phosphoric acid |
2,57 |
46,28 |
33,42 |
33,95 |
33,42 |
5,89 |
11,00 |
43,29 |
11,84 |
2,89 |
[0221] The colours and polyphenol content are provided for dried and defatted cocoa. The
polyphenol is provided in % of epicatechin Folin's method.
[0222] In term of colour parameters, the results are not too different between the strong
acid (phosphoric) and weaker acids (citric and tartaric).
[0223] As citric and tartaric acids are organic acids, we do not "find" them in the ashes
anymore.
Polyphenol content by Brunswick lab (Orac value test and HPLC condensed tanins method)
[0224]

3- Conclusion
[0225] The citric acid is suitable for use in the acidification process of the invention.
It is more interesting for low supply in ashes and easy manipulation. Also it seems
that citric acid, which is weaker than phosphoric acid, is particularly useful for
preserving the polyphenol content.
Example 11:
Scaling up trials
[0226] The parameters from trial 9 (in Example 10) were applied for a semi-industrial trial
on the pilot line.
- Raw materials : Lavados Brazil nibs
- Acid : 5% of citric acid
- Water: 25%
- Reaction time: 20-40-60min
- Reaction temperature: Room temperature
- Drying: in tornado at 100°C
- Grinding
LB01 → Lavados Brazil reaction time 20min
LB02 → Lavados Brazil reaction time 40min
LB03 → Lavados Brazil reaction time 60min
1. Trials
[0227] A steam flow temperature of 70°C was used to regulate the double jacket on the pilot
line. The flow was cut off when the jacket was at 70°C.
[0228] The mixing time was slightly modified. To have a good moisture before drying, warm
air was injected during the mixing step (5min only mixing and the rest of time mixing
and air injection).
[0229] Following these modifications the nibs could be dried in the Tornado (setting 105°C
during 5 min)
[0230] The cooling system and the door of the
Tornado were abraded slightly by the acid, because these parts are not made from stainless
steel.
2- Results
[0231]
| |
L* |
a* |
b* |
C* |
h° |
Polyphenols |
Fat % |
| LB01 81684 |
53,2 |
15,5 |
11,3 |
19,2 |
36,2 |
11,52 |
47,57 |
| LB02 81685 |
48,5 |
18 |
10,1 |
20,6 |
29,2 |
11,85 |
47,68 |
| LB03 81686 |
55,9 |
16 |
8,65 |
18,2 |
28,4 |
11,96 |
49,98 |
| OT01 81687 |
51,8 |
14,2 |
16,7 |
21,9 |
49,6 |
6,88 |
51,32 |
[0232] polyphenol and colour were measured on dried and defatted cocoa - polyphenols in
% of epicatechin: Folin's method (see Figures 13 and 14).
3- Conclusion
[0233] This process enables a correct colour and an acceptable polyphenol content to be
obtained with a reaction time of 40min.
[0234] The moisture of the nibs after the drying is about 2-3%. The cut grinding step is
more difficult than "Ball Milling" step.
[0235] For all trials on the pilot line, the texture is very acceptable (pumpable).
Example 12:
Expeller process
A: DESCRIPTION
Expeller press
[0236] With reference to Figure 15, using a hoist, the height of a bag containing cocoa
nibs (1) is raised over a conveying screw. The nibs are carried to a mixing heater
(2), wherein the nibs are acidified, heated (50°C) and mixed. Then the red/purple
nibs are inserted to a worm press (3). The screw is bound by a cage, that only lets
the butter (4) go through. At the end, a screwplate (5) enables the flakes (6) to
be expellled. The expeller flakes are picked up in a bag (7) and the butter is picked
up in a box (8).
[0237] This equipment enables a product called "Flakes" to be obtained from cocoa nibs.
In the end the fat content of the flakes is about 10%.
3 trials and a Blank (nibs without acid)
Parameters:
[0238]
- continuous acidification in the heating zone
- acid: citric acid 1.6 / 5.5 / 9.5%
- raw material: Lavados brazil cocoa nibs
- water: 1.6/5.5/9.5%
| |
Feeding screw flow Kg/h |
citric acid in solution (50/50) % |
| Blank |
153,00 |
0,00 |
| Trial 3 |
104,30 |
3,20 |
| Trial 1 |
70,28 |
11,00 |
| Trial 2 |
41,12 |
19,00 |
B Results
[0239]
| |
fat (%) |
Moisture (%) |
pH |
Colour |
| |
L* |
C* |
h° |
a* |
b* |
| Blank |
9,03 |
8,89 |
5,69 |
50,21 |
8,76 |
8,75 |
8,66 |
1,33 |
| Trial 3 (3,2%) |
11,68 |
10,06 |
4,70 |
48,55 |
13,95 |
7,49 |
13,84 |
1,82 |
| Trial 1 (11%) |
18,50 |
6,61 |
3,93 |
48,31 |
21,84 |
7,96 |
21,63 |
3,03 |
| Trial 2 (19%) |
18,21 |
8,29 |
3,61 |
44,18 |
26,62 |
9,23 |
26,28 |
4,27 |
[0240] The colour is measured on dried and defatted cocoa.
[0241] The analysis of an expeller product produced according to the invention, together
with the conditions used, is set out in the table below.
Microbiological results
| DATE ANALYSES |
TYPE PRODUIT |
Flore totale /9 |
Levures - Moisissures /g |
Dénombr E Coli/g |
Dénombr Entéro /g |
Salmonelles |
Thermoresistant Thermophiles |
Thermoresistant Mésophiles |
| 12-nov-08 |
GRAINS LAVADOS |
17 000 |
13300 |
<10 |
<10 |
N/25G |
|
|
| BRESIL ENTREE |
|
|
| |
GRAINS LAVADOS |
|
|
|
|
|
|
|
| |
BRESILSORTIE |
14 000 |
10350 |
<10 |
<10 |
N/25G |
|
|
| |
CHAUFFOIR |
|
|
|
|
|
|
|
| |
FLAKES LAVADOS |
|
|
|
|
|
|
|
| |
BRESIL SORTIE |
33 500 |
2150 |
<10 |
<10 |
N/25G |
|
|
| |
EXPELLER |
|
|
|
|
|
|
|
| |
FLAKES LAVADOS |
|
|
|
|
|
|
|
| 20-déc-08 |
BRESIL ENTREE |
68 000 |
47 000 |
<10 |
<10 |
N/25g |
<5 |
<5 |
| |
EXTRUDEUR T020008 |
|
|
|
|
|
|
|
| |
FLAKES LAVADOS |
|
|
|
|
|
|
|
| 20-déc-08 |
BRESIL SORTIE |
700 |
5 |
<10 |
<10 |
N/25g |
<5 |
<5 |
| |
EXTRUDEURT020008 |
|
|
|
|
|
|
|
[0242] The microbiological results show that the level of moisture can be reduced significantly
following extrusion, while also reducing the microbial level. The extruder therefore
provides a convenient method for drying and sterilizing the flakes.
[0243] The polyphenol content of the powder obtained from the flakes is as follows.
| Sample ID |
Brunswick |
ORAChydro* |
| Lab ID |
(µmoleTE/g) |
| 100-F017906-AC-793 083408132 |
09-0001 |
1,493 |
| FR70620 T020008 |
09-0002 |
2,264 |
| Red Deep Purple CP T020008 |
09-0003 |
1,702 |
* The ORAC analysis provides a measure of the scavenging capacity of antioxidants
against the peroxyl radical, which is one of the most common reactive oxygen species
(ROS) found in the body. ORAChydro reflects water-soluble antioxidant capacity. Trolox, a water-soluble Vitamin E analog,
is used as the calibration standard and the ORAC result is expressed as micromole
Trolox equivalent (TE) per gram.
The acceptable precision of the ORAC assay is 15% relative standard deviation.i ii
1 Ou, B; Hampsch-Woodill, M.; Prior, R. L.; Development and Validation of an Improved
Oxygen Radical Absorbance Capacity Assay using Fluorescein as the Fluorescent Probe.
Journal of Agricultural and Food Chemistry.; 2001; 49(10); 4619-4626
1 Ou, B.; Huang, D.; Hampsch-Woodill, M.; Method for Assaying the Antioxidant Capacity
of A Sample. *US Patent 7,132,296 B2* |
[0244] The tannin content of the powder is provided in the following table (referring to
Red Deep Purple CP).
Analysis: Condensed Tannins*
| Sample ID |
BrunswickLab ID |
1mers |
2mers |
3mers |
4mers |
5mers |
6mers |
7mers |
8mers |
9mers |
10mers |
>10mers |
total mg/g |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| FR70620 |
T020008 |
09-0002 |
18.73 |
16.43 |
14.66 |
13.95 |
11.67 |
10.88 |
7.44 |
9.33 |
9.81 |
0.00 |
24.29 |
141.20 |
| Red Deep Purple CP |
T020008 |
09-0003 |
18.45 |
15.22 |
13.79 |
13.89 |
11.95 |
11.39 |
8.30 |
10.10 |
11.05 |
0.00 |
29.28 |
143.43 |
Example 13:
Treating cocoa liquor in the conche
[0245] The composition used in the experiments was as follows. All of the experiments were
carried out using 1kg of the composition (referred to as "conche" in the tables below).
[0246] The composition used was:
| Sugar |
47.1 |
| Acticoa® Mass |
37.7 |
| Cocoa butter |
9.2 |
| Butter oil |
5 |
| Lecithin |
0.65 |
| K-Bic |
0.3 |
| Nat Van |
0.05 |
| |
100 |
| Acticoa® is a registered trademark of the Barry Callebaut Group. |
[0247] The following parameters were used in the experiments:
- Conching time : 1h to 4h
- Conching temperature : 40°C to 65°C
- Addition of citric acid (CA): 0,2% to 1%
- Addition of water: 1% to 2%
Equipment
[0248] A "Stephan"-mixer, at minimum mixing speed (mixing and scraping) was used. The experiments
were carried out with ventilation to evacuate the volatile components.
[0249] The results of these experiments are in the tables below. The colour measurements
refer to the colour of the chocolate produced and not defatted cocoa powder.